TD1

Fonctions réelles d'une variable réelle

Rappels de cours

• Définitions de bases sur les fonctions : domaine de définition, de continuité, de dérivabilité, parité, périodicité, fonction dérivée, tangentes, convexité, variations, limites, bijection et bijection réciproque, courbe représentative.

Savoir faire: Comment faire l'étude d'une fonction?

• Théorème de la bijection. Bijection réciproque.

Savoir faire : Comment montrer qu'une fonction est bijective ? Comment déterminer sa bijection réciproque ?

- Définitions et propriétés des fonctions usuelles (partie entière, valeur absolue, exponentielle, logarithme, fonctions puissances, fonctions circulaires et circulaires réciproques, fonctions hyperboliques et hyperboliques réciproques).
- Continuité en un point, sur un intervalle.

Savoir faire : Comment prouver la continuité d'une fonction en un point ?

- Théorème des valeurs intermédiaires.
- Dérivabilité en un point, sur un intervalle. Lien entre continuité et dérivabilité.

Savoir faire : Comment prouver la dérivabilité d'une fonction en un point ?

- Théorème de Rolle, inégalités des accroissements finis.
- Fonctions convexes.
- Extension aux fonctions à valeurs complexes.

Fonctions usuelles

Exercice 1

Déterminer, pour chacune des fonctions suivantes, l'ensemble de définition, de continuité et de dérivabilité puis calculer la fonction dérivée.

$$x \mapsto \frac{x^2 - 4x + 3}{2x^2 - 7x + 6} \qquad x \mapsto \sin(x^2 + 3) \qquad x \mapsto \ln\left(\frac{x^2 - 4x + 3}{2x^2 - 7x + 6}\right) \qquad x \mapsto \frac{1 + 3\sin(x)}{1 + 2\cos(x)}$$

$$x \mapsto \sqrt{2\sin(5x) + 7} \qquad x \mapsto \ln(\ln(\ln(x))) \qquad x \mapsto \sqrt{1 - x^2}\tan(4x) \qquad x \mapsto \exp\left(-\frac{1}{1 + x^2}\right)$$

$$x \mapsto \sqrt{3 - \ln(x)} \qquad x \mapsto \exp\left(\frac{1}{\ln(x)}\right) \qquad x \mapsto \ln(e^{2x} + e^x - 6) \qquad x \mapsto x^x$$

Exercice 2

Étudier la nature des branches infinies dans les cas suivants et donner une allure de leur tracé au voisinage de ∞ . Dans le cas où \mathcal{C}_f admet une droite asymptote oblique, on précisera la position de \mathcal{C}_f par rapport à cette asymptote au voisinage de ∞ .

1.
$$f(x) = \frac{3x^3 + 2x^2 + 5}{x^2 + x + 1}$$
 aux voisinages de $\pm \infty$.

2.
$$f(x) = \sqrt{x^2 + x}$$
 aux voisinages de $\pm \infty$.

3.
$$f(x) = x + 1 + \sqrt{x^2 + 3}$$
 au voisinage de $+\infty$.

4.
$$f(x) = x + \ln\left(\frac{3x+1}{x+2}\right)$$
 aux voisinages de $\pm\infty$.

5.
$$f(x) = \frac{4e^x + x + 2}{e^x - 1}$$
 aux voisinages de $\pm \infty$.

Exercice 3

On considère la fonction f définie par :

$$f(x) = x + 1 + \frac{x - 1 + \ln(x)}{x^2}.$$

On notera C_f la courbe représentative de f.

- 1. Déterminer l'ensemble de définition \mathcal{D}_f de f. Est-ce que f est continue et dérivable sur \mathcal{D}_f ?
- 2. Déterminer $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to +\infty} f(x)$. Préciser si \mathcal{C}_f admet une asymptote verticale ou horizontale.
- 3. On introduit la fonction auxiliaire g définie sur $]0, +\infty[$ par $g(x) = x^3 x + 3 2\ln(x)$ et la fonction polynôme P définie par $P(x) = 3x^3 x 2$.
 - (a) Factoriser le polynôme P.
 - (b) En déduire le signe de P sur \mathbb{R} .
 - (c) Exprimer g' en fonction de P puis dresser le tableau de variation de g.
 - (d) Montrer que, pour tout x > 0, g(x) > 0.
- 4. Étude de f:
 - (a) Vérifier que la dérivée de f peut s'écrire, pour tout $x \in \mathcal{D}_f$, sous la forme : $f'(x) = \frac{g(x)}{r^3}$.
 - (b) En déduire les variations de f.

