– Sujet 2019-20

Juniper Green

Juniper Green est un jeu mathématique créé par Richard Porteous, enseignant à l'école de Juniper Green, auquel le jeu doit son nom.

1 Version à un joueur

Soit N est un entier naturel non nul. Les règles du jeu sont les suivantes :

- On choisit un nombre entier entre 1 et N.
- Une fois qu'un nombre a été choisi, il ne peut plus être joué.
- ullet A partir du second nombre, on doit choisir un nombre entre 1 et N qui est soit un diviseur soit un multiple du nombre précédent.
- On continue ainsi jusqu'à ne plus pouvoir jouer.

1.1 Le cas N = 20

On suppose ici que N=20. On joue ainsi avec la liste d'entiers suivante :

1									
11	12	13	14	15	16	17	18	19	20

En commençant avec le nombre 12, on peut par exemple faire la suite de coups :

$$12 \rightarrow 6 \rightarrow 3 \rightarrow 18 \rightarrow 9 \rightarrow 1 \rightarrow 8 \rightarrow 16 \rightarrow 4 \rightarrow 20 \rightarrow 5 \rightarrow 10 \rightarrow 2 \rightarrow 14 \rightarrow 7$$

avec le tableau des nombres choisis ou non en fin de partie :

X	X	3	**	×	%	X	8	※	M
11	X	13	\mathbb{M}	15	16	17	X	19	20

La partie s'arrête car il n'y a plus de diviseur ou de multiple de 7 non encore utilisé. Nous avons effectué au total 15 coups au cours de cette partie. Mais est-il possible de faire mieux ?

- 1. Justifier que les nombres 11, 13, 17 et 19 ne peuvent apparaître qu'au début ou à la fin d'une suite de coups.
- 2. En déduire qu'on ne peut pas faire plus de 17 coups au jeu du Juniper Green avec N=20.
- 3. Proposer une suite de coups de longueur 17.

1.2 Retour au cas général

Revenons au cas général où N est quelconque. On note a_N le nombre maximal de coups possibles à une partie de Juniper Green avec N nombres. On vient par exemple de démontrer que $a_{20} = 17$.

- 4. Déterminer les valeurs de a_N , pour $N=1,2,\ldots,10$.
- 5. Démontrer que la suite $(a_N)_{N>1}$ est croissante.
- 6. Démontrer que, si N tend vers $+\infty$, alors la suite $(a_N)_{N>1}$ tend également vers $+\infty$.

2 Version à deux joueurs

Les règles du jeu sont à peu près les mêmes que pour la version à un joueur :

- Deux joueurs A et B choisissent à tour de rôle un nombre entier entre 1 et N. Le joueur A commence.
- Une fois qu'un nombre a été choisi, il ne peut plus être joué.
- \bullet A partir du second nombre, on doit choisir un nombre entre 1 et N qui est soit un diviseur soit un multiple du nombre précédent.
- Le premier joueur qui ne peut plus jouer a perdu.

Voici un exemple de partie dans le cas N=20 où le joueur A perd car il ne peut plus jouer :

Joueur A	7		2		10		15		18		12		8		1		Perdu
Joueur B		14		20		5		3		6		4		16		11	

On cherche à savoir s'il existe une stratégie gagnante pour que le joueur A ou le joueur B remporte la partie à coup sûr.

- 7. Supposons que N=20.
 - (a) Pour quoi le joueur A est-il sûr de gagner la partie s'il commence en choisissant le 11, le 13, le 17 ou le 19 ?

Pour empêcher cette stratégie gagnante évidente du joueur A, on ajoute une règle du jeu supplémentaire :

- Le joueur A doit commencer par choisir un numéro pair.
- (b) Pourquoi le joueur A ne doit pas choisir le 2 pour commencer la partie ? Justifier.
- 8. Supposons que N=8.

Démontrer que, si le joueur A commence la partie en choisissant le 2, alors il peut gagner la partie à coup sûr.

9. Supposons que N=6.

Démontrer que, quelque soit le numéro pair choisi par le joueur A pour commencer la partie, il existe toujours une stratégie gagnante pour le joueur B.