Correction - DM 13 —

A rendre le Jeudi 6 Février

Exercice 1 (EML 2016)

1. On calcule sans difficulté :

$$A^2 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

2. On résout l'équation :

$$aI + bA + cA^2 = 0 \Longleftrightarrow \begin{pmatrix} a+c & b & c \\ b & a+2c & b \\ c & b & a+c \end{pmatrix} = 0 \Longleftrightarrow a=b=c=0.$$

Donc (I, A, A^2) est libre.

3.
$$A^3 = A^2 \times A = \begin{pmatrix} 0 & 2 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix} = 2A.$$

4. On veut les valeurs propres et les sous-espaces propres de A.

D'après la question 3., on sait que le polynôme $X^3-2X=X(X^2-2)$ est un polynôme annulateur de A donc les seules valeurs propres possibles de A sont $0, -\sqrt{2}$ et $\sqrt{2}$; et donc $Sp(A) \subset \{0; \sqrt{2}; -\sqrt{2}\}.$

Puisqu'on doit calculer les sous-espaces propres, vérifions qu'elles sont bien valeurs propres en calculant les sous-espaces propres associés :

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_0(A) \Leftrightarrow AX = 0 \Leftrightarrow \begin{cases} x & +z = 0 \\ y & = 0 \\ 0 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -z \\ y = 0 \\ z = z \end{cases} \Leftrightarrow X = z \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

donc $E_0(A) = Vect \begin{bmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \end{bmatrix} = Vect \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \end{bmatrix}$. 0 est bien valeur propre de A car il y a au

moins un vecteur non nul dans le sous-espace propre associé.

De même

$$\begin{split} X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_{-\sqrt{2}}(A) & \Leftrightarrow \quad (A + \sqrt{2}I)X = 0 \Leftrightarrow \text{ (après pivot)} \quad \left\{ \begin{array}{c} x + \sqrt{2}y + z = 0 \\ y + \sqrt{2}z = 0 \\ 0 = 0 \end{array} \right. \\ & \Leftrightarrow \quad \left\{ \begin{array}{c} x = z \\ y = -\sqrt{2}z & \Leftrightarrow X = z \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{array} \right. \end{split}$$

$$\mathrm{donc}\ E_{-\sqrt{2}}(A) = Vect \left[\begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix} \right].$$

Enfin:

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_{\sqrt{2}}(A) \quad \Leftrightarrow \quad (A - \sqrt{2}I)X = 0 \Leftrightarrow \text{ (après pivot)} \quad \left\{ \begin{array}{l} x - \sqrt{2}y + z = 0 \\ y - \sqrt{2}z = 0 \\ 0 = 0 \end{array} \right.$$

$$\Leftrightarrow \quad \left\{ \begin{array}{l} x = z \\ y = \sqrt{2}z \\ z = z \end{array} \right. \iff X = z \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}$$

$$\mathrm{donc}\ E_{\sqrt{2}}(A) = Vect \left[\begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix} \right].$$

Enfin la famille $\begin{bmatrix} 1 \\ -\sqrt{2} \\ 1 \end{bmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}$] est une base de vecteurs propres de A respective-

ment associés aux valeurs propres $-\sqrt{2}$, 0 et $\sqrt{2}$ (à démontrer : card = 3 = dim + libre).

Donc en posant

$$P = \begin{pmatrix} 1 & 1 & 1 \\ -\sqrt{2} & 0 & \sqrt{2} \\ 1 & -1 & 1 \end{pmatrix} \quad \text{et} \quad D = \begin{pmatrix} -\sqrt{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$$

P est inversible et la formule de changement de base assure que $A = PDP^{-1}$.

5. On remarque que

$$\mathcal{E} = \{aI + bA + cA^2, (a, b, c) \in \mathbb{R}^3\} = Vect(I, A, A^2)$$

donc \mathcal{E} est bien un sous-espaces vectoriel de $\mathcal{M}_3(\mathbb{R})$, engendré par (I,A,A^2) qui est également libre (question 2) donc c'est une base de \mathcal{E} , et $dim(\mathcal{E}) = 3$.

