Applications linéaires - Lois à densité usuelles

Questions de cours

- 1. Loi exponentielle : densité, fonction de répartition, espérance et variance.
- 2. Preuve : Fonction de répartition et espérance d'une variable aléatoire à densité $X \hookrightarrow \mathcal{E}(\lambda)$.

Exercice 1

On considère les matrices
$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

On rappelle que la famille $\mathscr{B} = (E_1, E_2, E_3, E_4)$ est une base de $\mathscr{M}_2(\mathbb{R})$.

On note
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E_1 + E_4$$
 et $J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = E_2 + E_3$.

Soit f l'application qui à toute matrice $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ associe la matrice $f(M) = \frac{a+d}{2}I + \frac{b+c}{2}J$.

- 1. (a) Montrer que f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
 - (b) Déterminer la matrice A de f dans la base \mathscr{B} .
- 2. (a) Déterminer Im(f) et sa dimension. Quel est la dimension de Ker(f)?
 - (b) Déterminer Ker(f).
 - (c) Justifier que f n'est pas un automorphisme de $\mathcal{M}_2(\mathbb{R})$.
- 3. (a) Montrer que $f \circ f = f$.
 - (b) Retrouver à l'aide de la question précédente que f n'est pas un automorphisme de $\mathcal{M}_2(\mathbb{R})$.
- 4. Montrer que Ker(f id) = Vect(I, J).
- 5. (a) On considère la famille $\mathscr{C} = (E_1 E_4, E_2 E_3, I, J)$. Justifier que \mathscr{C} est une base de $\mathscr{M}_2(\mathbb{R})$.
 - (b) Déterminer la matrice D de f relativement à la base \mathscr{C} .
 - (c) Écrire la matrice P de passage de \mathscr{B} à \mathscr{C} puis donner une formule reliant A, D et P.

Exercice 2 On note
$$f$$
 la fonction définie par : $f(x) = \begin{cases} \frac{1}{2x\sqrt{x}} & \text{si } x \in [1, +\infty[, 0], \\ 0 & \text{sinon.} \end{cases}$

- 1. Vérifier que f est une densité.
- 2. Déterminer la fonction de répartition F_X de X.
- 3. Montrer que X ne possède pas d'espérance.
- 4. On pose $Z = \ln(X)$. Déterminer la fonction de répartition de Z et vérifier que Z suit une loi exponentielle dont on donnera le paramètre.

- Colle 19

Applications linéaires - Lois à densité usuelles

Questions de cours

- 1. Loi uniforme : densité, fonction de répartition, espérance et variance.
- 2. Preuve : Fonction de répartition et espérance d'une variable aléatoire à densité $X \hookrightarrow \mathcal{U}([a,b])$.

Exercice 3

Soit f l'application de $\mathbb{R}_2[X]$ dans \mathbb{R}^3 définie par : f(P) = (P(0), P(1), P(2)).

- 1. (a) Montrer que f est une application linéaire de $\mathbb{R}_2[X]$ dans \mathbb{R}^3 .
 - (b) Déterminer la matrice de f dans les bases canoniques de $\mathbb{R}_2[X]$ et de \mathbb{R}^3 .
- 2. (a) Déterminer Ker(f).
 - (b) En déduire que f est un isomorphisme.
- 3. On considère les polynômes $L_0(X) = (X-1)(X-2), L_1(X) = X(X-2)$ et $L_2(X) = X(X-1)$.
 - (a) Montrer que la famille (L_0, L_1, L_2) est une base de $\mathbb{R}_2[X]$.
 - (b) Déterminer la matrice de f dans la base (L_0, L_1, L_2) de $\mathbb{R}_2[X]$ et la base canonique de \mathbb{R}^3 .
 - (c) Retrouver que f est un isomorphisme.

Exercice 4

- 1. Montrer que l'intégrale $\int_0^{+\infty} e^{-x} dx$ converge et déterminer sa valeur.
- 2. On considère la fonction f définie par : $\forall x \in \mathbb{R}, f(x) = \frac{1}{2}e^{-|x|}$.
 - (a) Montrer que f est paire.
 - (b) Montrer que f peut être considérée comme une densité de probabilité.