(c) Montrer que l'équation f(x) = 0 admet une unique solution sur \mathcal{D}_f , que l'on notera α . Vérifier alors que $\frac{1}{2} < \alpha < 1$.

5. Étude de l'asymptote oblique à C_f :

- (a) Montrer que la droite Δ d'équation y = x + 1 est asymptote oblique à C_f en $+\infty$.
- (b) On pose, pour tout x > 0, $h(x) = x 1 + \ln(x)$. Étudier les variations de h.
- (c) Calculer h(1). En déduire le signe de h(x) sur \mathbb{R}_{+}^{*} .
- (d) En déduire le signe de f(x) (x+1), puis la position relative de \mathcal{C}_f et de Δ .
- 6. Tracer C_f et Δ dans un même repère orthonormé.

Exercice 4

Résoudre les équations d'inconnue réelle x suivantes :

(a) $\sin(x) = \sin(2x)$

(b) $\cos(x) = \sin(3x)$

(c) $\cos(x) - \sin(x) = 1$

(d) $2\cos^2(x) - \sin(x) = 1$

(e) $\cos^4(x) + \sin^4(x) = 1$

(f) $\sin(x) + \sin(2x) + \sin(3x) = 0$

Exercice 5

- 1. Soit $\theta \in \mathbb{R}$. Exprimer $\cos(3\theta)$ et $\sin(7\theta)$ en fonction de $\cos(\theta)$ et $\sin(\theta)$.
- 2. Linéariser les polynômes trigonométriques suivants :

$$\sin^3(x)$$
; $\cos^5(x)$; $\sin(5x)\cos(6x)$; $\sin(5x)\cos(6x)$; $\cos^4(x)\sin^3(x)$.

Exercice 6

- 1. Soit $\theta \in \mathbb{R}$. Exprimer $\cos(5\theta)$ en fonction de $\cos(\theta)$.
- 2. En déduire la valeur de $\cos\left(\frac{\pi}{10}\right)$.

Exercice 7

- 1. Simplifier l'expression $\frac{\cos(p) \cos(q)}{\sin(p) + \sin(q)}$
- 2. En déduire la valeur de $\tan\left(\frac{\pi}{24}\right)$.

Exercice 8

Soit x un réel tel que $x \notin \pi + 2\pi \mathbb{Z}$. On pose $t = \tan(\frac{x}{2})$. Montrer que :

$$\cos(x) = \frac{1 - t^2}{1 + t^2}$$
 et $\sin(x) = \frac{2t}{1 + t^2}$.

Exercice 9

Étudier les fonctions suivantes afin de tracer leurs courbes représentatives :

(a)
$$f(t) = \arcsin(\sin(t)) + \arccos(\cos(t))$$
 (b) $g(t) = \arccos\left(\sqrt{\frac{1 + \cos(t)}{2}}\right)$

1. Montrer que, pour tout $x \in \mathbb{R}^*$,

$$\arctan(x) + \arctan\left(\frac{1}{x}\right) = \text{signe}(x) \times \frac{\pi}{2}.$$

2. Montrer que, pour tout $x \in [-1, 1]$,

$$\arccos(x) + \arcsin(x) = \frac{\pi}{2}.$$

Exercice 11

Résoudre dans $\mathbb R$ les équations suivantes :

- 1. $\arctan(x+1) + \arctan(x-1) = \frac{\pi}{4}$.
- 2. $\arctan(x) + \arctan(2x) = \frac{\pi}{4}$.