6. Soit $M \in \mathcal{E}$, on la note $M = aI + bA + cA^2$, on a alors avec la question 4:

$$AM = aA + bA^2 + cA^3 = (a+2c)A + bA^2 \in Vect(A, A^2) \subset \mathcal{E}$$

donc AM est bien élément de \mathcal{E} .

7. On vient de voir que pour tout $M \in \mathcal{E}$, $f(M) \in \mathcal{E}$ donc f est une application de \mathcal{E} dans \mathcal{E} . Vérifions qu'elle est linéaire : pour tous $M_1, M_2 \in \mathcal{E}$ et tout λ réel on a :

$$f(\lambda M_1 + M_2) = A(\lambda M_1 + M_2) = \lambda A M_1 + A M_2 = \lambda f(M_1) + f(M_2)$$

donc f est linéaire de \mathcal{E} dans \mathcal{E} , c'est bien un endomorphisme de \mathcal{E} .

8. On calcule sans difficulté f(I) = A, $f(A) = A^2$ et $f(A^2) = A^3 = 2A$ (question 4) donc :

$$F = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix}.$$

9. On peut calculer F^3 et vérifier que $F^3=2F$ puis revenir à l'endomorphisme f. Mais on peut aussi calculer directement et sans difficulté : pour tout $M \in \mathcal{E}$,

$$f \circ f \circ f(M) = f \circ f(AM) = f(A^{2}M) = A^{3}M = 2AM = 2f(M).$$

10.

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in Ker(F) \iff FX = 0 \iff \begin{array}{c} x + 2z = 0 \\ y = 0 \end{array} \iff X = z \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$$

donc
$$Ker(F) = Vect \begin{bmatrix} \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$$
 et $Ker(f) = Vect(A^2 - 2I)$.

$$Im(f) = Vect(f(I), f(A), f(A^2)) = Vect(A, A^2, 2A) = Vect(A, A^2).$$

La famille (A, A^2) est génératrice de Im(f) et libre car constituée de deux vecteurs non colinéaires, c'est donc une base de Im(f).

11. (a) On peut résoudre cette équation en passant par les matrices associées dans la base (I, A, A^2) .

On cherche
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 tel que :

$$FX = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \Longleftrightarrow \begin{pmatrix} 0 \\ x + 2z \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

qui est absurde d'après le premier coefficient des deux vecteurs.

Donc l'équation $f(M) = I + A^2$ n'a pas de solution dans \mathcal{E} .

On peut aussi travailler directement sur f en remarquant que $I+A^2\notin Vect(A,A^2)=Imf$ donc l'équation n'a pas de solution.

(b) On résout de même l'équation, avec $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$:

$$FX = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \Longleftrightarrow \begin{pmatrix} 0 \\ x + 2z \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \Longleftrightarrow \begin{cases} x = 1 - 2z \\ y = 1 \end{cases} \iff X = \begin{pmatrix} 1 - 2z \\ 1 \\ z \end{pmatrix}$$

donc les matrices N de \mathcal{E} vérifiant $f(N) = A + A^2$ sont toutes les matrices de la forme :

$$N = (1 - 2z)I + A + zA^{2} = \begin{pmatrix} 1 - z & 1 & z \\ 1 & 1 & 1 \\ z & 1 & 1 - z \end{pmatrix}$$

avec $z \in \mathbb{R}$.

On peut aussi résoudre directement avec f en remarquant que A=f(I) et $A^2=f(A)$ pour écrire :

$$f(N) = A + A^2 \Leftrightarrow f(N) = f(I) + f(A) \Leftrightarrow f(N - I - A) = 0$$

$$\Leftrightarrow N - I - A \in Ker(f) \Leftrightarrow N - I - A = \lambda(A^2 - 2I)$$

avec $\lambda \in \mathbb{R}$, et enfin les solutions sont toutes les matrices de la forme :

$$N = I + A + \lambda(A^2 - 2I) = (1 - 2\lambda)I + A + \lambda A^2$$

qui est bien la même que celle trouvée par le calcul matriciel.

