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Abstract. We introduce the notions of preordered and heap-preordered forests, generalizing
the construction of ordered and heap-ordered forests. We prove that the algebras of preordered
and heap-preordered forests are Hopf for the cut coproduct, and we construct a Hopf morphism
to the Hopf algebra of packed words. Moreover, we define another coproduct on the preordered
forests given by the contraction of edges. Finally, we give a combinatorial description of morphims
defined on Hopf algebras of forests with values in the Hopf algebras of shuffes or quasi-shuffles.

Résumé. Nous introduisons les notions de foréts préordonnées et préordonnées en tas,
généralisant les constructions des foréts ordonnées et ordonnées en tas. On démontre que les
algébres des foréts préordonnées et préordonnées en tas sont des algébres de Hopf pour le copro-
duit de coupes et on construit un morphisme d’algébres de Hopf dans I'algébre des mots tassés.
D’autre part, nous définissons un autre coproduit sur les foréts préordonnées donné par la con-
traction d’arétes. Enfin, nous donnons une description combinatoire de morphismes définis sur
des algébres de Hopf de foréts et a valeurs dans les algébres de Hopf de battages et de battages
contractants.
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Introduction

The Connes-Kreimer Hopf algebra of rooted forests Ho g is introduced and studied in [CK98,
Moe01]. This commutative, noncocommutative Hopf algebra is used to study a problem of
Renormalisation in Quantum Field Theory, as explained in [CK00, CKO01|. The coproduct is
given by admissible cuts. We denote by HgK the Hopf algebra of rooted trees, where the
vertices are decorated by decorations belonging to the set D. A noncommutative version, the
Hopf algebra Hycx of planar rooted forests, is introduced in [Foi02a, Foi02b, Hol03]. When
the vertices are given a total order, we obtain the Hopf algebra of ordered forests H, and,
adding an increasing condition, we obtain the Hopf subalgebra of heap-ordered forests Hy, (see
[FU12, GL90)).

On the other side, M.E. Hoffman studied in [Hof00] the Hopf algebra of shuffles Sh? and
the Hopf algebra of quasi-shuffles Csh”. In Mould Calculus theory, J. Ecalle and B. Vallet
constructed a Hopf algebra morphism from HgK to Sh?, or Csh?, called the arborification
morphism, or the contracting arborification morphism (see [EV04]). These morphisms are used
for example in the problem of normal forms for vector fields to prove the convergence of series.
We will describe in this paper all morphisms from Hg i to Sh? or CshP.

First, to describe the morphisms from HgK to Sh?, we introduce the notions of partition
and contracted of a forest. This allows to obtain an already know coproduct called in this paper
the contraction coproduct and defined by D. Calaque, K. Ebrahimi-Fard and D. Manchon on
a quotient Cox of Hop (see [CEFM11, MS11]). We give a decorated version CE, of Ccok.
We define two operations Y and > on the vector space Tg x spanned by the trees of Cg i We
prove that (Tg x> Y,>) is a commutative prelie algebra, that is to say, (A4, Y) is a commutative
algebra, (A, >>) is a prelie algebra and with the following relation: for all z,y, z € Tg K

z>(yYz)=(x>y) Yz+(x>2) Yy

We prove that (TgK, Y, >) is generated as commutative prelie algebra by the trees 1¢ , d € D.

To describe the morphisms from Hg x to Csh?, we introduce the notion of preordered forests.
There are rooted forests with a total preorder on their vertices (recall that a preorder is a binary
reflexive and transitive relation). We prove that the algebra of preordered forests H,, is a Hopf
algebra for the cut coproduct. With an increasing condition, we define the algebra of heap-
preordered trees Hyy, and we prove that Hy,, is a Hopf subalgebra of H,,. We construct a
noncommutative version of the contraction Hopf algebra Ccg. For this, we consider quotients
of Hxcor, Hpo, Ho, Hppo, Hpo, denoted respectively by Cycri, Cho, Co, Chpos Cpo, and we
define on these quotients a contraction coproduct. We prove that Cy,, C,, Cppo, Cpo are Hopf
algebras and that Cycox is a left comodule of the Hopf algebra Cp,.

The Hopf algebra FQSym of free quasi-symmetric functions is introduced in [DHT02, MR95|.
It is used by L. Foissy and J. Unterberger to give a noncommutative version of the arborification
morphism in [FU12| (see also [Foil2]). They proved that there exists a Hopf algebra morphism
from H, to FQSym and that its restriction to Hy, is an isomorphism of Hopf algebras. We give
in this paper an analogue of the contracting arborification morphism in the noncommutative case.
For this, we substitute the ordered forests by the preordered forests and the quasi-symmetric
functions by the packed words. Recall that the Hopf algebra WQSym™ of free packed words is
a generalization of FQSym introduced by J.-C. Novelli and J.-Y. Thibon in [NT06|]. Then we
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prove that there exists a Hopf algebra morphism from H,, to WQSym*. In addition, we prove
that its restriction to Hpy, is an injection of Hopf algebras.

This text is organized as follows: the first section is devoted to reminders about the Hopf
algebras, for the cut coproduct, of rooted forests, planar forests and ordered and heap-ordered
forests. We give reminders on the Hopf algebras of words in Section 2. We define the Hopf
algebra of permutations and packed words and we deduce the construction of Sh? and Csh?.
In Section 3, we define the algebras H,, and Hy, of preordered and heap-preordered forests
and we prove that these are Hopf algebras. The contraction coproduct, is introduced in Section
4. We describe a commutative case and we study an insertion operation. We give a noncom-
mutative version using ordered and preordered forests. The last section deals with Hopf algebra
morphisms from HgK or CgK to Sh? or Csh?. We give a combinatorial description of these
morphisms in each case.

Acknowledgment. I would like to thank my advisor Loic Foissy for stimulating discussions
and his support during my research.

Notations.

1. We shall denote by K a commutative field of characteristic zero. Every vector space,
algebra, coalgebra, etc, will be taken over K. Given a set X, we denote by K (X) the
vector space spanned by X.

2. Let n be an integer. We denote by %,, the symmetric group of order n (X = {1}) and X
the disjoint union of ¥, for all n > 0.

3. Let (A, A,¢e) be a counitary coalgebra. Let 1 € A, nonzero, such that A(1) =1® 1. We
then define the noncounitary coproduct:

A Ker(e) — Ker(e) ® Ker(e),
' a — Ala)—a®l-1®a.

1 Reminders on the Hopf algebras of forests

1.1 The Connes-Kreimer Hopf algebra of rooted trees

We briefly recall the construction of the Connes-Kreimer Hopf algebra of rooted trees [CK98|. A
rooted tree is a finite graph, connected, without loops, with a distinguished vertex called the root
[Sta02]. We denote by 1 the empty rooted tree. If T' is a rooted tree, we denote by Ry the root
of T. A rooted forest is a finite graph F' such that any connected component of F' is a rooted
tree. The length of a forest F', denoted by [(F), is the number of connected components of F'.
The set of vertices of the rooted forest F' is denoted by V(F'). The vertex degree of a forest F,
denoted by |F|,, is the number of its vertices. The set of edges of the rooted forest F' is denoted
by E(F'). The edge degree of a forest F', denoted by |F'|_, is the number of its edges.

Remark. Let F' be a rooted forest. Then |F|, = |F|, + [(F).

Examples.

1. Rooted trees of vertex degree < 5:

caviv b vl vw b v v
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2. Rooted forests of vertex degree < 4:

VTN SUUUUE DU VAR SUUURUIE DU & SR VA SUN ) K/ Y% :

Let D be a nonempty set. A rooted forest with its vertices decorated by D is a pair (F,d)
with F' a rooted forest and d : V(F) — D a map.

Examples. Rooted trees with their vertices decorated by D of vertex degree smaller than 4:

ea,a €D, 1%, (a,b) € D?, bVaC,Eg,(a,b,c) eD?
b-&/d gbd b\}f Cde 1

Let Fg,, be the set of rooted forests and F ECK the set of rooted forests with their vertices

Qoo

,(a,b,¢,d) € D

Y

decorated by D. We will denote by He g the K-vector space generated by Fg, and by Hg K
the K-vector space generated by ]Fﬁc](. The set of nonempty rooted trees will be denoted by
TH,, and the set of nonempty rooted trees with their vertices decorated by D will be denoted
by T?ch' Hcox and HgK are algebras: the product is given by the concatenation of rooted
forests.

Let F' be a nonempty rooted forest. A subtree T' of F' is a nonempty connected subgraph of
F. A subforest Ty ... Ty, of F is a product of disjoint subtrees T1,...,T; of F'. We can give the
same definition in the decorated case.

Examples. Consider the tree T' = K/ . Then:

e The subtrees of T are . (which appears 4 times), ! (which appears 3 times), V| I and K/
(which appear once).

e The subforests of T" are .., ! . (which appear 6 times), ., ... (which appear 4 times), 1, 1..
(which appear 3 times) and V', i, ceee, Vo, ! . K/ (which appear once).

Let F be a rooted forest. The edges of F' are oriented downwards (from the leaves to the
roots). If v,w € V(F), we shall write v — w if there is an edge in F' from v to w and v — w if
there is an oriented path from v to w in F. By convention, v — v for any v € V(F).

Let v be a subset of V(F'). We shall say that v is an admissible cut of F', and we shall
write v = V(F), if v is totally disconnected, that is to say, v -4 w for any pair (v,w) of two
different elements of v. If v = V(F), we denote by Lea, (F") the rooted subforest of F' obtained
by keeping only the vertices above v, that is to say, {w € V(F), Jv € v, w — v}, and the edges
between these vertices. Note that v C Lea,(F'). We denote by Roo,(F') the rooted subforest
obtained by keeping the other vertices and the edges between these vertices.

In particular, if v = (), then Lea,(F) = 1 and Roo,(F) = F': this is the empty cut of F. If v
contains all the roots of F', then it contains only the roots of F', Lea,(F') = F' and Roo, (F') = 1:
this is the total cut of F. We shall write v |= V(F) if v is a nontotal, nonempty admissible cut
of F.

Connes and Kreimer proved in [CK98| that Hex is a Hopf algebra. The coproduct is the
cut coproduct defined for any rooted forest F' by:

Ao (F)= ) Leay(F)®Rooy(F) =F®1+1@F + Y Leay(F) @ Rooy(F).
vV (F) vV (F)
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For example:

AHCK(R/): K/®1+1®K/+.®V+:®:+.®I+..®z+z.®..

In the same way, we can define a cut coproduct on Hg - With this coproduct, Hg K, 1s also a
Hopf algebra. For example:

c

AHgK(”K/;”)z”K/ad®1+1®b1/ad+.c®”\/ad+I§ R124g @1 +eeed @ IL 4+ 1500 ® .

Hcx is graded by the number of vertices. We give some values of the number fHcx of rooted
forests of vertex degree n:

n |o][1|2|3][4]|5]|6] 78] 9] 10
Saes [1]1]2]4]9]20]48] 115286 | 719 | 1842
This is the sequence A000081 in [Slo].

1.2 Hopf algebras of planar trees

We now recall the construction of the noncommutative generalization of the Connes-Kreimer
Hopf algebra [Foi02a, Hol03].

A planar forest is a rooted forest F' such that the set of the roots of F' is totally ordered and,
for any vertex v € V(F), the set {w € V(F) | w — v} is totally ordered. Planar forests are
represented such that the total order on the set of roots and the sets {w € V(F) | w — v} for
any v € V(F) is given from left to right. We denote by T, the set of nonempty planar trees
and Fe ., the set of planar forests.

Examples.

1. Planar rooted trees of vertex degree < 5:

avir b Yl b b s vy b v YTl

2. Planar rooted forests of vertex degree < 4:

FUUUUE SUUUUE DUUE S VA SURUUNE SUUUE SUDIE SHR VARV SUUE S0 % S /28 K/ \} Y% .

If v = V(F), then Leay(F) and Roo, (F') are naturally planar forests. It is proved in [Foi02a]
that the space Hycox generated by planar forests is a Hopf algebra. Its product is given by the
concatenation of planar forests and its coproduct is defined for any rooted forest F' by:

Apyer(F)= > Leay(F)@Rooy(F)=F@1+1®@F+ >  Leay(F)® Rooy(F).

vV (F) V|V (F)

For example:
AHNCK(K/) = K/®1+1®K/+.®V+I®:+.®f+..®:+:.®.,
AHNCK(\}) _ ValtleVi.oVitett.olteoltan.