Exercice 12

- 1. On pose $A = \arctan(2) + \arctan(5) + \arctan(8)$.
 - (a) Justifier que $\frac{3\pi}{4} < A < \frac{3\pi}{2}$.
 - (b) Calculer tan(A).
 - (c) En déduire A.
- 2. Résoudre dans $\mathbb R$ l'équation :

$$\arctan(x-3) + \arctan(x) + \arctan(x+3) = \frac{5\pi}{4}.$$

Exercice 13

Justifier que, pour tout $x \in]0,1[$,

$$\frac{1}{2} \le x^x (1 - x)^{1 - x}$$

Exercice 14

Montrer que :

(a)
$$\forall x \ge 0, sh(x) \ge x$$

 (b) $\forall x \in \mathbb{R}, ch(x) \ge 1 + \frac{1}{2}x^2$

Exercice 15

- 1. Vérifier que, pour tout a réel, sh(2a) = 2sh(a)ch(a).
- 2. Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$. Exprimer à l'aide de la fonction sinus hyperbolique le produit

$$\prod_{k=1}^{n} ch\left(\frac{x}{2^{k}}\right).$$

1. Démontrer, en précisant le domaine de validité, la relation :

$$\tan(x) = \frac{1}{\tan(x)} - \frac{2}{\tan(2x)}.$$

2. En déduire la limite de la suite (S_n) définie par :

$$\forall n \in \mathbb{N}, \ S_n = \sum_{k=0}^n \frac{1}{2^k} \tan\left(\frac{1}{2^k} \frac{\pi}{4}\right).$$

Exercice 17

- 1. Soit $k \in \mathbb{N}$. Calculer $\arctan(k+1) \arctan(k)$.
- 2. En déduire la limite de la suite (S_n) définie par :

$$\forall n \in \mathbb{N}, \ S_n = \sum_{k=0}^n \arctan\left(\frac{1}{k^2 + k + 1}\right).$$

Exercice 18

Soit $n \in \mathbb{N}$. Calculer les sommes suivantes :

1.
$$C_n = \sum_{k=0}^n \cos(kx)$$
 et $S_n = \sum_{k=0}^n \sin(kx)$.

2.
$$C_n = \sum_{k=0}^n \binom{n}{k} \cos(kx)$$
 et $S_n = \sum_{k=0}^n \binom{n}{k} \sin(kx)$.

3.
$$C_n = \sum_{k=0}^{n} k \cos(kx)$$
 et $S_n = \sum_{k=0}^{n} k \sin(kx)$.

4.
$$C_n = \sum_{k=0}^{n} ch(kx)$$
 et $S_n = \sum_{k=0}^{n} sh(kx)$.

Exercice 19

Soient f et g deux fonctions définies par $f(x) = \ln\left(\frac{x}{x-1}\right)$ et $g(x) = \frac{e^x}{e^x - 1}$.

- 1. Déterminer le domaine de définition \mathcal{D}_f de f et le domaine de définition \mathcal{D}_g de g.
- 2. (a) Étudier les variations de f sur $]1, +\infty[$.
 - (b) En déduire que f réalise une bijection de $]1,+\infty[$ dans un intervalle à déterminer.
- 3. (a) Étudier les variations de g sur $]0, +\infty[$.
 - (b) En déduire que g réalise une bijection de $]0, +\infty[$ dans un intervalle à déterminer.
- 4. Démontrer que $g_{|]0,+\infty[}$ est la bijection réciproque de $f_{|]1,+\infty[}$. Que peut-on en déduire sur les courbes représentatives de f et g?
- 5. Tracer l'allure de la courbe représentative de f puis celle de g.

Soit f une fonction définie par $f(x) = e^x - e^{-x}$.

- 1. Étudier les variations de f.
- 2. En déduire que f réalise une bijection de \mathbb{R} dans un intervalle à déterminer.
- 3. Déterminer l'expression de la bijection réciproque f^{-1} de f.

Exercice 21

- 1. Montrer que la fonction $x \mapsto th(x)$ réalise une bijection de \mathbb{R} vers un intervalle I à préciser.
- 2. On note argth sa bijection réciproque.

Montrer que argth est dérivable sur I et exprimer sa dérivée.

3. En étudiant l'équation y = th(x) d'inconnue x réelle, exprimer argth(y) à l'aide des fonctions usuelles. Retrouver l'expression de sa dérivée.