Dans la suite, on considère une variable aléatoire X, définie sur un espace probabilisé (Ω, \mathcal{A}, P) , et admettant f comme densité. On note F la fonction de répartition de X.

- 3. (a) Montrer que, pour tout $x \le 0$, $F(x) = \frac{1}{2}e^x$.
 - (b) Montrer que, pour tout $x \ge 0$, $F(x) = 1 \frac{1}{2}e^{-x}$.
- 4. On pose Y = |X|, ce qui signifie donc que Y est la valeur absolue de X. On admet que Y est une variable aléatoire à définie sur le même espace probabilisé que X. On note G la fonction de répartition de Y.
 - (a) Déterminer G(x) pour tout réel x < 0.
 - (b) Montrer que, pour tout réel $x \ge 0$, on a : G(x) = F(x) F(-x). En déduire l'expression explicite de G(x) en fonction de x.
 - (c) Reconnaître la loi de Y et donner son espérance.

Applications linéaires - Lois à densité usuelles

Questions de cours

- 1. Noyau d'une application linéaire : définition et propriétés.
- 2. Preuve : Notons Φ la fonction de répartition de la loi $\mathcal{N}(0,1)$. Alors :

$$\forall x \in \mathbb{R}, \quad \Phi(-x) = 1 - \Phi(x) \quad \text{et} \quad \Phi(0) = \frac{1}{2}.$$

Exercice 5

On note E l'espace vectoriel des fonctions polynômiales de degré inférieur ou égal à 3. l'application qui, à tout élément P de E associe la fonction polynômiale f(P) définie par :

$$\forall x \in \mathbb{R}, (f(P))(x) = xP'(x) - P(x).$$

- 1. Montrer que f est un endomorphisme de E.
- 2. Déterminer la matrice de f dans la base canonique de E.
- 3. Déterminer Ker(f) et Im(f).
- 4. f est-il un automorphisme de E?

Exercice 6

Soit n un entier supérieur ou égal à 3 et f la fonction définie sur $\mathbb R$ par : $f(x) = \begin{cases} 0 & \text{si } x < 1, \\ \frac{n-1}{x^n} & \text{si } x \geq 1. \end{cases}$

1. Vérifier que f est une densité.

On considère dorénavant une variable aléatoire X admettant f comme densité et on dit que X suit une loi W de paramètre n, notée W(n).

- 2. Déterminer la fonction de répartition F de X.
- 3. (a) Montrer que X a une espérance E(X) donnée par $E(X) = \frac{n-1}{n-2}$
 - (b) On appelle mode d'une variable à densité le réel x tel que f(x) soit maximal. Déterminer le mode de X.
 - (c) Déterminer le réel μ , appelé médiane de X, tel que $F(\mu) = \frac{1}{2}$.
- 4. Soient X_1 et X_2 deux variables aléatoires, définies sur un espace probabilisé (Ω, \mathcal{A}, P) , indépendante, et suivant toutes deux la loi W(n).

On considère les variables aléatoires $S = \max(X_1, X_2)$ et $I = \min(X_1, X_2)$ et on admet que Set I sont des variables aléatoires définies, elles aussi, sur (Ω, \mathcal{A}, P) .

- (a) Déterminer la fonction de répartition de F_S de S.
- (b) En déduire que S est une variable aléatoire à densité et donner une densité f_S de S.
- (c) En déduire que S a une espérance $E(S) = \frac{2(n-1)^2}{(n-2)(2n-3)}$.
- 5. Écrire la relation liant X_1, X_2, S et I et en déduire la valeur de E(I).
- 6. (a) Déterminer la fonction de répartition de F_I de I.
 - (b) En déduire que I suit aussi une loi du type W et préciser le paramètre de cette loi.
 - (c) Retrouver sans calcul l'espérance de I.