As in the nonplanar case, there is a decorated version Hﬁc x of Hyog. Moreover, Hyc is
a Hopf algebra graded by the number of vertices. The number fHNCK of planar forests of vertex
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degree n (equal to the number of planar trees of vertex degree n+ 1) is the nth Catalan number
(2n)!  see sequence A000108 of [Slo]. We have:

nl(n+1)!’
1—+1—4x 1—+1—-4x

9 ) Frayox(z) = o0 (1)

Thyex (z) =
This gives:

n_|0[1)2]3]4]5
fivex [1]1]2[5|14]42]1

| 7| 8 ] 9 | 10
2 | 429 | 1430 | 4862 | 16796

6
3
1.3 Ordered and heap-ordered forests

Definition 1 An ordered forest F' is a rooted forest F' with a total order on V(F'). The set
of ordered forests is denoted by Frg, and the K-vector space generated by Fy, is denoted by H,.

Remarks and notations. If F' is an ordered forest, then there exits a unique increasing
bijection o : V(F) — {1,...,|F|,} for the total order on V(F).

Conversely, if F' is a rooted forest and if o : V(F) — {1,...,|F|,} is a bijection, then o
defines a total order on V(F') and F is an ordered forest.

Depending on the case, we shall denote an ordered forest by F' or (F, o).

Examples. Ordered forests of vertex degree < 3:

=W N
oo
= W

3
2 g1 3 2 93 1 2973 143 1 fz f
1,.1,.1.2,Il,12,.1.2.3,.112,.113,11.2,.213, e 3,12 3,V1 7% ,V:s s o1,

Let (F,o") and (G, c%) be two ordered forests. Then the rooted forest FG is also an ordered
forest (F'G,of'%) where

VIF)UVI(G) — {L,... |Fl, +1G],}
of'¢ =o' ® 0% : acV(F) — of(a) (2)
acV(G) — o%a)+|F|,.

In other terms, we keep the initial order on the vertices of F and G and we assume that the
vertices of I’ are smaller than the vertices of G. This defines a noncommutative product on the
set of ordered forests. For example, the product of ., and !? gives .1 13 = 13.,, whereas the
product of !? and ., gives 13.3 = .31%. This product is linearly extended to H,, which in this
way becomes an algebra.

H, is graded by the number of vertices and there are (n + 1)"~! ordered forests in vertex
degree n, see sequence A000272 of [Slo].

If F is an ordered forest, then any subforest G of F' is also ordered: the total order on V(G)
is the restriction of the total order of V(F). So we can define a coproduct Ay, : H, - H, ® H,
on H, in the following way: for all F' € Fg,,

Ay, (F Z Leay, (F) ® Rooy (F).
vV (F)

For example,

1

1 1 1
AHO(‘*R/QS):“K@‘”’ 141N oo™ 4 el ool a4 hao.n.

With this coproduct, H, is a Hopf algebra.
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Definition 2 [GL90] A heap-ordered forest is an ordered forest F such that if a,b € V(F),
a # b and a — b, then a is greater than b for the total order on V(F'). The set of heap-ordered
forests is denoted by Fy, .

Examples. Heap-ordered forests of vertex degree < 3:
2 3 3 2 2y73 Ig
17.1,.1.2,Il,.1-2.3,.112,.211,.311,\/1 gol -«

Definition 3 A linear order on a nonempty rooted forest F is a bijective map o : V(F) —
{1,...,|F|,} such that if a,b € V(F) and a — b, then o(a) > o(b). We denote by O(F) the set

of linear orders on the nonempty rooted forest F.

Remarks. If (F,o0) is a heap-ordered forest, then the increasing bijection o : V(F) —
{1,...,]F|,} is a linear order on F. Conversely, if F' is a rooted forest and o € O(F), then o
defines a total order on V' (F') such that (F, o) is a heap-ordered forest.

If F and G are two heap-ordered forests, then F'G is an ordered forest with (2) and also a
heap-ordered forest. Moreover, any subforest G of a heap-ordered forest F' is also a heap-ordered
forest by restriction on V(G) of the total order of V(F'). So the subspace Hy, of H, generated
by the heap-ordered forests is a graded Hopf subalgebra of H,.

The number of heap-ordered forests of vertex degree n is n!, see sequence A000142 of [Slo].

Remarks.

1. A planar forest can be considered as an ordered forest by ordering its vertices in the "north-
west" direction, that is to say, from bottom to top and from left to right (this is the order
defined in [Foi02a] or given by the Depth First Search algorithm). This defines an algebra
morphism ¢ : Hyox — H,. For example:

W 3)
12 Y

3

VARSI P2 & Vi
407

v aedr |V e s Y

2. Conversely, an ordered forest is also planar, by restriction of the total order to the subsets

of vertices formed by the roots or {w € V(F) | w — v}. This defines an algebra morphism
1 : H, —» Hyog. For example:

2,
2,

4
a2 Y L1 VIRTRNL NN
3 6 1 4, ,7 (4)
el v, wlnbiye v v e Ve Yy

Note that ¢ o ¢ = Idp,., therefore 1 is surjective and ¢ is injective. 1 and ¢ are not
bijective (by considering the dimensions).
Moreover ¢ is a Hopf algebra morphism and its image is included in Hp,. v is not a Hopf

2
algebra morphism: in the expression of () ® ¢) o AHO(.3H ) we have the tensor 1. ® . and in
2

the expression of Ap ., © w(.gii ) we have the different tensor .! ® .. But the restriction of
of Hy, is a Hopf algebra morphism.

In the following, we consider Hycox as a Hopf subalgebra of Hy, and H,,.
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2 Reminders on the Hopf algebras of words

2.1 Hopf algebra of permutations and shuffles

Notations.
1. Let k,l be integers. A (k,1)-shuffle is a permutation ¢ of {1,...,k + [}, such that {(1) <
. < ((k)and ((k+1) < ... < {(k+1). The set of (k,1)- shufﬂes will be denoted by
Sh(k,1).

2. We represent a permutation o € 3, by the word (¢(1)...0(n)). For example, Sh(2,1) =
{(123), (132), (251)}.

Remark. For any integer k,l, any permutation o € ¥j,; can be uniquely written as € o
(01 ® 032), where 01 € X, o9 € 3, and € € Sh(k,l). Similarly, considering the inverses, any
permutation 7 € ¥, can be uniquely written as (71 ® 73) o (!, where 1y € ¥y, 70 € ¥, and
¢ € Sh(k,l). Note that, whereas e renames the numbers of each list (o(1),...,0(k)), (c(k +
1),...,0(k +1)) without changing their orderings, (~! shuffles the lists (7(1),...,7(k)), (7(k +
1),...,7(k +1)). For instance, if k = 4, [l = 3 and ¢ = (5172436) then

e 0 =co (01 ®o9), with e = (1257346) € Sh(4,3), o1 = (3142) € ¥4 and 09 = (213) € X3,
o 0= (r®m) o), with 7y = (1243) € 5y, 7 = (132) € X5 and ¢ = (2456137) € Sh(4, 3).

We here briefly recall the construction of the Hopf algebra FQSym of free quasi-symmetric
functions, also called the Malvenuto-Reutenauer Hopf algebra [DHT02, MR95|. As a vector
space, a basis of FQSym is given by the disjoint union of the symmetric groups ¥, for all
n > 0. By convention, the unique element of g is denoted by 1. The product of FQSym is
given, for o € X, 7 € ¥, by:

o.T = Z (c@T1)o( L.

C€Sh(k,)
In other words, the product of ¢ and 7 is given by shifting the letters of the word representing
7 by k, and then summing all the possible shufflings of this word and of the word representing
o. For example:
(123)(21) = (12354) + (12534) + (15234) + (51234) + (12543)
+(15243) + (51243) + (15423) + (51423) + (54123).

Let 0 € ¥,,. For all 0 < k < n, there exists a unique triple (agk),aék),ek) € Xp X Yy X
Sh(k,n — k) such that o = ¢ o <0’§k) ® aék)). The coproduct of FQSym is then defined by:

AFQSym(O') = Z ® 0'2 Z Z 01 K o9.

k=0 k=0 o=co(01®02)
eeSh(k,n—k),01€3,,02€5,, &

Note that agk) and aék) are obtained by cutting the word representing o between the k-th and
the (k + 1)-th letter, and then standardizing the two obtained words by the following process.
If v is a words of length n whose the letters are distinct integers, then the standardizing of v,
denoted by Std(v), is the word obtained by applying to the letters of v the unique increasing
bijection to {1,...,n}. For example:
ArqQsym((41325)) = 1® (41325)+ Std(4) ® Std(1325) + Std(41) ® Std(325)
+Std(413) ® Std(25) + Std(4132) ® Std(5) + (41325) ® 1
= 1® (41325) + (1) ® (1324) + (21) ® (213)
+(312) ® (12) + (4132) ® (1) + (41325) ® 1.
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Then FQSym is a Hopf algebra. It is graded, with FQSym(n) = Vect(X,) for all n > 0.

It is also possible to give a decorated version of FQSym. Let D be a nonempty set. A
D-decorated permutation is a pair (o,d), where o € ¥, and d is a map from {1,...,n} to D.
A D-decorated permutation is represented by two superposed words (31:757), where (a1 ... ay) is
the word representing o and for all ¢, v; = d(a;). The vector space FQSym?” generated by the

set of D-decorated permutations is a Hopf algebra. For example, if x,y, z,t € D:

G- = G2+ G + GHY) + (59,
Arasyme ((59) = (B)e1+ (@) e O+ e G+ He ) +10 (3.

In other words, if (o,d) and (7,d’) are decorated permutations of respective degrees k and I:

(o, d).(r,d)= > (c@r)o¢ dad),
¢eSh(k,l)

where d @ d’ is defined by (d®@ d")(i) =d(i) if 1 <i<kand (dod)(k+j)=d()if1 <5<
If (0,d) is a decorated permutation of degree n:

n

Apqsym? ((0,d)) = Z Z (01,d") @ (02,d"),
k=0 o=co(01®02)
eeSh(k,l),01€X,02€%,

where d = (d' @ d") o e L.
In some sense, a D-decorated permutation can be seen as a word with a total order on the
set of its letters.

We can now define the shuffle Hopf algebra Sh” (see [Hof00, Reu93]). A D-word is a finite
sequence of elements taken in D. It is graded by the degree of words, that is to say, the number
of their letters. As a vector space, Sh? is generated by the set of D-words.

The surjective linear map from FQSym? to Sh?, sending the decorated permutation (51:5")

to the D-word (vy ...v,), defines a Hopf algebra structure on Sh?:

e The product W of Sh? is given in the following way: if (v ...wvy) is a D-word of degree k,
(Vk41 ... Vg4q) is @ D-word of degree [, then

(V1. o) W (Vg1 - - Vg4) = Z Ve=1(1) + - Ve=1 (k1) -
¢eSh(k,l)
e The coproduct Ag, p of ShP is given on any D-word w = (v; ...v,) by

n

ASh'D(U}> = Z(’Ul ... Ui) X (vi+1 ... Un).
=0

Examples.

1. If (vivavs) and (v4vs) are two D-words,

(vivavg) W (vavs) = (vV1V2V3V4V5) + (V1V2V4V3Vs5) + (V1V2V4V5V3) + (V1V4V2V3Vs)
+(v1v4v205v3) + (V1V4V5V2V3) + (V4V1V2V3VE) + (V4V1V2V5VS)

+(v4v105v203) + (V4UsVIV2VS).
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2. If (vyveu3vy) is a D-word,

Ag o ((vivavgvy)) = (vivavsvs) @ 1+ (vivavs) @ (vs) + (v102) ® (v3V4)
+(v1) @ (vauzvs) + 1 @ (viv2V3V4).

There is a link between the algebras H,, Hp, and FQSym given by the following result (see
[FU12|):

Proposition 4 1. Let n > 0. For all (F,0) € Fu,, let Sp be the set of permutations
0 € 3, such that for all a,b € V(F), (a — b) = (0~ (c(a)) < 071 (a(b))). Let us define:

H, — FQSym
©:0 FeFu, — » 0.
0eSE

Then © : H, = FQSym is a Hopf algebra morphism, homogeneous of degree 0.

2. The restriction of © to Hy, is an isomorphism of graded Hopf algebras.

2.2 Hopf algebra of packed words and quasi-shuffles
Recall the construction of the Hopf algebra WQSym* of free packed words (see [NT06]).

Notations.

1. Let n > 0. We denote by Surj, the set of maps o : {1,...,n} — N¥ such that
o({1,...,n}) = {1,...,k} for some k € N. In this case, k is the maximum of ¢ and

is denoted by max(c) and n is the length of o. We represent the element o of Surj,, by the
packed word (o(1)...0(n)).

2. Let k,l be two integers. A (k,l)-surjective shuffle is an element e of Surj,,; such that
€(l) <...<e(k)and e(k+1) <...<e(k+1). The set of (k,!)-surjective shuffles will be
denoted by SjSh(k,[). For example, SjSh(2,1) = {(121), (122), (123), (132), (231)}.