Limites et continuité

Exercice 22

Étudier les limites suivantes :

(1)
$$\lim_{x \to +\infty} 3x^2 - e^x$$

(2)
$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + x + 1}}{x + 1}$$
(5)
$$\lim_{x \to +\infty} \frac{1}{x} \lfloor x \rfloor$$

(3)
$$\lim_{x \to +\infty} xe^{-\sqrt{x}}$$

(1)
$$\lim_{x \to +\infty} 3x^2 - e^x$$
(4)
$$\lim_{x \to +\infty} \frac{x \cos(e^x)}{x^2 + 1}$$

$$(5) \lim_{x \to +\infty} \frac{1}{x} \lfloor x \rfloor$$

$$(6) \lim_{x \to +\infty} (x^2 + x\sin(x))$$

Exercice 23

Étudier les limites suivantes :

(1)
$$\lim_{x \to 0^+} \frac{1}{x} + \ln(x)$$

(4) $\lim_{x \to 0} \frac{\sin(x)}{x}$

$$(2) \lim_{x \to 0^+} x^{\sqrt{x}}$$

(3)
$$\lim_{x \to 0^+} |\ln(x)|^{\frac{1}{\ln(x)}}$$

$$(4) \lim_{x \to 0} \frac{\sin(x)}{x}$$

$$(5) \lim_{x \to 0^+} x \sin(\ln(x))$$

$$(6) \lim_{x \to 0^+} \frac{1}{x} \lfloor x \rfloor$$

Exercice 24

Étudier les limites suivantes :

$$(1) \lim_{x \to 1^+} \ln(x) \ln(\ln(x))$$

$$(2) \lim_{x \to \pi/2} \frac{\sin(2x)}{\pi - 2x}$$

$$(3) \lim_{x \to 1} \frac{x - 1}{\ln(x)}$$

Exercice 25

- 1. Montrer que :
 - (a) cos n'a pas de limite en $+\infty$.
 - (b) $\frac{1}{x}\sin\left(\frac{1}{x}\right)$ n'a pas de limite en 0.
- 2. Les fonctions suivantes ont-elles des limites en 0 ?

(a)
$$x \mapsto \sin\left(\frac{1}{x}\right)$$

(b)
$$x \mapsto x \sin\left(\frac{1}{x}\right)$$

(a)
$$x \mapsto \sin\left(\frac{1}{x}\right)$$
 (b) $x \mapsto x \sin\left(\frac{1}{x}\right)$ (c) $x \mapsto \cos(x)\cos\left(\frac{1}{x}\right)$

Étudier la continuité des fonctions suivantes :

$$f_{1}(x) = \begin{cases} \frac{1}{x^{2} + 1} & \text{si } x < 0, \\ e^{-x} & \text{si } x \ge 0. \end{cases} \qquad f_{2}(x) = \begin{cases} 1 - x & \text{si } x < 1, \\ \ln(x) & \text{si } x \ge 1. \end{cases} \qquad f_{3}(x) = \begin{cases} 0 & \text{si } x \le 0, \\ \frac{\ln(x)}{x} & \text{si } x > 0. \end{cases}$$
$$f_{4}(x) = \begin{cases} \frac{x^{3} - 8}{x - 2} & \text{si } x \ne 2, \\ 12 & \text{si } x = 2. \end{cases} \qquad f_{5}(x) = \begin{cases} xe^{\frac{1}{x}} & \text{si } x < 0, \\ 0 & \text{si } x = 0, \\ \ln(x) & \text{si } x > 0. \end{cases} \qquad f_{6}(x) = \begin{cases} \frac{|x|}{x} & \text{si } x \ne 0, \\ 0 & \text{si } x = 0. \end{cases}$$

Exercice 27

Déterminer l'ensemble de définition et de continuité des fonctions suivantes, puis chercher si elles admettent un prolongement par continuité aux bornes de leur ensemble de définition :

$$f_1(x) = \ln(\ln(x)) \qquad f_2(x) = e^{-1/x^2} \qquad f_3(x) = \frac{2}{x-2} - \frac{3}{(x-2)^2}$$

$$f_4(x) = \frac{x^2}{|x|} \qquad f_5(x) = \ln(x)^{\ln(x)} \qquad f_6(x) = \frac{1}{e^{1/x} + 1}$$

$$f_7(x) = (x-1)^x \qquad f_8(x) = \frac{x \ln(x)}{x+1} \qquad f_9(x) = \frac{1}{\ln(x)}$$

Exercice 28

Pour chacune des fonctions suivantes, déterminer les réels a et b pour qu'elles soient continues :

$$f(x) = \begin{cases} e^x & \text{si } x > 0, \\ ax + b & \text{si } 0 \ge x \ge -1, \\ \frac{2+x}{x} & \text{si } -1 > x \end{cases} \qquad g(x) = \begin{cases} \ln(x) + a & \text{si } x \ge 1, \\ 1 - x & \text{si } 1 > x \ge -1, \\ \frac{b}{x^2 + x + 1} & \text{si } -1 > x \end{cases}$$