Exercice 2 (EDHEC 2006)

1. (a) Passons par le noyau de A:

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \ker(A) \quad \Leftrightarrow \quad AX = 0 \Leftrightarrow \begin{cases} 2x + 10y + 7z = 0 \\ x + 4y + 3z = 0 \\ -2x - 8y - 6z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x + 10y + 7z = 0 \\ -2y - z = 0 \quad (L_2 \leftarrow 2L_2 - L_1) \\ 2y + z = 0 \quad (L_3 \leftarrow L_3 + L_1) \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x + 10y - 14y = 0 \\ z = -2y \\ 0 = 0 \quad (L_3 \leftarrow L_3 + L_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 2y \\ z = -2y \end{cases} \Leftrightarrow X = \begin{pmatrix} 2y \\ y \\ -2y \end{pmatrix} = y \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}.$$

Donc ker(f) = Vect((2, 1, -2)) = Vect(u).

- (b) Comme $ker(f) \neq \{0\}$ alors f n'est pas injective donc pas bijective donc A n'est pas inversible.
- 2. (a) Soit v = (x, 1, z).

$$f(v) = u \iff A \begin{pmatrix} x \\ 1 \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \Leftrightarrow \begin{cases} 2x + 10 + 7z = 2 \\ x + 4 + 3z = 1 \\ -2x - 8 - 6z = -2 \end{cases}$$
$$\Leftrightarrow \begin{cases} 2x + 10 + 7z = 2 \\ x + 4 + 3z = 1 \\ 2 + z = 0 \end{cases} \Leftrightarrow \begin{cases} x = 3 \\ x = 3 \\ z = -2 \end{cases}$$

L'unique vecteur v vérifiant f(v) = u avec une deuxième coordonnée égale à 1 est donc :

$$v = (3, 1, -2).$$

(b) Soit w = (x, 1, z).

$$f(w) = v \Leftrightarrow A \begin{pmatrix} x \\ 1 \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} \Leftrightarrow \begin{cases} 2x + 10 + 7z = 3 \\ x + 4 + 3z = 1 \\ -2x - 8 - 6z = -2 \end{cases}$$
$$\Leftrightarrow \begin{cases} 2x + 10 + 7z = 3 \\ x + 4 + 3z = 1 \\ 2 + z = 1 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ x = 0 \\ z = -1 \end{cases}$$

L'unique vecteur w vérifiant f(w) = v avec une deuxième coordonnée égale à 1 est donc :

$$w = (0, 1, -1)$$

(c) La famille (u, v, w) comprend trois vecteurs de \mathbb{R}^3 qui est de dimension 3. Il suffit donc de démontrer que la famille est libre et on résout le système :

$$xu + yv + zw = 0 \Leftrightarrow x(2, 1, -2) + y(3, 1, -2) + z(0, 1, -1) = 0$$

$$\Leftrightarrow \begin{cases} 2x + 3y = 0 \\ x + y + z = 0 \\ -2x - 2y - z = 0 \end{cases} \Leftrightarrow \begin{cases} 2x + 3y = 0 \\ -y + 2z = 0 \\ y - z = 0 \end{cases} (L_2 \leftarrow 2L_2 - L_1)$$

$$\Leftrightarrow \begin{cases} 2x + 3y = 0 \\ -y + 2z = 0 \\ z = 0 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

Donc la famille est libre et $card(u, v, w) = 3 = dim(\mathbb{R}^3)$, donc c'est une base de \mathbb{R}^3 .

3. (a) On a $u \in kerf \Leftrightarrow f(u) = 0$, f(v) = u et f(w) = v donc

$$N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

(b) La formule de changement de base donne :

$$A = M_{\mathscr{B}}(f) = P_{\mathscr{B},\mathscr{B}'}M_{\mathscr{B}'}(f)P_{\mathscr{B}',\mathscr{B}} = PNP^{-1}.$$

On calcule

$$N^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \text{et} \qquad N^3 = 0.$$

Donc, pour tout $k \geq 3$:

$$N^k = N^3 N^{k-3} = 0$$
 et $A^k = P N^k P^{-1} = 0$.

- 4. (a) Par définition, $C_N = \{M \in \mathcal{M}_3(\mathbb{R}) \mid MN = NM\}$. On utilise la caractérisation des sousespaces vectoriels :
 - $C_N \subset \mathcal{M}_3(\mathbb{R})$.
 - $0 N = 0 = N 0 \text{ donc } O \in C_N$.
 - Soient $\lambda \in \mathbb{R}$ et $M, M' \in C_N$. Alors :

$$(\lambda M + M') N = \lambda MN + M'N = \lambda NM + NM' = N(\lambda M + M')$$

Donc $(\lambda M + M') \in C_N$.