Let v be a word such that the letters occuring in v are integers a; < a2 < ... < ag.
The packing of v, denoted by pack(v), is the image of v by the map a; — i. For example,
pack((22539)) = (11324), pack((831535)) = (421323).

Remark. Let k,[ be two integers and o € Surj, ;. We denote by pp, = max(pack((c(1)...0(k))))
and g = max(pack((c(k+1)...0(k+!)))). Then o can be uniquely written as eo(o] ®0o2), where
o1 € Surj, o2 € Surj;, and € € SjSh(py, ¢x). For instance, if k =4, | = 3 and 0 = (2311223)
then py = 3, ¢4 = 2 and 0 = €0 (0] ® 02) with e = (12323) € SjSh(3,2), o1 = (2311) € Surj, and
o9 = (112) € Surj;.

As a vector space, a basis of WQSym* is given by the disjoint union of the sets Surj,,, for all
n > 0. By convention, the unique element of Surj, is denoted by 1. The product of WQSym*
is given, for o € Surj,, and 7 € Surj;, by:

o7 = Z (c®71)o¢ L.
¢€Sh(k,l)
In other words, as in the FQSym case, the product of o and 7 is given by shifting the letters
of the word representing 7 by k, and summing all the possible shuffings of this word and of the
word representing o. For example:
(112)(21) = (11243) + (11423) 4 (14123) + (41123) + (11432) + (14132)
+(41132) + (14312) + (41312) + (43112)
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Let o € Surj,,. Forall 0 < k < n, there exists a unique triple (a%k), oék), ek> € Surj, x Surj,,_;

x SjSh(pg, qx) such that o = ¢ o (Uyc) ® Uék)). The coproduct of WQSym* is then given by:

n

AwQSym:*(0) = Z O'Ek) ® O'ék) = Z Z o1 ® o3.
k=0

k=0 o=eo(01®02)
e€SjSh(pk,qx),01€Surjy,,02€Surj,,

Note that agk) and aék) are obtained by cutting the word representing ¢ between the k-th and
the (k + 1)-th letter, and then packing the two obtained words. For example:

Awqsym=((21132)) = 1® (21132) + pack((2)) ® pack((1132)) + pack((21)) ® pack((132))
+ pack((211)) ® pack((32)) + pack((2113)) ® pack((2)) + (21132) ® 1
= 1®(21132) + (1) ® (1132) + (21) ® (132) + (211) @ (21)
+(2113) @ (1) + (21132) @ 1.

Then WQSym* is a graded Hopf algebra, with WQSym*(n) = Surj,, for all n > 0. We give

some numerical values: if £y @Y™ is the number of packed words of length n, then
n  |o|1][2][3 4|5 | 6 | 7

FvasymT [ [ 3] 13 ] 75 | 541 | 4683 | 47293
These is the sequence A000670 in [Slo].

WQSym* is the gradued dual of WQSym, described as follows. A basis of WQSym is
given by the disjoint union of the sets Surj,,. The product of WQSym is given, for o € Surjy,
T € Surj; by:

o = Z ~y

Y=Y1- V41
pack(y1...vx)=0, pack(Yg41--Vr+1)=T

In other terms, the product of ¢ and 7 is given by shifting certain letters of the words representing
o and 7 and then summing all concatenations of obtained words. For example:

(112)(21) = (11221) + (11321) + (22321) + (33421) + (11231) 4 (22331) + (22431)
+(11232) + (11332) + (11432) + (22341) + (11342) + (11243)

If o € Surj,,, then the coproduct of WQSym is given by:

AWQSym<J) = Z O|[1,k] ® paCk<J|[k+1,max(0)])7
0<k<max(o)

where o/ 4 is the subword obtained by tacking in o the letters from the subset A of [1, max(c)].
For example:

Awqsym((21312245)) = 1® (21312245) + (11) ® pack((232245)) + (21122) @ pack((345))
+(213122) ® pack((45)) + (2131224) ® pack((5)) + (21312245) ® 1
= 1® (21312245) + (11) ® (121134) + (21122) ® (123)
+(213122) ® (12) + (2131224) @ (1) + (21312245) @ 1.

Then WQSym is a Hopf algebra.

We give a decorated version of WQSym. Let D be a nonempty set. A D-decorated surjection
is a pair (o, d), where o € Surj,, and d is a map from {1,...,n} to D. As in the FQSym? case,
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we represent a D-decorated surjection by two superposed words (5.:75"), where (aj ...ay) is the

packed word representing o and for all ¢, v; = d(i). The vector space WQSym? generated by
the set of D-decorated surjections is a Hopf algebra. For example, if z,y, z,t € D:

B ) = () GG () ().
Awasym? ((Ge21)) = (i) @1+ GH® () + (Gat) @ (D +1® (5:0)
In other words, if (0,d) and (7,d’) are decorated surjections of respective degrees k and I:

(0,d).(r,d) = > (v,ded),

Y=Y1- V41
pack(y1...9k)=0, pack(Ye41.--Vet1)=T

where d ® d’ is defined by (d®@ d')(i) =d(i)if 1 <i<kand (dod)(k+j)=d(j)if1<j<I.
If (0,d) is a decorated surjection of degree n:

AWQSymD ((O-v d)) = Z (O-Hl,k} ) d/) ® (U|[k+1,max(0')]a d//)'
0<k<max(0o)
where d’ and d take the same values on o~ ({1,...,k}) and d” and d take the same values on

o *({k+1,...,max(0)}).
In some sense, a D-decorated surjection can be seen as a packed word with a preorder on the
set, of its letters.

Suppose that D is equipped with an associative and commutative product [-,-] : (a,b) €
D? — [ab] € D. We define by induction [, -](k):

[, ]9 =1d, [, ]Y =[] and [, ]® = [.7[.,.]0%1)}.

We can now define the quasi-shuffle Hopf algebra Csh® (see [Hof00]). Csh? is, as a vector
space, generated by the set of D-words.

Let ¢ be the surjective linear map from WQSymP to Csh? defined, for (o, d) a decorated
surjection of maximum k, by ¢((0,d)) = (w1 ... wy) where wj = [d(i1) ... d(ip)](p) with 0=1(j) =
{i1,...,4p}. For instance,

¢ ((Gaztvwn)) = ([2] [yw] v [tu])

Notations. Let k,l be integers. A (k,l)-quasi-shuffle of type r is a surjective map ( :
{1,....k+1} - {1,...,k+1—r} such that

{C(1)<~-<C(k),
C(k+1)<...<(k+1).

Remark that (7!(j) contains 1 or 2 elements for all 1 < j < k+ 1 —r. The set of (k,[)-quasi-
shuffles of type r is denoted by Csh(p, ¢, 7). Remark that Csh(k,,0) = Sh(k,1).

¢ define a Hopf algebra structure on Csh?:

e The product & of Csh? is given in the following way: if (v;...v;) is a D-word of degree
k, (Vga1 ... vkyy) is a D-word of degree [, then

(’Ul . ’U]g)H:‘ ('Uk+1 NN Uk+l) = Z Z (w1 “ e wkH,r),

>0 ¢€Csh(k,l,r)

where w; = v; if (71(j) = {i} and wj = [vi,v3,] if (71(4) = {i1,da}
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e The coproduct Any,p of Csh? is given on any D-word v = (v; ...v,) by

n

Acepr () =D (V1. 0) ® (Vig1...0n).
=0

This is the same coproduct as for Sh”.

Example. If (viv2) and (vsvg) are two D-words,

(nv2)HH (v3vg) = (v1v2u3v4) + (V1V3V2V4) + (V3V1V2VY) + (V1V3V4V2)
+(v3v1v4v2) + (v3V4v102) + (V1 [V2v3] v4) + ([V1V3] V2v4)

+(v1v3 [vav4]) + (v3 [V1v4] v2) + ([V1V3] [V204])

3 Preordered forests

3.1 Preordered and heap-preordered forests

A preorder is a binary, reflexive and transitive relation. In particular, an antisymmetric preorder
is an order. A preorder is total if two elements are always comparable. We introduce another
version of ordered forests, the preordered forests.

Definition 5 A preordered forest F' is a rooted forest F' with a total preorder on V(F'). The
set of preordered forests is denoted by Fu,, and the K-vector space generated by Fy,, is denoted
by Hy,.

Remarks and notations.

1. Let F be a preordered forest. We denote by < the total preorder on V(F). Remark that
the antisymmetric relation "z < y and y < z" is an equivalence relation denoted by R
and the quotient set V(F)/R is totally ordered. We denote by ¢ the cardinality of this
quotient set. Let @ be the unique increasing map from V(F)/R to {1,...,q}. There exists
a unique surjection o : V(F) — {1,...,q}, compatible with the equivalence R, such that
the induced map on V(F)/R is 7. In the sequel, we shall write ¢ = max(F') (and we have
always ¢ < |F,).

Conversely, if F is a rooted forest and if o : V(F) — {1,...,q} is a surjection, ¢ < |F|,,
then o define a total preorder on V(F') and F' is a preordered forest.

As in the ordered case, we shall denote a preordered forest by F' or (F, o).

2. An ordered forest is also a preordered forest. Conversely, a preordered forest (F, o) is an
ordered forest if |F|, = max(F).

Examples. Preordered forests of vertex degree < 3:

1 2 1 1 2 1 2 3 2
1,.1,.1.1,.1.2, Il, Il, IQ,.1.1.1,.1.1.2,.1.2.2,.1.2.3,.1Il,.111,.112,.1IQ,.llz,.lzg,

1 42
1 2 1 3 1 2 1 1gpl 18p2 1apl 202 182 2¢p3 1493 1gp2 El Il
.211,.211,.212,.211,.213,.311,.312,X/1,\/1, Vo \(1,\@,\/1, /RS € R &
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Let (F, o) and (G, 0%) be two preordered forests with ot : V(F) — {1,...,q}, 0% : V(G) —
{1,...,7}, ¢ = max(F) and r = max(G). Then FG is also a preordered forest (FG, c"%) where

VIF)UV(G) — {1,...,q+r}
o' =l @ 0% : acV(F) — o"(a) (5)
acV(G) — o%a)+q.

In other terms, we keep the initial preorder on the vertices of F' and G and we assume that
the vertices of F' are smaller than the vertices of G. In this way, we define a noncommuta-
tive product on the set of preordered forests. For example, the product of 13., and 'Vi* gives
13.,"V)", whereas the product of 'V;* and 13., gives 'Vi* 15.,. Remark that, if F and G are
two preordered forests, max(F'G) = max(F') + max(G). This product is linearly extended to
H,,,, which in this way becomes an algebra, gradued by the number of vertices.

Remark. The formula (5) on the preordered forests extends the formula (2) on the ordered
forests.

po

We give some numerical values: if ff is the number of preordered forests of vertex degree

n’
[o1]2]3] 4] 5
1)1]5]38]424] 6284

n

Hyo

S

If F' is a preordered forest, then any subforest G' of F' is also preordered: the total preorder

on V(G) is the restriction of the total preorder of V(F'). So we can define a coproduct Ag,, :
H,, — Hp, ® Hy, on Hy, in the following way: for all F' € Fy,,,

An,,(F) = Z Leay (F') ® Rooy(F).
vV (F)

For example,

L 1

1 1
AHPO(QKGS):QR/f ®1+1®2K/13 Fa @V Ol 4+ L@ F @,

With this coproduct, Hy, is a Hopf algebra. Remark that H, is a Hopf subalgebra of H,,.

Definition 6 A heap-preordered forest is a preordered forest F such that if a,b € V(F),
a # b and a — b, then a is strictly greater than b for the total preorder on V(F'). The set of
heap-preordered forests is denoted by Fu,,,,

Examples. Heap-preordered forests of vertex degree < 3:

3
1 12 120013 .,12 5,18 512 22 28 I2
yelyelelyele2y dl yolololyelolo2yelo2e2,ele2e3,01 61 ,0142,024¢7,0247,0347, Vi , Vi ,I7.

Definition 7 Let F' be a nonempty rooted forest and q an integer < |F|,. A linear preorder
is a surjection o : V(F') — {1,...,q} such that ifa,b € V(F), a # b and a — b then o(a) > o(b).
We denote by Op(F) the set of linear preorders on the nonempty rooted forest F.
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Remarks. If (F,0) is a heap-preordered forest, the surjection o : V(F) — {1,..., max(F)}
is a linear preorder on F. Conversely, if F' is a rooted forest and o € Op,(F'), then o define a
total preorder on V' (F') such that (F, o) is a heap-preordered forest.