Exercice 29

Soit $f:I\to\mathbb{R}$ et $g:I\to\mathbb{R}$ deux fonctions continues. Montrer la continuité de la fonction $\sup(f,g)$ définie sur I par :

$$\sup(f,g)(x) = \max(f(x),g(x)).$$

Exercice 30

Donner un exemple:

- 1. de fonction continue sur $[0, +\infty[$ ni minorée, ni majorée.
- 2. de fonction continue sur $]0, +\infty[$ sans limite en 0.
- 3. de fonction définie sur \mathbb{R} continue en aucun point.

Exercice 31

Montrer que la fonction $f(x) = \lim_{p \to +\infty} \left(\lim_{n \to +\infty} |\cos(p!\pi x)|^n \right)$ est continue en aucun point de \mathbb{R} .

Exercice 32

Soit $f:[a,b]\to\mathbb{R}$ continue.

- 1. Montrer que si $f([a,b]) \subset [a,b]$ alors f admet un point fixe.
- 2. Montrer que si $[a,b] \subset f([a,b])$ alors f admet un point fixe.

Soit $f:[0,1]\to\mathbb{R}$ une fonction continue telle que f(0)=f(1).

Montrer qu'il existe $x_1, x_2 \in [0, 1]$ tels que $f(x_1) = f(x_2)$ et $x_1 - x_2 = \frac{1}{2}$.

Exercice 34

Soit I un intervalle et $f: I \to \mathbb{R}$ une fonction continue telle que, pour tout $x \in I$, $(f(x))^2 = 1$. Montrer que f = 1 ou f = -1.

Exercice 35

Un randonneur parcourt 20 km en 5 heures.

- 1. Montrer qu'il existe un intervalle d'une heure pendant lequel il a fait exactement 4 km.
- 2. Il prétend que, sur n'importe quel intervalle de 2 heures, il a parcouru 10 km. Est-ce possible ?

Exercice 36

Soit $f, g : [a, b] \to [a, b]$ deux fonctions continues vérifiant $f \circ g = g \circ f$. Montrer qu'il existe x_0 dans [a, b] tel que $f(x_0) = g(x_0)$.

Exercice 37

Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues en 0 vérifiant :

$$\forall x \in \mathbb{R}, \ f(2x) = f(x).$$

Exercice 38

Déterminer les fonctions continues $f: \mathbb{R} \to \mathbb{R}$ vérifiant :

$$\forall (x, y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y).$$

Exercice 39

Déterminer les fonctions continues $f: \mathbb{R} \to \mathbb{R}$ vérifiant :

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = f(x)f(y).$$

Dérivabilité

Exercice 40

On considère les fonctions suivantes :

$$g(x) = \begin{cases} x \ln(x) & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases} \quad \text{et} \quad h(x) = \begin{cases} x^3 \ln(x) & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$

Étudier la continuité et la dérivabilité des fonctions g et h.

Pour quels $n \in \{0, 1, 2, 3\}$, la fonction f_n définie sur \mathbb{R} par

$$f_n: x \mapsto \begin{cases} x^n \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$$

est-elle continue, dérivable, de classe C^1 ?

Exercice 42

Soit $n \in \mathbb{N}$. Vérifier que les dérivées n-ièmes des fonctions cos et sin s'expriment :

$$\frac{d^n}{dx^n}(\cos(x)) = \cos\left(x + n\frac{\pi}{2}\right) \quad \text{ et } \quad \frac{d^n}{dx^n}(\sin(x)) = \sin\left(x + n\frac{\pi}{2}\right)$$

Exercice 43

Soit $n \in \mathbb{N}$. Calculer les dérivées n-ièmes des fonctions suivantes :

(a)
$$x \mapsto x^p \text{ (avec } p \in \mathbb{N})$$

(b)
$$x \mapsto \frac{1}{x}$$

(c)
$$x \mapsto (x^2 - x + 1)e^{-x}$$

(d)
$$x \mapsto \cos^3(x)$$

(e)
$$x \mapsto \cos(x)e^x$$

(f)
$$x \mapsto \frac{1}{x^2 - 1}$$

Exercice 44

Déterminer les points d'annulations de la dérivée n-ième de la fonction arctan.