 C_N est stable par combinaison linéaire et c'est un sous espace de $\mathcal{M}_3(\mathbb{R})$.

On explicite maintenant C_N (on aurait pu expliciter directement C_N , pour montrer que c'est un sev):

$$M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \in C_N \quad \Leftrightarrow \quad NM = MN \Leftrightarrow \begin{pmatrix} d & e & f \\ g & h & i \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & a & b \\ 0 & d & e \\ 0 & g & h \end{pmatrix}$$

$$\Leftrightarrow \quad \begin{cases} d = 0 & e = a & f = b \\ g = 0 & h = d & e = i \\ 0 = 0 & g = 0 & h = 0 \end{cases} \Leftrightarrow \begin{cases} d = 0 & e = a & f = b \\ g = 0 & h = 0 & e = i \\ 0 = 0 & g = 0 & h = 0 \end{cases}$$

$$\Leftrightarrow \quad M = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} \Leftrightarrow M = aI + bN + cN^2.$$

Donc $C_N = Vect(I, N, N^2)$ (et on retrouve que C_N est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$).

(b) On procède par équivalence :

$$M \in C_A \iff MA = AM$$

$$\Leftrightarrow MPNP^{-1} = PNP^{-1}M$$

$$\Leftrightarrow P^{-1}(MPNP^{-1})P = P^{-1}(PNP^{-1}M)P$$

$$\Leftrightarrow (P^{-1}MP)N = N(P^{-1}MP)$$

$$\Leftrightarrow P^{-1}MP \in C_N.$$

D'où, toujours par équivalence :

$$M \in C_A \iff \exists a, b, c \in \mathbb{R} \text{ tels que } P^{-1}MP = aI + bN + cN^2$$

 $\Leftrightarrow \exists a, b, c \in \mathbb{R}, \ M = P(P^{-1}MP)P^{-1} = aI + bPNP^{-1} + cPN^2P^{-1}$
 $\Leftrightarrow \exists a, b, c \in \mathbb{R}, \ M = aI + bA + cA^2 \Leftrightarrow M \in \text{Vect } (I, A, A^2).$

Donc $C_A = Vect(I, A, A^2)$.

Pour avoir la dimension, il reste à voir si la famille est libre. Pour cela, on réutilise N:

$$aI + bA + cA^2 = 0 \Leftrightarrow P(aI + bA + cA^2)P^{-1} = 0 \Leftrightarrow aI + bN + cN^2 = 0 \Leftrightarrow a = b = c = 0.$$

car la famille (I, N, N^2) est libre (évident car elle est échelonnée, ou bien on écrit le système d'équation).

La famille (I, A, A^2) est libre et génératrice donc base de C_A et $dim(C_A) = 3$.

Exercice 3 (EML 2001)

1. (a) On a:

$$t^{2}f_{n}(t) = \frac{e^{-t}t^{n+2}}{n!} = \frac{1}{n!}\frac{t^{n+2}}{e^{t}}.$$

Comme $t^{n+2} = o\left(e^{t}\right)$ (par croissances comparées), $\lim_{t \to +\infty} t^{2} f_{n}(t) = 0$.

 f_n est continue sur $]0,+\infty[$ donc l'intégrale est impropre en 0 et en $+\infty$.

Comme f_n admet une limite finie en 0^+ , l'intégrale est faussement impropre en 0.

On sait que $f_n(t) = o\left(\frac{1}{t^2}\right)$ et $\int_1^{+\infty} \frac{1}{t^2} dt$ converge (intégrale de Riemann de paramètre 2 > 1).

Par comparaison de fonctions positives, l'intégrale $\int_0^{+\infty} f_n(t) dt$ converge également.