If F and G are two heap-preordered forests, then F'G is also heap-preordered. Moreover, any
subforest G of a heap-preordered forest F' is also a heap-preordered forest by restriction on V(Q)
of the total preorder of V(F'). So the subspace Hyy, of H,, generated by the heap-preordered
forests is a graded Hopf subalgebra of H,,.

hpo

We give some numerical values: if f, is the number of preordered forests of vertex degree

n,

n [0]1|2][3]4]5

far | 1]1]3]12] 64 | 428
We have the following diagram
Hyck© Hy,“ PVIF) (6)
thoc—) Hpo

where the arrows < are injective morphisms of Hopf algebras (for the cut coproduct).

3.2 A morphism from H,, to WQSym*

In this section, we give a result similar to proposition 4 in the preordered case.

Definition 8 Let (F,o) be a nonempty preordered forest of vertex degree n and T € Surj,,.
Then we denote by Sfy .y the set of bijective maps ¢ : V(F)—{1,...,n} such that:

1. if v e V(F), then o(v) = 7(¢(v)),
2. ifv, v € V(F), v — v, then p(v) > ¢(v').
Remark.

1. If max(F) # max(r), then S ) = 0.

2. Let F,G € Fy,,, |F|, =k, |G|, =1 If o1 : V(F) = {1,...,k} and 2 : V(G) — {1,...,1}
are two bijective maps and ¢ € Sh(k, 1), then (o (1 ®p2) : V(FG) — {1,...,k+1}, where
1 ® 2 is defined in formula (2), is also a bijective map. Similary, considering a bijective
map ¢ : V(FG) — {1,...,k+ 1} and ¢ € Sh(k,l). Then ¢ can be uniquely written as
Co(¢1 ® p2), where 1 : V(F) — {1,...,k} and 2 : V(G) — {1,...,1} are two bijective
maps.

Theorem 9 Let us define:

H,, — WQSym*
®:q (Fo)eFu, — Y card(Sfp,) 7 (7)

TESurj|F‘U
Then ® : Hyp, — WQSym* is a Hopf algebra morphism, homogeneous of degree 0.

Examples.
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e In vertex degree 1: ®(.1) = (1).

e In vertex degree 2:

B(o1ar) =2(11),  B(eren) = (12) + (21), B(13) = (ab).

e In vertex degree 3:

®(e1a1.1) = 6(111) B(13.,) = (212) +2(221)
VL") = (122) +(212)  ®(..13) = (213) + (123) + (132)
o) = (231) D(.,13) = (123)+ (213) + (231)
(V%) 2(221) B(erar.2) = 2[(112) + (121) + (211)]

Proof. Obviously, ® is homogeneous of degree 0. Let (F,o%),(G,0%) € Fa,,, |F|, = F,
|G|, =l and 7 € Surj, ;. T can be uniquely written as 7 = (71 ® 73) o ("1 with 7 € Surj,
T2 € Surj; and ¢ € Sh(k, ).

Let ¢ € S(FG FG) Then ¢ can be uniquely written as ¢ o (¢1 ® p2) with @1 @ V(F) —
{1,...,k} and @2 : V(G) — {1,...,1} two bijective maps.

1. (a) If v € V(F), then

ol (v) = 0" (v) = 7(p(v)) = (1 @ 72) 0 (" 0 C o (91 @ p2)(v) = Tup1(v)).

Note that with this equality, we also have that max(F') = max(7y).
(b) If v € V(G), then

o) + max(F) = 0"%(w) = r(p(v)) = (n ® 7)o o Co (o1 ® ¢2)(v)
= Ta(pa(v)) + max(ry).

As max(F) = max(r), 0% (v) = 1 (p2(v)).

2. (a) If v »vin F, then v — v in FG, so:

pv) > V)
Col(p1®ep2)(v) = (o(p1®p2)(v)
Clpr(v)) = C(pr(v)
p1(v) = ei(v),
as ( is increasing on {1,...,k}.
(b) If " - v in G, then v — v in FG, so:
pv) = V)
Colp1®@pa)(v) > Co(p1®p2)(v)
C(k+pa(v) > ¢ (k+pav))
p2(v) = (V)

as ( is increasing on {k+1,...,k +}.
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SogoleS( and @9 € S7?

Fol) (GoG)

Conversely, if ¢ = (o (¢1 ® p2), with ¢ € S(F oF) and @9 € S@ #GY? the same computations

(11®72)o¢ !

shows that ¢ € S(FG,GFG)

So
card(SzFG’UFG)) card(S(F F)) xcard(S(G G))
and

O(FG,0"%) = Y card(S{pgre)) T

TESUrj) 4

T1®T2)o¢ 1 -
= Z Z Z card(SEI;g’;gG% ) (M ®m)o( !

¢€eSh(k,l) T €Surjy T2E€Surj,

= Z Z Z card( S}? F)) X card(S(G G)) (1 ®@m)o¢ !

¢eSh(k,l) 71 €Surj, T2E€Surj,

= > card(S7}, ,r)) T1 > card(S, o)) 2

T1ESurjy, T2ESurj,

= ®((F.0")®((G,0%)).

So ® is an algebra morphism.

Let (F,o) € Fu,, be a preordered forest such that |F|, = n and let v be an admissible
cut of F. We obtain two preordered forests (Leay(F),o1) and (Rooy(F),02). We denote by
k = |Leay(F)|, and | = |Rooy(F)],.

Let 71 € Surj, 72 € Surj; and ¢ € S7}
-1

(Lot (F)01)? P2 € S(Rooy(F),09)° We denote by ¢ = 1@y

and we define 7 by 7 =0 o¢™". 7 € Surj,, and max(7) = max(F'). Let us show that ¢ € ST

Fo)*
1. By definition, 7 = 00 ¢~. So o(v) = 7(p(v)) for all v € V(F).

2. If v — v in F, then three cases are possible:

v

(a) v and v belong to V(Leay(F)). As 1 € S(Leav(F)m) ., p1(v) ¢1(v"). Then

p(v) = (P1 @ 92)(v) = 1(v) Z P1(V) = (P1 @ P2) (V) = (V).

(b) v and v" belong to V(Roo,(F)). As 9 € S(Lea,,(F) o2) w2(v) > p2(v'). Then
P(v) = (01 ® P2)(v) = p2(v) + k = @2(V) + k = (01 @ p2) (V) = (V).

(c) v belong to V(Leay(F)) and v belong to V(Rooy(F)). Then p(v') = (p1 @ ¢2)(v') =
e1(v") € {1,...,k} and ¢o(v) = (p1 ® 2)(v) = p2(v) + k € {k+1,...,k+1}. So
p(v) > p(v").

In any case, ¢(v) > p(v').

Conversely, let (F,o) € Fg,, be a preordered forest of vertex degree n, 7 € Surj, and
pE SZF,J)' Let k € {0,...,n} be an integer.

We denote by Tl(k) and 7’2(k) the words obtained by cutting the word representing 7 between
the k-th and the (k + 1)-th letter, and then packing the two obtained words.

Moreover, we define v a subset of ¢ 1({1,...,k}) such that v -5 w for any pair (v,w)
of two different elements of v. Then v = V(F') and we consider the two preordered forests
(Leay (F), ng)) and (Rooy (F), O’ék)). Remark that, with the second point of definition 8, V' (Lea, (F')) =
e 1({1,...,k}) and V(Rooy(F)) = o *({k +1,...,n}).

We denote by gogk) cv € V(Leay(F)) = ¢(v) € {1,...,k} and goék) cv € V(Rooy(F)) —
pv)—ke{l,...,n—k}. Thus p = gogk) ® gogk).
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P

(Rooy (F),08")’

‘ k) o gt (k)
Let us prove that ¢ € S(Leav(F)pY“)) and ¢y’ €S

1. (a) Ifv e V(Leay(F)), p(v) = ¢\ (v) € {1,...,k} and then

aik) (v) = pack oo (v) = packoT 0 p(v) = Tl(k) o gpgk) (v).

(b) If v € V(Roou(F)), ¢(v) = ¢ (v) + k € {k+1,...,n} and then

aék) (v) = pack oo (v) = packoT 0 p(v) = T2(k) o gogk) (v).

2. (a) If v — v in Lea,(F), then v/ — v in F and gpgk) (v) = p(v) > (V') = cpék)(v’).
(b) If v/ — v in Rooy (F), then v' — v in F and gogk)(v) =p)—k>p0)—k= cpgk)(v’).

Hence, there is a bijection:

(k)

(k)
STppy X {0,..,[Fl,} = | ] s x ST
(F#T) ’ ’ v eay O'(k) 00y U(k>
wiv(py o) (Roou(F),037)

k) (k
(p k) — (wg)wpé))-
Finally,

Awqsym* o ®((F,0))
= Z Z card(S(p ) Tl(k) ® TQ(k)

TGSurj‘Fh} 0<k<n

= > > 2 (S ) MO CAASE ) ) T

VEV (F) TLESUT)|Leay, (F)|, T2ESUT)|Rooy (F)],

= (CI) (=) (I)) o AHpo‘
So ® is a coalgebra morphism. O

Theorem 10 The restriction of ® defined in formula (7) to Hyy, is an injection of graded
Hopf algebras.

Remark. The restriction of ® to Hy,, is not bijective (by comparing the dimensions of Hp,
and WQSym* in small degrees).

Proof. We introduce a lexicographic order on the words with letters € N*. Let u = (ug ... ux)
and v = (v1...v;) be two words. Then

o ifup =vp,up_1 =vg_1,..., U1 = vi+1 and u; > v; (resp. u; < v;) withi € {1,...,min(k,1)},
then u > v (resp. u < v),

o if u; =wv; forall i € {1,...,min(k,l)} and if k£ > [ (resp. k <) then u > v (resp. u < v).
For example,
(541) < (22), (433) < (533), (5362) < (72), (8225) < (1327), (215) < (1215).

If w and v are two words, we denote by uv the concatenation of v and v.

In this proof, if (F, o) is a preordered forest, we consider F' as a decorated forest where the
vertices are decorated by integers. Consider

F={(F,d) | FeFu,,,d:V(F)— N such that if v = w then d(v) > d(w)}
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the set of forests with their vertices decorated by nonzero integers and with an increasing condi-
tion.

Let (F,d) € F be a forest of vertex degree n and if u = (uy...u,) is a word of length n
with u; € N*. In the same way that definition 8, we define S?F q) 3 the set of bijective maps
v :V(F)—{1,...,n} such that:

L. if v € V(F), then d(v) = uy(y),

2. if v,0" € V(F), v/ — v, then p(v) > ¢(v').

For example,

o if (F,d) K/ € IF, then the words w such that S{5 ;) # 0 are (7342),(7432),(4732).
o if (F,d) ="V," 1§ €F, then the words u such that Stray 7 (0 are

(43163), (43613), (46313), (64313), (43631), (46331), (64331), (63431),
(34163), (34613), (36413), (63413), (34631), (36431), (36341), (63341).

Let (F,d) be a forest of F. Then we denote by

m((F,d)) = max ({u | Spg) # 0}

7
For example, for (F,d) = 3&/24 e F, m((F,d)) = (7342) and for (F,d) =°Vi* 1§ € F, m((F,d)) =
(34163).

If (F,d) € F is the empty tree, m((F,0)) = 1. Let (F,d) € F be a nonempty tree of vertex
degree n. We denote by (G, d’) the forest of F obtained by deleting the root of F. Then, if
m((F,d)) = (u1...up), we have m((G,d’)) = (u1...up—1) and u, = d(Rp) the decoration
of the root of F. Let (F,d) be a forest of vertex degree mn, (F,d) is the disjoint union of
trees with their vertex decorated by nonzero integers (Fi,di),...,(Fk,d) ordered such that
m((Fi,d1)) <... <m((Fg,dg)). Then m((F,d)) = m((Fi,d1))...m((Fy,dg)):

e By definition, S( F“d 2 # 0 and if ¢; € S ((Fz)’d ) then ¢ : V(F) = {1,...,n}, defined

forall1 <i<k and v € V(F;) by ¢(v) = ¢;(v), is an element of S?lzm(ggl,dl))...m((mdk)) and
ST A m(Fd)) 0 S0 m((F,d)) = m((Fy,dy)) ... m((Fr. dy)).

o If S (F.d) # (), u is the shuffle of uq, ..., u; such that S?;,Z ) # () (see the proof of theorem
9). In particular, u; < m((F;,d;)), so v < m((Fi,d1))...m((Fy,dg)) and m((F,d)) <
m((Fr, b)) ... m((Fe di).