Exercice 45

Soit φ la fonction définie sur $\mathbb R$ par :

$$\varphi(x) = \left\{ \begin{array}{ll} e^{-1/x} & \text{si } x > 0 \\ 0 & \text{sinon} \end{array} \right.$$

Montrer que φ est de classe C^{∞} sur \mathbb{R} .

Exercice 46

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par :

$$f(x) = \begin{cases} e^x & \text{si } x > 0\\ ax^2 + bx + c & \text{sinon} \end{cases}$$

Peut-on déterminer a, b, c pour que f soit de classe C^2 ? de classe C^3 ?

Exercice 47

Soit $f: I \to \mathbb{R}$ une application n fois dérivable. On suppose que f s'annule en au moins n+1 points distincts de I.

Montrer que la dérivée n-ième de f s'annule au moins une sur I.

Exercice 48

Soit P un polynôme.

Montrer que l'équation $P(x) = \exp(x)$ n'admet qu'un nombre fini de solutions dans \mathbb{R} .

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable telle que $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty$.

Montrer qu'il existe $c \in \mathbb{R}$ tel que f'(c) = 0.

Exercice 50

Soit $f, g : [a, b] \to \mathbb{R}$ deux fonctions dérivables. On suppose que la dérivée de g ne s'annule pas.

- 1. Montrer que $g(a) \neq g(b)$.
- 2. Montrer qu'il existe $c \in]a, b[$ tel que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Exercice 51

1. Soient $f, g : [a, b] \to \mathbb{R}$ deux fonctions dérivables telles que f(a) = g(a) = 0. On suppose que, pour tout $x \in]a, b[, g(x) \neq 0$ et $g'(x) \neq 0$.

Montrer que, si
$$\lim_{x\to a^+} \frac{f'(x)}{g'(x)} = \ell$$
, alors $\lim_{x\to a^+} \frac{f(x)}{g(x)} = \ell$.

2. Utiliser la question 1 pour calculer $\lim_{x\to 0} \frac{\sin(x)}{x}$, $\lim_{x\to 0} \frac{1-\cos(x)}{x^2}$, $\lim_{x\to 0} \frac{x-\sin(x)}{x^3}$.

Exercice 52

Soit $f:[a,b]\to\mathbb{R}$ une fonction dérivable.

- 1. On suppose que f'(a) < 0 et f'(b) > 0. Montrer que la dérivée de f s'annule.
- 2. Plus généralement, on considère y un réel strictement compris entre f'(a) et f'(b). Montrer que la dérivée de f prend la valeur y.

Exercice 53

Soit $f:[0,+\infty[\to\mathbb{R}$ une fonction bornée et dérivable. On suppose que la dérivée f' admet une limite ℓ en $+\infty$. Déterminer la valeur de celle-ci.

Exercice 54

Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable sur \mathbb{R} telle que f et f' admettent des limites finies en $+\infty$. Montrer que la limite de f' en $+\infty$ est nulle.

Exercice 55

1. Soient p, q > 0 tels que $\frac{1}{p} + \frac{1}{q} = 1$. En utilisant la concavité de ln, montrer que :

$$\forall u, v \ge 0, \ uv \le \frac{u^p}{p} + \frac{v^q}{q}.$$

2. En déduire que :

$$\forall x, y > 0, \ \frac{2}{\frac{1}{x} + \frac{1}{y}} \le \sqrt{xy} \le \frac{x+y}{2}.$$

Soit f une fonction convexe de classe C^1 sur un intervalle I. Montrer que f admet un minimum absolu en un point intérieur de I si et seulement si la dérivée de f s'annule en ce point.

Exercice 57

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ convexe et majorée sur \mathbb{R} . Montrer que f est constante.
- 2. Le résultat reste-t-il valable su on suppose seulement f définie, convexe et majorée sur \mathbb{R}^+ ?

Exercice 58

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe.

- 1. On suppose que $\lim_{x\to +\infty} f(x) = 0$. Montrer que f est positive.
- 2. On suppose que f présente une droite asymptote en $+\infty$. Étudier la position relative de la courbe représentative de f par rapport à son asymptote.