(b) Soit $x \ge 0$. On a le tableau suivant :

$$+ \begin{vmatrix} \frac{t^n}{n!} & e^{-t} \\ \frac{t^{n-1}}{(n-1)!} & \longrightarrow -e^{-t} \end{vmatrix}$$

Comme les fonctions $t\mapsto -e^{-t}$ et $t\mapsto \frac{t^n}{n!}$ sont C^1 sur [0,x], on a par intégration par parties :

$$\int_0^x f_n(t)dt = \left[\frac{1}{n!}t^n e^{-t}\right]_0^x - \int_0^x -\frac{1}{(n-1)!}t^{n-1}e^{-t}dt$$
$$= -\frac{e^{-x}x^n}{n!} + \int_0^x f_{n-1}(t)dt.$$

(c) Par croissances comparées, $\lim_{x\to+\infty} \frac{e^{-x}x^n}{n!} = 0$. De plus, d'après la question 1.(a), on sait que $\int_0^{+\infty} f_n(t)dt$ converge, pour tout $n\in\mathbb{N}$.

En passant à la limite quand $x \to +\infty$ dans la relation obtenue à la question précédente, on obtient que :

$$\int_0^{+\infty} f_n(t)dt = \int_0^{+\infty} f_{n-1}(t)dt.$$

Posons $I_n = \int_0^{+\infty} f_n(t)dt$. On sait donc que (I_n) est une suite constante. De plus,

$$I_0 = \int_0^x f_0(t)dt = \int_0^x e^{-t}dt = \left[-e^{-t}\right]_0^x = 1 - e^{-x} \underset{x \to +\infty}{\to} 1.$$

Donc, pour tout $n \in \mathbb{N}$, $I_n = 1$.

(d) f_n est continue sauf éventuellement en 0 et positive sur \mathbb{R} . De plus,

$$\int_{-\infty}^{+\infty} f_n(t)dt = \int_{-\infty}^{0} f_n(t)dt + \int_{0}^{+\infty} f_n(t)dt = 0 + 1 = 1.$$

Ainsi, f_n est la densité de probabilité d'une variable aléatoire.

2. (a) X_n admet une espérance si l'intégrale $\int_{-\infty}^{+\infty} t f_n(t) dt$ converge (ce qui est équivalent à la convergence absolue). Or :

$$\int_{-\infty}^{+\infty} t f_n\left(t\right) dt = \int_{-\infty}^{0} 0 dt + \int_{0}^{+\infty} t \frac{e^{-t} t^n}{n!} dt = 0 + (n+1) \int_{0}^{+\infty} \frac{e^{-t} t^{n+1}}{(n+1)!} dt = (n+1),$$

d'après la question 1.(c). Donc X_n admet une espérance et $E(X_n) = n + 1$.

 X_n admet un moment d'ordre 2 si l'intégrale $\int_{-\infty}^{+\infty} t^2 f_n(t) dt$ converge (ce qui est équivalent à la convergence absolue). Or :

$$\int_{-\infty}^{+\infty} t^2 f_n(t) dt = \int_{-\infty}^{0} 0 dt + \int_{0}^{+\infty} t^2 \frac{e^{-t} t^n}{n!} dt$$

$$= 0 + (n+1)(n+2) \int_{0}^{+\infty} \frac{e^{-t} t^{n+2}}{(n+2)!} dt$$

$$= (n+1)(n+2) \int_{0}^{+\infty} f_{n+2}(t) dt$$

$$= (n+1)(n+2),$$

d'après la question 1.(c). Donc, d'après le théorème de transfert, X_n admet un moment d'ordre 2 et $E(X_n^2) = (n+1)(n+2)$. D'après la formule de Koenig-Huygens, X_n admet donc une variance et :

$$V(X_n) = (n+1)(n+2) - (n+1)^2 = (n+1)(n+2-1) = n+1.$$

(b) La fonction de répartition F_4 de X_4 est continue sur \mathbb{R} et dérivable là où f_4 est continue. Or f_4 est continue sur \mathbb{R}^* et en 0 (car $\lim_{x\to 0^-} f_4(x) = f_4(0) = \lim_{x\to 0^+} f_4(x)$). Donc f_4 est continue sur \mathbb{R} et F_4 est donc dérivable sur \mathbb{R} .

Pour $x \in]-\infty, 0]$, $F_4(x) = \int_{-\infty}^x 0 = 0$ donc F_4 est nulle.

En $0, F_4'(0) = f_4(0) = 0$ donc on a une tangente horizontale à l'origine.

Pour $x \in]0, +\infty[$, $F_4'(x) = f_4(x) = \frac{e^{-x}x^4}{4!} > 0$ donc F_4 est strictement croissante sur \mathbb{R}_+^* .