Let (F,d) € F be a forest of vertex degree n and m((F,d)) = (ui...u,). Let i1 be the
smallest index such that wy,...,u;,—1 > u;, and, for all j > i1, u;; < uj;. By construction, there
exists a connected component (Fy,d;) of (F,d) such that m((Fi,d1)) = (u1...u;,). Consider
the word (i, 4+1...up). Let ia > i1 be the smallest index such that w;, y1,...,ui,—1 > i, and,
for all j > 42, u;, < u;. Then there exists a connected component (Fy,ds) (different from
(F1,dy)) such that m((Fa,d2)) = (wj;+1-..ui,). In the same way, we construct is,...,i; and
(F3,d3), ..., (Fg,dg). Then we have m((F,d)) = m((F1,d1)) ... m((Fk,dx))

Let us prove that m is injective on F by induction on the vertex degree. If (F,d) is the empty
tree, it is obvious. Let (F,d) be a nonempty forest of F of vertex degree n.
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o If (F,d) is a tree, m((F,d)) = (ui...up—1uyn) with u, = d(Rp) the decoration of the
root of F. Let (G,d") be the forest of F obtained by deleting the root of F. Then
m((G,d")) = (ui...up—1). By induction hypothesis, (G,d') is the unique forest of F
such that m((G,d")) = (uy...up—1). So (F,d) is also the unique forest of F such that

m((F,0)) = (u1...up—1d(RF)).

e If (F,d) is not a tree, then (F,d) is the product of trees (Fi,dy),. .., (Fg,dk) of F ordered
such that m((F1,d1)) < ... <m((Fg,dg)). So m((F,d)) = m((Fi,d1))...m((Fg,dy)). By
the induction hypothesis, for all 1 < i < k, (F;,d;) is the unique tree of F such that its
image by m is m((F;,d;)). So the product (F,d) of (F;,d;)’s is the unique forest of IF such
that its image by m is m((F,d)).

So m is injective on F. By triangularity, m is injective on Fy, , and we deduce that the
restriction of ® to Hp,, is an injection of graded Hopf algebras. O

4 Hopf algebras of contractions

4.1 Commutative case

In [CEFM11], D. Calaque, K. Ebrahimi-Fard and D. Manchon introduce a new coproduct, called
in this paper the contraction coproduct, on the augmentation ideal of Hox (see also [MS11]).

Definition 11 Let F' be a nonempty rooted forest and e a subset of E(F'). Then we denote
by

1. Parte(F) the subforest of F' obtained by keeping all the vertices of F' and the edges of e,

2. Conte(F') the forest obtained by contracting each edge of e in F and identifying the two
extremities of each edge of e.

We shall say that e is a contraction of F, Parte(F') is the partition of F' by e and Conte(F) is
the contracted of F' by e. Each vertex of Conte(F') can be identified to a connected component of
Parte (F).

Remarks.

e If e =), then Parte(F) =..... and Conte(F) = F': this is the empty contraction of F.
[P, x

o If e = E(F), then Parte(F') = F and Conte(F') = .: this is the total contraction of F.

Notations. We shall write e = E(F) if e is a contraction of F' and e | E(F) if e is a
nonempty, nontotal contraction of F'.

Example. Let T = k/ be a rooted tree. Then

contraction e K/ g‘/ JK/ KfL i/ ‘IVL J&fL j;f

Parte (T) Vil lov |0l
Conte(T) | . |t | 1t |t |1 |V]V %

where, in the first line, the edges not belonging to e are striked out.

Remarks. Let F' be a nonempty rooted forest and e = E(F).
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1. We have the following relation on the vertex degrees:

|F|, = |Conte(F)|, + |Parte(F)|, — [(Parte(F)).

2. Note € the complementary to e in E(F'). Then E(Parte(F)) = e and E(Conte(F)) =€
and

|Fl = |Conte(F)], + [Parte ()] - (8)

Let Coi be the quotient algebra Hey /Iox where I is the ideal spanned by . — 1. In
others terms, one identifies the unit 1 (for the concatenation) with the tree .. We denote by the
same way a rooted forest and its class in Cog. Then we define on Coi a contraction coproduct
on each forest F' € Cog:

Acer(F) = ) Parte(F) ® Conte(F),
e=E(F)
= FR.+.0F+ Z Parte(F') ® Conte(F).
e|=E(F)
In particular, Ac . (+) =. ®..

Example.

Ao (V)= oV Ve 121 Vitelilors Vel tttar

We define an algebra morphism e:

- CCK - K
" | F forest — Idp,..

Then (Ccok, Acgy,€) is a commutative Hopf algebra graded by the number of edges. Ccox

is non-cocommutative (see for example the coproduct of K/ ).

Remark. We define inductively:
AD =14, AL = Ay, AL = (Agp, ® 1d2F D)o ALTD.

Ccx Cox — Ccek Cck

For all k € N, A Cerx — C%%ﬁl). If F'is a rooted forest with n edges, there are (k + 1)"

Cok

terms in the expression of A((;CLK(F):

e If £ =0, this is obvious.

e If £ > 0, we have (7) tensors F() @ F®) in Ag,, (F) such that the left term F(!) have
| edges. By the induction hypothesis, there are k! terms in Agﬂfl)(F(l)). So there are

CK
Z <7Z> k' = (k+1)" terms in the expression of AgﬂK(F)
0<i<n

We give the first numbers of trees t$¢% and forests fCOK:

n 011(2|3[4 |5 | 6 7 8 9 10
tCox T1[1[2]4] 920 48 [ 115|286 719 | 1842
fCex [1[1]3]7]19]47|127]330]889 2378 | 6450

The first sequence is the sequence A000081 in [Slo].

We recall a combinatorial description of the antipode Sc., : Cocx — Cck (see [CEFM11]):
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Proposition 12 The antipode Sc., : Cocx — Ccr of the Hopf algebra (Cor, Acox»€)
is given (recursively with respect to number of edges) by the following formulas: for all forest
F e CCK7

Scox(F) = —F—= Y Scey(Parte(F)) Conte(F)
elEE(F)
= — ) Parte(F)Sce (Conte(F)).
el=E(F)
Examples.
SCCK() =
SCCK(I) = -1 —.,
Scex (V) = =V 4211 421,
Scon(h) = 14211 4+21,
SCCK(K/) N imvaovaeaielosir 6ot

We now give a decorated version of Cogx. Let D be a nonempty set. A rooted forest with
their edges decorated by D is a pair (F,d) where F is a forest of Cog and d : E(F) — D is a
map. We denote by CEK the K-vector space spanned by rooted forests with edges decorated by
D.

Examples.

1. Rooted trees decorated by D with edge degree smaller than 3:

la ,a €D, a\/b,iz,(a,b)eDz, \I/ K/ \} Y %3 (a,b,c) € D>
2. Rooted forests decorated by D with edge degree smaller than 3:

b,aeD, b, 1 (ab)eD?

bl te Ve 1015 oL W \} R %’7 (a,b,c) € D>

If F € CE) e = E(F), then Parte(F) and Conte(F) are naturally rooted forests with their
edges decorated by D: we keep the decoration of each edges. The vector space Cg 5 is a Hopf
algebra. Its product is given by the concatenation and its coproduct is the contraction coproduct.
For example: if (a,b,c) € D3,

ACgK(aK/b) = aR/b ®.+.®a&/b oM+ +p el L p @t
+ N @ +1 @,
Notation. The set of nonempty trees of Cox (that is to say, with at least one edge) will be

denoted by Tc.,. The set of nonempty trees with their edges decorated by D of C@K will be
denoted by ’]I‘gc
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4.2 Insertion operations
Let Tlc)'K be the K-vector space having for basis TgCK. In this section, we prove that TgK is

equiped with two operations Y and > such that (TgK, Y, >) is a commutative prelie algebra.

Definition 13 1. A commutative prelie algebra is a K-vector space A together with two
K-linear maps Y,>> : A® A — A such that x Y y =y Y x for all x,y € A (that is to say,
Y is commutative) and satisfying the following relations : for all z,y,z € A,

(xYy)Yz=2Y(yY 2),
x> (y>z)—(z>y)>z=y> (z>2z2)— (y>x)> 2, 9)
x> (yYz)=(@>y Yz+(z>2)Yy.

In other words, (A, Y,>) is a commutative prelie algebra if (A, Y) is a commutative algebra
and (A,r>) is a left prelie algebra with a relationship between Y and ©>.

2. The commutative prelie operad, denoted by ComPreLie, is the operad such that ComPreLie-
algebras are commutative prelie algebras.

Remark. From this definition, it is clear that the operad ComPreLie is binary and quadratic
(see [LV12] for a definition).

Notations.

1. Let T € T, be a tree with at least one edge. We denote by V*(T') = V(T') \ {Rr} the
set of vertices of T different from the root of 7.

2. Let T, Ty € T,y and v € V(TI3). Then T; o, T3 is the tree obtained by identifying the
root Ry, of T1 and the vertex v of T5.

We define two K-linear maps Y : TgK ® TEK — Tg;( and > : TEK ® TgK - TgK as
follows: if 71, T € T2,

Ty YTy = Tiogy o,

1, = Z Ty o5 Ts.
SEV*(Ty)

Examples.

1. For the map Y : Tlc)*K ®TgK — TgK :

I
Q
~

b
YD = A oy i Boye = W
c\/d
by e = N2 A v = NN vy = W

2. For the map > : TEK ® TgK — TgK :

Dl

oo e
oQo Saisl

la > = la > Ve = ab&/cjub\}f N >l = “Yﬁ

s = ol = %4—%: &N > Na :%Jrc@gb

Proposition 14 (TZ,, Y, ) is a ComPreLie-algebra.
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Proof. Let 11,715,135 € TZC):CK' Then
Th YTy =Tiopy, To =Ty 0Rr, Th

Moreover,

=T, Y T.

(T1 Y Tg) Y15 = (Tl °Rr, TQ) Rr, T3 =T} OR(TQORT3 Ty) (T2 R, T3> =T11Y (T2 Y T3)

Therefore (T2, Y) is a commutative algebra.

Ty > (To>T;) = Z Ty oy (T2 0, T3)
veV* (T3)
wEV*(To)UV*(T3)
= Z Ty oy (T2 0 T3) + Z Ty oy (T3 0, T3)
veV*(T3),weV*(Tz) v, wWeV*(T3)
= > (TyowTo)ou Ts+ Y Tioy (Tho, Th)

veV*(T3),weV*(Ts)

v,weV*(T3)

So

v,weV*(Ts)

= (Tl > Tg) >T5 + Z T1 o (T2 0y Tg).

T > (TQ > Tg) — (Tl > T2) >T3 = Z T oy (TQ Ov T3)

v,weV*(T3)

= Y Thou(TioywT)

v,weV*(T3)

= T2I>(T1I>T3)—

Therefore, (T2, 1>) is a left prelie algebra.

It remains to prove the last relation of (9):

T (T Y Ts) = Y. Tioy(Thonry, T)

UEV*(TQORT T3)

(TQ > Tl) > T3.

= Z T oy (T2 ORr, T3 Z T oy (T2 ORp, T3)

veV*(T2) veEV*(T3)
= Z Ty oy (T2 oy, T3) + Z Ty oy (T3 oy, T2)
veV*(Tz) veV*(T3)

= Z Ty oy To | oy, T3+
veV*(Tz)

D

Ty 0y T3 | oRry, T

’UGV* T3)

= (T1 I>T2) YT3+(T1 DTg) Y 1.

Theorem 15 (TS, Y,>) is generated as a ComPreLie-algebra by 1 , d € D.

Notation. To prove the previous proposition, we introduce a notation. Let T7y,...,T}; are
trees (possibly empty) of CgK and dy,...,dy € D. Then By g g4, (11 @ ... ® T}) is the tree
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obtained by grafting each T; on a common root with an edge decorated by d;. For examples, if
a,b,c,d €D,

Bu(.) = 1 Bagp(- ®.) = &b Bu(p) = la
Bl = B B 00 = W | Bustor) = A
Buspgel- ®. @.) = /4 Bue) = Y | Bun(Ve ©.) =

Proof. Let us prove that (TIC)YK7 Y, >>) is generated as ComPreLie-algebra by 1 | d € D by
induction on the edge degree n. If n = 1, this is obvious. Let T' € TgK be a tree of edge degree
n > 2. Let k be an integer such that T' = By, g. g4, (11 ® ... ® T) with dq,...,d; € D and
Ty, ..., Ty trees (possibly empty) of CEy.. Then:

1.If k =1, T = By, (T1) with |T1|, = n — 1 > 1. By induction hypothesis, 77 can be
constructed from trees l¢ | d € D, with the operations Y and >. So T = T > I can be
also constructed from trees 14 , d € D, with the operations Y and >.

