- Interrogation

Interrogation du Jeudi 11 Octobre

La calculatrice est interdite. Durée : 0h45.

La qualité de la rédaction, la clarté et la précision des raisonnements interviendront pour une part importante dans l'appréciation des copies.

Exercice 1

Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, une seule des réponses proposées est exacte. On répondra directement sur le sujet, sans justification, en cochant la case correspondant à la réponse envisagée. Une bonne réponse rapporte 1 point, une mauvaise en retire 0,5 et l'absence de réponse ne rapporte et ne retire aucun point.

- 1. La forme développée de : $x (2x 1)^2$ est :
 - $-4x^2 + 5x 1$ $-4x^2 3x 1$ $-4x^2 3x + 1$ $-2x^2 + 5x 1$
- 2. Les racines du polynômes $P(x) = -x^2 + 3x + 4$ sont :
 - $\boxed{ 1 \text{ et } -4 } \boxed{ -1 \text{ et } -4 } \boxed{ -1 \text{ et } 4 } \boxed{ il \text{ n'y en a pas}}$
- 3. Le polynôme $P(x) = -x^2 + 2x + 2$ est strictement positif sur l'intervalle :
- 4. Le polynôme $P(x) = 2x^2 4x + 1$ est strictement croissant sur l'intervalle :
- 5. L'équation $\frac{x^2-9}{x^2+3x}=0$ a pour solution(s) réelle(s) :
 - $\boxed{3 \text{ et } -3 \boxed{3 \text{ ; 0 et } -3 \boxed{3 }}$ aucune solution réelle
- 6. L'inéquation $2x(x-3) \ge (x+2)(x-3)$ a pour ensemble-solution :
- 7. Le système $\begin{cases} x+y &= -1 \\ 2x-3y &= 4 \end{cases}$ a pour solution :
- 8. Un prix subit une augmentation de 10%, puis une baisse de 20%. La variation globale est alors :
- 9. On considère la fonction $f(x,y)=x\ln(y)-\mathrm{e}^{xy}$. Sa dérivée partielle $\frac{\partial f}{\partial x}$ est la fonction :

10. On considère la fonction $f(x,y)=x\ln(y)-\mathrm{e}^{xy}$. Sa dérivée partielle $\frac{\partial f}{\partial y}$ est la fonction :

Exercice 2

Une entreprise produisant un bien A constate que son coût total de fabrication pour une quantité $x \ge 0$ produite est défini par la relation : $C(x) = x^3 - 10x^2 + 8x + 100$.

- 1. (a) Quels sont les coûts fixes (c'est-à-dire les coûts inhérents à la production et correspondant à une quantité produite nulle) ?
 - (b) Calculer le coût moyen pour 100 unités produites.
 - (c) Calculer le coût marginal pour 200 unités produites (on utilisera l'approximation du coût marginal par le nombre dérivé).
- 2. Chaque produit A est vendu 10€.
 - (a) Justifier que la fonction de bénéfices B a pour expression $B(x) = -x^3 + 10x^2 + 2x 100$.
 - (b) Étudier les variations de la fonction B.
 - (c) En déduire :
 - i. pour quelle quantité de biens A vendus, l'entreprise fera des bénéfices. On arrondira les valeurs à l'unité.
 - ii. pour quelle quantité de biens A vendus, l'entreprise fera un bénéfice maximal. On arrondira les valeurs à l'unité.

Préciser le montant de ce bénéfice maximal (arrondir à l'unité).

Déterminer le coût moyen de fabrication d'un bien A dans ce cas.

- (d) Étudier la convexité de la fonction B. Préciser les éventuels points d'inflexion.
- (e) Tracer la courbe représentative de la fonction B (on prendra en abscisses un centimètre pour 2 produits A et en ordonnées un centimètre pour $10\ 000$ €).

Exercice 3

On suppose qu'un certain produit possède une fonction de demande en fonction du prix p exprimé en euros définie par $f(p) = \frac{300}{2p-7}$ pour $p \in]5; +\infty[$. On appelle E l'élasticité de f.

- 1. Déterminer E.
- 2. Interpréter la valeur de E obtenue.