En $+\infty$, $F_4 \to 1$ donc on a une asymptote horizontale d'équation y = 1.

On déduit de tous ces éléments la courbe représentative de F_4 (on placera aussi les points donnés dans l'énoncer : $F_4(4) = 0.37$, $F_4(6) = 0.71$ et $F_4(8) = 0.90$).

Enfin, on a:

$$P(X_4 > 4) = 1 - P(X_4 \le 4) = 1 - F_4(4) \simeq 0.63$$

 $P(4 < X_4 \le 8) = P(X_4 \le 8) - P(X_4 \le 4) = F_4(8) - F_4(4) \simeq 0.90 - 0.37 \simeq 0.53$

- 3. (a) D'après le cours, pour tout réel $t>0,\,E\left(Y_{t}\right)=V\left(Y_{t}\right)=t.$
 - (b) Soient $t \in]0; +\infty[$ et $n \in \mathbb{N}^*$.

 $(Z_n \leq t)$ signifie que la *n*-ième voiture arrive au plus tard à l'instant t

Et comme le nombre de voiture va croissant avec le temps, cela signifie qu'à l'instant t, il y a eu au moins n voitures et donc $(Y_t \ge n)$.

Ainsi,
$$(Z_n \leq t) = (Y_t \geq n)$$
.

(c) La fonction de répartition de \mathbb{Z}_n est donc donnée par :

$$F(t) = P(Z_n \le t) = P(Y_t \ge n) = 1 - P(Y_t < n).$$

Or:

$$P(Y_t < n) = \sum_{k=0}^{n-1} P(Y_t = k) = \sum_{k=0}^{n-1} e^{-t} \frac{t^k}{k!}$$

Finalement, comme Z_n est une variable aléatoire à valeurs dans \mathbb{R}^+ ,

$$F(t) = \begin{cases} 1 - \sum_{k=0}^{n-1} e^{-t} \frac{t^k}{k!} & \text{si } t \ge 0\\ 0 & \text{si } t < 0 \end{cases}$$

- (d) Montrons d'abord que Z_n est à densité. F est C^1 sur $]-\infty,0[$ et sur $]0,+\infty[$. En 0,

 - $\lim_{t\to 0^+} F(t) = \lim_{t\to 0^+} \left(1 \sum_{k=0}^{n-1} e^{-t} \frac{t^k}{k!}\right) = 0$ par opérations sur les limites.

Donc $\lim_{t\to 0^-} F(t) = \lim_{t\to 0^+} F(t) = F(0)$ et F est continue en 0.

Finalement, F est continue sur \mathbb{R} et de classe C^1 sur \mathbb{R}^* . Donc Z_n est à densité.

Pour obtenir une densité de \mathbb{Z}_n , on dérive F là où elle est dérivable :

- Sur $]-\infty,0[, F'(t)=0.$
- Sur $]0, +\infty[$,

$$F'(t) = \left(1 - \sum_{k=0}^{n-1} e^{-t} \frac{t^k}{k!}\right)' = \left(1 - e^{-t} - \sum_{k=1}^{n-1} e^{-t} \frac{t^k}{k!}\right)'$$

$$= e^{-t} - \sum_{k=1}^{n-1} \frac{1}{k!} \left(ke^{-t}t^{k-1} - t^ke^{-t}\right) = e^{-t} - \sum_{k=1}^{n-1} \frac{k}{k!} e^{-t}t^{k-1} + \sum_{k=1}^{n-1} \frac{t^k}{k!} e^{-t}$$

$$= e^{-t} - \sum_{k=1}^{n-1} \frac{1}{(k-1)!} t^{k-1}e^{-t} + \sum_{k=1}^{n-1} \frac{t^k}{k!} e^{-t} = e^{-t} - \sum_{h=0}^{n-2} \frac{t^h e^{-t}}{h!} + \sum_{k=1}^{n-1} \frac{t^k}{k!} e^{-t}$$

$$= e^{-t} - \frac{t^0 e^{-t}}{0!} + \frac{t^{n-1}}{(n-1)!} e^{-t} = \frac{t^{n-1}}{(n-1)!} e^{-t}.$$

En prenant 0 comme valeur arbitraire positive en 0, Z_n admet f_{n-1} comme densité de probabilité.