2. Suppose that & > 2. Then, for all 4, 1 < [Bg,(T3)[, < n — 1. By induction hypothesis,
the trees By, (T;) can be constructed from trees 14, d € D, with the operations Y and >>.
So T = Bg,(T1) Y ... Y By, (1)) can be also constructed from trees l¢ , d € D, with the
operations Y and .

We conclude with the induction principle. O

Remarks.

1. (TgK, Y, >) is not the free ComPreLie-algebra generated by !4 , d € D. For example,

a
b
c

lo > (1 >Ic):‘yf JJ =(le YP)>l +(le DB )> .

2. A description of the free ComPreLie-algebra is given in [Foil3].

4.3 Noncommutative case

We give a noncommutative version of Ccog. To do this, we work on the algebra Hp,.

Definition 16 Let (F, O'F) be a nonempty preordered forest. In particular, F' is a nonempty
rooted forest. Let e be a contraction of F', Parte(F') the partition of F' by e and Conte(F') the
contracted of F by e (see definition 11). Then:

1. Parte(F) is a preordered forest (Parte(F),o") where of : v € V(Parte(F)) — o (v). In
other words, we keep the initial preorder of the vertices of F' in Parte(F).

2. Conte(F) is also a preordered forest (Conte(F),0¢) where o© : V(Conte(F)) — {1,...,p}
is the surjection (p < |Conte(F)|,) such that if A,B are two connected components of
Parte(F), if a (resp. b) is the vertex obtained by contracting A (resp. B) in F, then

of'(Ry) < of'(Rg) = 0%(a) < 0% (b),
of'(Ra) = oF'(Rg) = 0%(a) = o (b), (10)
o' (Ra) > oF(Rg) = 0%(a) > o%(b).

In other words, we contract each connected component of Parte(F) to its root and we keep
the initial preorder of the roots.
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1
Example. Let T = 5&/23 be a preordered tree. Then

1 1 1 1 1 1 1 1
. 3K/3 3%/3 3§/3 3&3 :i/s 3Lg3 5&3 3%23
contraction e 2 ) P ) P 2 2 2

1

1
Parte(T) 3&/23 IS I%, .13\/23 }S 3 .11%.3 .2.31% .11%.3 el1e20363

1 1
Conte(T) | .. | 12 || 13 VAR BRAVA Ay

where, in the first line, the edges not belonging to e are striked out.

Let I,, be the ideal of Hp, generated by the elements F'.; — F with F.; € H,, and F the
forest contructed from F'.; by deleting the vertex ., and keeping the same preorder on V(F).
For example,

o if F., = '"\,*., then F = IVQQ,

2 2
o if ., :1{/;’.2 then F = 1&/;”.

Let C,, be the quotient algebra Hp,/Ip,. So one identifies the unit 1 (for the concatenation)
with the tree .;. Note that C,, is a graded algebra by the number of edges. We denote by
the same way a forest and its class in C,,. We define on C,, a contraction coproduct on each
preordered forest F' € Cp,:

Ac,,(F) = Y Parte(F)® Conte(F),
e=E(F)
= FQu+a®@F+ Y  Parte(F)® Conte(F).
el=E(F)
Examples.

Ac,, (1) 1 ® e

Ac,(13) = B @a+.ae!l

Ac,, (V) = "VPeu+ae W rell +1iell
Ac,,(1213) = LB R®a+all+1Iell +15 17

. . .
Acpo(?k/f) - e raeM rnnen W en s en sl
+13 "V + 13 @'V’
Ac,,(V 1) = Ve +ae™ VM +u el 133t +1i eV’
+3NeBl+HLRL+ 'V et

1
Remark. Ac,, is non-cocommutative (see for example the coproduct of SK/QS ). In particular,
if T is a preordered tree and e = E(T'), Conte(T') is a preordered tree and Parte(7') can be
disconnected. The second component of the coproduct is linear: a tree instead of a polynomial
in trees. This is a right combinatorial Hopf algebra (see [LR10]).

Proposition 17 1. Ac,, is a graded algebra morphism.

2. Ag,, is coassociative.

Proof.
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1. Let F,G be two preordered forests. Then

) ® Contf(G))

Ac,,(FG) = Z Parte (F'G) ® Conte(FG)

e=E(FG)

= > (Parte(F) Part s (G)) @ (Conte(F) Cont ¢(G))
e=E(F),f=E(G)

Z Parte (F) ® Conte(F Z Partf
e=E(F FfEE(G
= ACpo( )Acpo (G)7
and Ac,, is an algebra morphism. It is a graded algebra morphism with (8).

2. Let F be a nonempty preordered forest. Then
(Ac,, ® Id) o Ag,,(F)
> Ac,,(Parte(F)) @ Conte(F)

e=E(F)
e=E(F) fEE(Parte(F))

= Z Partf( ) @ Cont ¢(Parte(F)) ®
fCeCE(F

and
(Id@AC )OAC (F)

Y Parts(F) ® Ag,,(Conts(F))
FEE(F)

IS

fEE(F) e=E(Conty(F))

>

fEE(F).eCf

Part ¢ (F) ® Parte(Co

where to the last equality we use that E(Contg(F))
and Conte(Cont¢(F')) = Conteug(F).

Remark that {(e, f) | f Ce C E(F)} and {(e, f)
{{(e ) FCeCEWF)} — {(ef) |
(e,f) — (e\f.,f)

(eUf,f) < (ef).

Moreover,

Part ¢ (Parte(F)) @ Cont g(Parte(F')) ® Conte(F')

Conte(F),

nt ¢(F)) ® Conte(Cont g(F))

Part ¢ (F) ® Parte(Contg(F)) ® Conteyy(F'),

= f the complement of f in E(F)

e in Contg(Parte(F)) with f C e C E(F): the edges belong to e N f = e\ f; the

vertices are the connected components of Parteng(F)

= Partg(F"). The preorder on

the vertices is given by the preorder on the roots of the connected components of

Part ¢ (F).

the preorder on the vertices is given by the preo
components of Part ¢(F).

in Parte(Contg(F)) with f = E(F),e C f: the edges belong to fNne=e\ f = e;
the vertices are the connected components of Partg(F).

As in the precedent case,
rder on the roots of the connected
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So Cont ¢ (Parte(F)) and Parte(Cont g(F)) are the same forests with the same preorder on

the vertices.

Therefore (Ag,, ® Id) o Ac,,(F) = (Id® Ag,,) o Ac,, (F).

We now define

- Cpo — K
" | F forest — dp.,.

€ is an algebra morphism.
Proposition 18 ¢ is a counit for the coproduct Ac,, .

Proof. Let F' be a forest € C,,. We use the Sweedler notation:

Ac,,(F)=F@.+.@F+Y FUgF®,
F

Then

(e®1Id)oAc,,(F) = &e(F)a +€(.1)F+Z€(F(1))®F(2)
F

(Id®e) o Ag,,(F) = Fe(r)+.1e(F)+ > Fe(F®)
F

Therefore € is a counit for the coproduct Ac,, .

=F.

F,

|

As (Cpo; Ag,,€) is graded (by the number of edges) and connected, we have the following

theorem:

Theorem 19 (C,, Ac,,,€) is a Hopf algebra.

We denote the antipode of the Hopf algebra Cy, by Sc,,. We have the same combinatorial
description of Sc,, as in the commutative case (see proposition 12). We give some values of

Sc

po’

e In edge degree 0, Sc,,(-1) = «1.

e In edge degree 1, Sc,,(11) = —11 —.1, Sc,,(17) = =11 —.1 and Sc,,(13) = !

e In edge degree 2,

Sc,, (V) = VP 421318 4213,
Sc,, (V') = =BT kg +r3nd 413+ 1,
1 1
So,,(13) = =1 4131411 411 13,
Sc,,(1313) —1315 4+ 1703 4 1018 13 417
e In edge degree 3,
1 1
SCpo(gkés) = VW prgndnd —rdagng —rdrdng —1h1d 1
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Let C;Lpo be the K-algebra spanned by nonempty heap-preordered forests, C! be the K-
algebra spanned by nonempty ordered forests, Cj  be the K-algebra spanned by nonempty
heap-ordered forests and C'y.j be the K-algebra spanned by nonempty planar forests. We
consider the quotients Cppo = C},,,,/(Ipo N Cy,), Co = Cp/(Ipo N Cy), Cho = Cj,,/(Ipo N Cy,)
and Cycox = Clyeg/(Ipo N Clyox ). We have in this case a diagram similar to (6):

Cnok© Cho© (jf
ChpoC—> Cpo

where the arrows < are injective morphisms of algebras. But they are not always morphisms of
Hopf algebras (for the contraction coproduct):

Theorem 20 1. Cyy, is a Hopf subalgebra of the Hopf algebra Cy,.
2. C, is a Hopf subalgebra of the Hopf algebra C,,.
3. Cyyo is a Hopf subalgebra of the Hopf algebra C, and of the Hopf algebra Cpy,,.

4. Cnek is a left comodule of the Hopf algebra Cy,.

Notations. We denote by Ac,,, Ac,, Ag,, the restrictions of Ac,, to Chpo, Co, Cho-

3
Remark. Cycg is not a Hopf subalgebra of the Hopf algebra Cj,. For example, 2&/14 €
C NCK and

3 3 3 3 ’ ,
Acho(zkffl) = Mo 1l e+ e 12
3
1ol 1 il
Then 1113 ® 12 ¢ Cnex ® Cyok.

Proof.

1. Cppo is a subalgebra of Cp,. Let us prove that if (F, o) € Chpo and e = E(F) then
(Conte(F), %) and (Parte(F), o) € Chpo.
If a,b € V(Parte(F)), a # b, such that a — b then a,b are the vertices of a sub-
tree of (F,of") € Cppo and o' (a) > o' (b). With definition 16, o”(a) > o¥(b). So
(Parte(F),0") € Cppo.
If a,b € V(Conte(F)), a # b, such that @ — b, then a and b are the vertices obtained
by contracting two connected components A and B of Parte(F). As a - b, R4 — Rp
and as (F,0%) € Cppo, 0 (Ra) > oF'(Rp). Then, by definition 16, ¢ (a) > o (b). So
(Conte(F), %) € Chypo.
Therefore if (F, o) € Chpos Ac,,(F) € Chpo® Chypo and Cpy, is a Hopf subalgebra of Cp,.

2. C, is asubalgebra of Cp,. Let (F, %) € C, and e = E(F). Let us show that (Conte(F), %)
and (Parte(F),o") € C,, that is to say, 0¢ and o are bijective.
By definition 16, o¥ is bijective because we keep the initial order of the vertices of F' in
Parte(F). By definition, 0 is a surjection. Let a,b € V(Conte(F)) such that 0% (a) =
o%(b) and A and B be the two connected components of Parte(F) associated with a and
b. With (10), o¥'(R4) = 0¥ (Rp) and R4 = Rp because ! is bijective. So A= B, a =5
and o is injective.

Therefore ¢ and of are bijective and C, is a Hopf subalgebra of Cp,.
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3. As Cy,, is a Hopf subalgebra of the Hopf algebra C,, and C, is a Hopf subalgebra of the
Hopf algebra C,,, Cp, = Cpypo N C,, is a Hopf subalgebra of Cp,,, and C,.

4. Let us prove that if (F,o) € Cycx and e = E(F) then (Conte(F),0%) € Cnok. As
Cho is a Hopf algebra, (Conte(F),0¢) € Cpe. So, if a,b € V(Conte(F)), such that a —» b
then 0% (a) > 0% (b).

Moreover, if a,b,c € V(Conte(F)) three distinct vertices such that a — ¢, b — ¢ and a is on
the left of b. The vertices a,b and ¢ are obtained by contracting of connected components
A,Band Cin F. Asa —» ¢, b — c and a is on the left of b, R4 — Rc, Rg — Rc and R4
is on the left of Rp. As (F,0) € Cncg, of'(Ra) < 0¥ (Rp). So 0% (a) < a®(b).

Therefore if (F,0") € Cyck and e = E(F) then (Conte(F),0%) € Cycr. Consequently,
Ac,,(Cnck) € Cho ® Cnek-

4.4 Formal series
The algebras C,,, Cppo, Co, Cp, and Cyci are graded by the number of edges.

In the ordered case, we give some values in small degree:

n [1]2]3] 4] 5 | 6 | 7 | 38
fPo1219]76] 80510626 | 167839 | 3091768 | 65127465

These is the sequence A105785 in [Slo|.

Let us now study the heap-ordered case. We denote by fnc ;' the forests of Cy, of edge degree

n and of length I, and by fCre the forests of Cy, of edge degree n. In small degree, we have the
following values:

Cho — Cho —
OéO —J1,1 T
fol =0 foralll >1,
Cro— 0 foralll£1,
S =0 for all n # 1.

Let n and [ be two integers > 1. To obtain a forest F' € Cy, of edge degree n and of length [ (so
|F|, =n+1), we have two cases :

1. We consider a forest G € Cp,, of edge degree n — 1 and of length [ and we graft the vertex
n + [ on the vertex i of GG. For each forest GG, we have n 4+ [ — 1 possibilities.

2. We consider a forest G € Cy, of edge degree n — 1 and of length | — 1. Then, for all
ie{l,...,n+1—1}, the forest G17*"'of edge degree n and of length I is an element of
Cho (where G is the same forest than G where, for all j > i the vertex j in G is the vertex
j+1lin C?) For each forest G, we have n 4+ [ — 1 possibilities.

So
fcflho =(n+1- 1)fc_hi’7l +(n+1-— 1)fc_hi’7l_1.

n n n

We give some values of fnc 1'° in small degree and small length:
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a\LJo] 1 | 2] 3 | 4|5
0 |[1] 0 0 0 0 0
1 |0 1 0 0 0 0
2 (0] 2 3 0 0 0
3 (0] 6 | 20 15 0 0
4 10| 24 | 130 | 210 | 105 0
5 [ 0] 120 | 924 | 2380 | 2520 | 945
Note that ff{w = n! for all n > 1. With the formula fCre = Z ffl’“’, we obtain the number
1>0
of forests of edge degree n. This gives:
n |0|1]2]3 |4 | 5 | 6

fore 0] 1]5]41]469 | 6889 | 123605
This is the sequence A032188 in [Slo].

Remark. Consider the map ¢ : Fg,, — X defined by induction as follows. If F' = 1,
o(F) =1and if F = .1, p(F) = (1). Let F' € Hy, be a forest of vertice degree n and v the
vertex indexed by n. As F'is a heap-ordered forest, two cases are possible:

e The vertex v is an isolated vertex. We denote by G the heap-ordered forest obtained by
deleting the vertex v of F. Thus ¢(G) = 7’ is well-defined by induction. Then ¢(F') is the
permutation 7 defined by

{ (i) = () ifi#n

T(n) = n.

e The vertex v is a leaf and we denote by k the index of v' with v — ¢’. Similarly, we
denote by G the heap-ordered forest obtained by deleting the vertex v of F. p(G) = 7' is
well-defined by induction and ¢(F') is the permutation 7 defined by

(1) = 7() ifi#k

(k) = n

7(n) = 7'(k).

Then ¢ : Fy,, — ¥ is a bijective map. Remark that, if F' € Fy, , each connected component of
F corresponds to one cycle in the writing of ¢(F') in product of disjoint cycles. Moreover, the
restriction of ¢ to the forests of Cp, is a bijective map with values in the set of permutations

without fixed point.

In the planar case, we can obtain the formal series. Let tCNCK be the number of trees
€ Cycrx of edge degree n and fCNOK be the number of forests € Cycx of edge degree n. We

put Teyex (@) = Zt,?NCKa?k and Foy o (2) = Z f,SNCka. Then:
k>0 k>0

Proposition 21 The formal series Tcyey, and Foyo, are given by:

T (x):1—21‘—\/1—4m I (x): 2z
Cneok 21: ) Cneok 41‘ 1 + m

Proof. With formula (1), we deduce that:

1—+1—4x 1_1—2:r—\/1—4x
2z - 2z '

TCNCK (x> -
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Cyck is freely generated by the trees, therefore

1 2x

F X = =
Cox (@) 1 —Tcyor (@)  dr—14++/1—4x
O
Then for all n > 1 tSvex = n%rl(%?) is the nth Catalan number, fC¥ex = (*"~1) and this

gives:

n 112131141 5 6 7 8 9 10
tCnverx [ 1]2] 5 [ 14| 42 [ 132 429 | 1430 | 4862 | 16796
fENox [ 1]3[10 35126 | 462 | 1716 | 6435 | 24310 | 92378

These are the sequences A000108 and A088218 in [Slo].

5 Hopf algebra morphisms

Recall that the tensor algebra T'(V') over a K-vector space V' is the tensor module
TV)=KoVoV®?o..0V®a...

equipped with the concatenation.

Dually, the tensor coalgebra T°(V') over a K-vector space V' is the tensor module (as above)
equiped with the coassociative coproduct A 445 called deconcatenation:

Asss((V1 .. 00)) =Y (01..03) @ (Vi1 - .. vn).
=0

We will say that a graded bialgebra H is cofree if, as a graded coalgebra, it is isomorphic to
T¢(Prim(H)) (for more details, see [LR06]).

We give the following useful lemma:

Lemma 22 Let (A, A, €) be a graded cofree Hopf algebra. Then
Ker(A® Idy — Idy @ A) = Im(A).
Proof. Indeed, if 2 = 3" @y w @ w' € Ker(A @ Idg — Ida @ A),

/ / /
E Oy, W1 Q@ W2 QW = g Ay, W @ Wy @ Wy.

wiw2=w wiwh=w’

SO Quywows = O wows fOr all words wr, we, w3 different from the unit. We put by = @y -
Then

z=Y by ( 3 w1®w2> :A(waw) e Im(A).

Wi Wy =w

The coassociativity of A implies the other inclusion. O
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5.1 From HZ, to Sh”

Let p: K (TD

Hcex

> — K (D) be a K-linear map.

Theorem 23 There exists a unique Hopf algebra morphism @ : HEK — ShP such that the
following diagram

K (TEICK> 2 K (D) (11)
HgK ? . sn?

1s commutative.

Proof. Existence: We define ® by induction on the number of vertices. We put ®(1) =1®1
and ®(..) = ¢(..) for all a € D. Suppose that ® is defined for all forest F' of vertice degree
< n and satisfies the condition (® ® ®) o AHgK(F) = AShD o ®(F). Let F € HZ be a forest
of vertice degree n. If F' = F1F5, we put ®(F) = ®(F;)P(Fy). Suppose that F is a tree. By
induction hypothesis, (¢ ® ®) o AH?;{ (F) is well-defined. Moreover,

(Agpr @ ldgyp — Idg,p @ Agyr) o (¢ ® @) ° Ayp (F)
= ((I) RDPR (I)) o (AHgK X IngK — IngK [ AHEK) o AHEK (F)
= 07

using induction hypothesis in the first equality and the coassociativity in the second equality.
So (P® <I>)~o Apzp, (F) e KE:r(AShD ®@Idgyp —Idg» @ Agyp). As Sh” is cofree, Yvith lemma
22, (P P)o AHgK (F) € Im(Agy,p) and there exists w € Sh” such that (® ® ®) o AHEK(F) =

Agpr(w). We put ®(F) = w — n(w) + ¢(F). Then

To®(F) = m(w)—mom(w)+op(F)=p(F),

Agpr 0 ®(F) = %Sh (w) — AShD (m(w)) + AShD (p(F))
= Agpr(w)
= @0 ®)ohy ()

By induction, the result is established.

Uniqueness: Let ®; and ®3 be two Hopf algebra morphisms such that the diagram (11) is
commutative. Let us prove that ®;(7) = ®5(T) for all tree T € HE, by induction on the
vertice degree of T. If n = 0, ®1(1) = ®5(1) = 1. If n =1, for i = 1,2, ASh’D 0 ®(.,) =
(®; ®P;) 0 AHEK(‘“) =0. So ®;(..) € Vect(D). As the diagram (11) is commutative, ®1(.,) =
®o(.a) = ¢(.a). Suppose that the result is true in vertice degree < m and let T be a tree of
vertice degree n. Using induction hypothesis in the second equality,

Agpp 0 ®1(T) = (€1 ©®1)0Ayp (T)
= (2@ ®z) 0 Agyp (T)

= Ag,p 0o Po(T).

So &1 (T)—Do(T) € Vect(’]I‘ECK) and ©1(T) — Do(T) = w(P1(T) — P2(T)) = p(T)—p(T) = 0. O
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Notation. We consider F' € Heg, e = E(F) and 0 € O(Conte(F)) a linear order on
Conte(F) (see definition 3). For all i € {1,...,|Conte(F)|,}, o~1() is the connected component
of Parte(F') such that her image by o is equal to .

The following proposition gives a combinatorial description of the morphism ® defined in
theorem 23 :

Proposition 24 Let T be a nonempty tree € HgK. Then

®(T)= ) Y. el (|Conte(F),)) .- p(a (1)) | - (12)

e=E(T) \o€O(Conte(T))

Proof. We use the following lemma:

Lemma 25 Let T be a rooted tree of vertice degree n. We define :

E(T) = {(v,01,02) | v|EV(T),01 € O(Leay(T)), 02 € O(Rooy,(T))},
F(T) = {(o,p) | c€OT),pe{l,....,n—1}}.

Then E(T') and F(T) are in bijection.

Proof. We define two maps f and g.
Let f be the map defined by

1o S0 2 D
| (v,01,02) = (0,|Rooy(T)],)

where o : V(T) — {1,...,n} is defined by o(v) = o2(v) for all v € V(Roo,(T')) and o(v) =

01(v) 4+ |Rooy(T)|, for all v € V(Lea,(T)). By definition, o € O(T).
Let g be the map defined by

] F(T) — E(T)
g'{ —> (’0,0'1,0'2)

where

o 01 : V(Leay(T)) — {1,...,|Leay(T)|,} is defined by o1(v) = o(v) — |Rooy(T)]|, for all
v € V(Leay(T)). Then o1 € O(Leay(T))

e 03 : V(Rooy(T)) = {1,...,|Rooy(T)|,} is defined by o2(v) = o(v) for all v € V(Roo,(T")).
Then o3 € O(Rooy(T))

e v is the subset {ve o '({k,...,n}) | if we o ({k,...,n}) and v - w then v = w} of
V(T). We have v |= V(7).

So f and g are well-defined. Then we show easily that f o g = Idpr) and g o f = Idgr). O
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Let us show formula (12) by induction on the number n of vertices. If n = 1, T' = ., with
a € D. Then ®(..) = ¢(..) and formula (12) is true. If n > 2,

AShD O CD(T)
= (PR®)o AHEK (T)

= Y ®(Leay(T)) ® B(Rooy(T))

v|=V(T)
= ) ( > ( > 90(011(Conte(Leav(T))U))--'w(all(l)))>
v|[EV(T) \eFE(Leay(T)) \o1€0O(Conte(Leay(T)))
® ( > ( > p(05 " (|Cont ¢ (Rooy(T)],)) - - -@(021(1))))
FEE(Rooy(T)) \o2€0(Cont ¢(Rooy (T)))
= > > p(07 " (|Leay(Conte(T)],)) - - p(o7 (1))

e=E(T) (v,01,02)€E(Conte (T))
©p(05 ! ([Rooy (Conte (T))],)) - - p(oy (1))
= > > wle(|Conte(T)],)) (e o+ 1) @ (0™ () ... o0} (1)),

e=E(T) (o,p)€F(Conte(T))

So
®(T)= Y Y. elo7(|Conte(F),)) - (o' (1)
e=E(T) \oc€O(Conte(T))
and by induction, we have the result. O
Examples.

e In vertex degree 1, ®(.o) = ¢©(ea).

e In vertex degree 2,

(1) = p(o)pla) +(la)
Pleaes) = @(ea)plen) +@(e)p(ea)
e In vertex degree 3,
(V7)) = () @(ee)plea) +0(e)p(e1)p(ca) + 0(+0)p(18) + (e )(18) + o("V.°)
o(12) = 0 )e(n)e(a) +9(-)p(1h) +o(15)e(a) + o)
‘IJ(bK/ad) = @(e)p(+0)@(ea)plea) + @) o(-a) (1) P(sa) + 0(ea) (e )p(e6)(sa)
F@(ee)p(en)p(1d) + o) e(ca)e(1e) +@(a)p(ee)p(1e) +o(15) (e a)p(ea)

Particular case. If ¢(..) = a for all a € D and ¢(T) = 0 if |T|, > 1, then this is the
particular case of arborification (see [EV04]). For example :

O(..) = a O(1h) = ba | P(eaer) = ab+ba

d("\V.,°) = bea+ cha @(IE) = cba @(bkfad) = cbda + cdba + dcba.
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5.2 From HZ, to Csh”

Let ¢ : K (Tﬁcz{) — K(D) be a K-linear map. We suppose that D is equipped with an
associative and commutative product [-,-] : (a,b) € D? — [ab] € D.

Theorem 26 There exists a unique Hopf algebra morphism @ : HgK — CshP such that the
following diagram

K (T30K> ¥ . K(D) (13)

o

HZ, —2 > Csh?

18 commutative.

Proof. Noting that Csh? is cofree, this is the same proof as for theorem 23. |

Notation. Let F' € Hog be a nonempty rooted forest, e = E(F) and o € Op(Conte(F))
a linear preorder on Conte(F') (see definition 7), o : V(Conte(F)) — {1,...,q} surjective. For
alli € {1,...,q}, o~ 1(i) is the forest Ty ... T, of all connected components T} of Parte(F) such
that o(Ty) = i for all k € {1,...,n}. In this case, p(c~1(i)) is the element [p(T})... @(Tn)](”).

Now, we give a combinatorial description of the morphism ® defined in theorem 26:

Proposition 27 Let T be a nonempty tree € HgK. Then

(T)= ) ( Yo wloHa). --90(0_1(1))>- (14)

e=E(T) \0€0,(Conte(T))
Im(o)={1,...,q}

Proof. It suffices to adapt the proof of proposition 24. Note that, if T" is a rooted tree and
v = V(T), Rooy(T') is a tree and Lea, (7)) is a forest. So there are possibly contractions for the
product [-, -] to the left of (P ® ®) o AHEK (T"). We deduce formula (14). O

Examples.

e In vertex degree 1, ®(.o) = ¢(.a).

e In vertex degree 2,

e In vertex degree 3,

(V7)) = pla)el
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Particular case. If ¢(..) = a for all a € D and ¢(T') = 0 if |T|, > 1, then this is the
particular case of contracting arborification (see [EV04]). For example :

®(..) = a
®("\V,°) = bea+ cba + [bela

o(1) = ba
@(EE) = cba

P(saey) = ab+ba+ [ab]
®( 1) = dcba + cdba + [ed]ba.

a

5.3 From CZj to Sh”

Letcp:]K(TD

Cox

) — K (D) be a K-linear map.

Theorem 28 There exists a unique Hopf algebra morphism @ : CgK — Sh? such that the
following diagram

) LK (D) (15)

18 commutative.
Proof. This is the same proof as for theorem 23. O

As in the sections 5.1 and 5.2, we give a combinatorial description of the morphism ® defined
in theorem 28. We need the following definition:

Definition 29 Let F' be a nonempty rooted forest of Cox. A generalized partition of F is a
k-uplet (eq,...,ey) of subsets of E(F), 1 < k < |F|,, such that:

1. e #0,eNej=0ifi#j and Uie; = E(F),
2. the edges of any e; belong to the same connected component of F,

3. if v and w are two vertices of Parte,(F') and if the shortest path in F between v and w
contains an edge € e;, then j < 1.

We shall denote by P(F') the set of generalized partitions of F'.

Proposition 30 Let F' be a nonempty forest € CgK. Then

O(F) = > ¢(Conter(F)). .. o(Conter(F)). (16)
(e1,...,ex)EP(F)

Proof. We use the following lemma:

Lemma 31 If F € CgK 1s a nonempty tree, then the sets

E(F) = {((ex,-..,ex).p) | (e1,...,ex) €EP(F),1<p<k—1}
F(F) = {(ea(fla"'7fq)’(glv'"agr)) | eH:E(F)7(.f17"'7fq)EP(Parte(F))a
(917' e agr) € P(Conte(F))}

are in bijection.
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Proof. Consider the following two maps:
o E(F) — F(F)
" ((ers---sen),p) = (Ui<icpeis (€1, -, ep), (epr1,s - - -5 €x))
and

{ F(F) — E(F)
g (e’(fla"'qu)’(gl>"'7gr)) = ((fla"'a.fqaglw"agr)?q)-

f is well-defined :
Let ((e1,...,ex),p) € E(F'). Then e = Uj<i<pe; is a nonempty nontotal contraction of F'.

1. (a) (e1,...,ep) is a p-uplet of subsets of E(Parte(F')) = e. By hypothesis, (e1,...,ex) €
P(F) Soe; #0, e N e; = ? and Ul<i<p€i = E(Parte(F)).
(b) The edges € e;, 1 < i < p, are the edges of the same connected component of F
therefore of Parte(F') because e; C e.

(c) Let v and w be two vertices of Parte, (Parte(F)) = Parte, (F) (because e; C e). If the
shortest path in Parte(F') between v and w contains an edge € e;, then the shortest
path in F' between v and w contains also an edge € e;. As (e1,...,e;) € P(F), we
have j < 1.

So (e1,...,ep) € P(Parte(F)).

2. (a) (ep+1,...,ex) is a (k — p)-uplet of subsets of E(Conte(F)) = €. By hypothesis,
(e1,...,ex) € P(F). So e; # 0, e; N e; = (¢ and Upri<i<k€i = E(Conte(F)).
(b) The edges € e;, p+ 1 < i <k, are the edges of the same connected component of F’
therefore of Conte(F') (we contract in F' some connected components).

(c) Let i be an integer € {p +1,...,k} and v and w two vertices of Parte,(Conte(F)) =
Parte, (F') (because e; Ne = ). If the shortest path in Conte(F') between v and w
contains an edge € e; then the shortest path in F' between v and w contains also an
edge € ej. As (e1,...,ex) € P(F), we have j < i.

Thus (ep+1,-..,ex) € P(Conte(F)).
So f(((e1,...,ex),p)) € F(F).
g is well-defined :
Let (e, (f1,-- .,]"q)7 (g1, -- ,gT)) € F(F). Let us show that (f,.. T 91 ,9,) € P(F).

1. As (f17 e ‘7fq) S P(Parte(F» and (917 s 7g'r) € P(Conte(F))7 -f7, 7é @, g; 7é (2)7 f7, ﬂf] =
0,9;,Ng; =0and (U;f;) U (Uig;) = E(Parte(F)) U E(Conte(F)) = E(F). In addition, as
fi € E(Parte(F)) = e and g; C E(Conte(F)) =€, f;Ng,; = 0.

2. The edges € f, are the edges of the same connected component of Parte(F'). As all the
trees of the forest Parte(F') are subtrees of F', the edges € f,; are the edges of the same
connected component of F'. Moreover if the edges € g, are the edges of the same connected
component of Conte(F), it is also true in F.

3. (a) Let i be an integer € {1,...,q} and v and w two vertices of Party (F). We have
fi C e therefore Party (F') = Party, (Parte(F)). If the shortest path in F' between v
and w contains:

i. anedge € f;. As (fy,...,f,) € P(Parte(F)), j <i.
ii. an edge € g,;. Then the connected component of Parte(F') containing v and

w has an edge € g;. This is impossible because E(Parte(F)) = e and g; C
E(Conte(F)) =e.
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(b) Let i be an integer € {1,...,7} and v and w two vertices of Party, (F). g;Ne =10
therefore Party, (F') = Partg (Conte(F)). If the shortest path in I between v and w
contains:

i. an edge € g;. As (gy,--.,9,) € P(Conte(F)), j <.
ii. an edge € f;. It is good because f; is before g;.
Thus (fq,...,fp91,---,9,) € P(F).
SOg((e7(f17"".fq)’(g17""gr))) EE(F)

Finally, we easily see that fog = Idpp) and go f = IdgF). O

We now prove proposition 30. By induction on the edge degree n of F' € CEK. Ifn =1,
F = 1o with a € D. Then ®(l= ) = ¢(le ) and formula (16) is true. Suppose that n > 2 and
that the property is true in degrees k£ < n. Then

Agpo®(F) = (Pod)o ACEK(F)

= > ®(Parte(F)) ® P (Cont(F))
el=B(F)

= > p(Contz(F)) ... p(Contz(F))
elFE(F) \(f1..f )P (Parte(F))

® > ¢(Contg(F)). .. p(Contg-(F))
(915--,9,)€P(Conte (F))

using induction hypothesis in the last equality. So, with lemma 31,
Agp 0 ®(F) = > p(Contz(F)) ... p(Contz—(F))
(ef(fl»'“7.fq)7(gl""797"))6117(}?)
®p(Contg,(F)) ... ¢(Contg(F))
= > ¢(Conter(F)). .. p(Conte(F))
((61,...,€k),p)€E(F)
@@ (Conte,7(F)) ... o(Conter(F))

= Z Z @(Conter(F)) ... p(Conte,(F))

(e1,...,ex)EP(F) 1<p<k—1
®@(Conte, 7 (F)) ... p(Conte ().

Therefore
O(F) = > @(Conter(F)) . .. p(Conte(F))
(e1,...,ex)EP(F)
and by induction, we have the result. O

Examples. We introduce a notation. If w = w; ... w, is a D-word, we denote by Perm(w)
the sum of all D-words whose letters are wy, ..., w,. For example, Perm(abc) = abc+ acb+ bac+
bca + cab + cba.

e In edge degree 1, ®(le ) = p(le ).
e In edge degree 2,
(N ) = p( N )+ (1 )p(P) + (P )e(e)

b

oda) = o)+ )p(r ) +o(b )p(te).
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e In edge degree 3,
oM7) = (7Y 4 (1 )p(Ve ) + (Ve (1) +
(e )o( o ) + (Vb )o(le ) + Perm(p(la
(M) = o) 4ol eV )+ (N (1o ) + (1 Jld
+o(r )o(te ) + ot (1 ) + Perm(p(1e )p( )p(te )

(8 ) = (W)t (8 )+ (0 Yol ) + (i (0 ) + (1 Y34 )
(N (1) + Perm(p(te (P )(t ).

c\/d
e Finally, in edge degree 4, with the tree X/b,

o($8) = o(8)+ o0 1o ) + (0 oW )+ (¥ o)+ ) (M )
oW ot )+ ol oW ) 1 oMW Yo ) (A Yo )
(N Yp(Ne )+ o8 )p( V) + (e Yo (A ) + Perm(p( e )ip(1e )p(14 )
+Perm(p( N (1 (1)) + Perm(p(t )o(1 )ip(1 )

( (p(te (1 )
+Perm(p(fe (1 Y1) + (1 )p(Ne (1) + (e )p(1a )p(NVe )
+o(1 )p(le )o(Ve ) 4+ (1o )o(Va Yp(le ) + p(la )p(le )V )

Jo(1a ) )

+o(1e )o(la (Ve ) + Perm(p(1e )o( )p(le )p(1d))

5.4 From C3Z to Csh”

Let ¢ : K (TgCK) — K(D) be a K-linear map. We suppose that D is equipped with an

associative and commutative product [-,-] : (a,b) € D? — [ab] € D.

Theorem 32 There exists a unique Hopf algebra morphism ® : CgK — Csh? such that the
following diagram

K (T@CK) 2 _K(D) (17)
[
CB, —2 > Csh?
s commutative.
Proof. This is the same proof as for theorem 23. a

We give a combinatorial description of the morphism @ defined in theorem 32. For this, we
give the following definition:

Definition 33 Let F' be a nonempty rooted forest of Cor. A generalized and contracted
partition of F is a l-uplet (f1,..., f1) such that:

1. forall1 <i<lI, f; = (e},.. .,e}%i) is a ki-uplet of subsets of E(F),

2. (e%,...,ekl,e%,...,ekl) € P(F),
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3. if Parte; (F) and Parte; (F) are two disconnected components of F' and if the shortest path
in F between Parte;(F) and Parteé(F) contains an edge € €., then j > i.

We shall denote by P.(F) the set of generalized and contracted partitions of F.

Proposition 34 Let F' be a nonempty forest € CgK. Then

(k1)
O(F) = Z ([gp(Conte%(F)) . .cp(Conte}c(F))} .
(f1resf1) EP(F) '
fi:(ellv“'ue}ci) (18)

(k1)
e [gp(Contell(F)) . .go(Contel(F))] ) .

Ky

Proof. It suffices to adapt the proof of proposition 30. Note that, if T" is a rooted tree and
e = E(T), Conte(T) is a tree and Parte(T) is a forest. So there is possibly contractions for the
product [+, -] to the left of (P ® ®) o App (T'). Remark that

e the trees of Parte(7') are disconnected components of 7' and they appear to the left of
(@@ ®) o Ayp (7).

e the edges of € between two disconnected components of Parte(7') in T are edges of Conte (1)
and thus they appear to the right of (& ® ®) o AHgK (T).

We deduce formula (18). O

Remark. In the expression of ®(F) (formula (18)), we find the terms of (16) and other
terms with contractions for the product [-,-]. Taking [-,] = 0, we obtain (16) again.

Examples. From the examples at the end of section 5.3, we give the other terms with
contractions for the product [, -].

e There are no terms with contractions for the following trees: la , &b | o ,N% , C\é .

e For the tree ak/b ,

() = ot Lo Do M) + (v Do Nt ) + [(r Yo )] (1)
(1) (2 o1 )] p(1 ) + (1 (1 )] (1o (e )
+[p(2 )e(1e )] ot )e(le ) + (P Je(le ) p(le )e(1e)
+ (P (1 )] (1 Jo(le ) 4 (1) [p(P (e )] p(1e )
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