TD12

Calcul différentiel

Dérivabilité

Exercice 1

Étudier la continuité et la dérivabilité des fonctions suivantes en x_0 :

$$f_1(x) = x\sqrt{x} \text{ et } x_0 = 0$$

$$f_2(x) = (x-1)\sqrt{x^2 - 1} \text{ et } x_0 = 1$$

$$f_3(x) = \sqrt{x^2 - 1} \text{ et } x_0 = -1$$

$$f_4(x) = \frac{x}{1 + |x|} \text{ et } x_0 = 0$$

$$f_5(x) = \begin{cases} \frac{1}{\ln(x)} & \text{si } x \in]0, 1[\\ 0 & \text{si } x = 0 \end{cases}$$

$$f_6(x) = \begin{cases} \exp\left(-\frac{1}{x}\right) & \text{si } x > 0\\ 0 & \text{si } x \le 0 \end{cases}$$

$$f_6(x) = \begin{cases} \exp\left(-\frac{1}{x}\right) & \text{si } x > 0\\ 0 & \text{si } x \le 0 \end{cases}$$

Exercice 2

1. A l'aide des taux d'accroissements de exp en 0 et ln en 1, montrer que :

(a)
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$
 (b) $\lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1$.

- 2. Avec le changement de variables h = x 1, déduire de la limite 1.(b) que : $\lim_{h \to 0} \frac{\ln(1+h)}{h} = 1$.
- 3. Déduire des deux questions précédentes les limites suivantes :

(a)
$$\lim_{x \to 0} \frac{\sqrt{x}}{e^x - 1}$$
 (b) $\lim_{x \to 0} \frac{e^{x^2} - 1}{x \ln(1 + x)}$ (c) $\lim_{x \to 1} \frac{x^2 - 1}{\ln(x)}$

Exercice 3

On considère la fonction $f(x) = \frac{\ln(x)}{x - \ln(x)}$.

- 1. Montrer que, pour tout $x \in \mathbb{R}_+^*$, $x \ln(x) > 0$.
- 2. En déduire l'ensemble de définition \mathcal{D}_f de f puis justifier que f est continue et dérivable sur \mathcal{D}_f .
- 3. Montrer que f est prolongeable par continuité en 0. On notera encore f le prolongement obtenu.
- 4. Montrer que f est dérivable (à droite) en 0 et que $f'_d(0) = 0$.

Exercice 4

On considère la fonction $f(x) = \frac{x}{1 + e^{1/x}}$.

- 1. Donner l'ensemble de définition, de continuité et de dérivabilité de f.
- 2. Montrer que f est prolongeable par continuité en 0. On notera encore f le prolongement obtenu.

1

3. Étudier la dérivabilité de f en 0.

Exercice 5

On considère la fonction $f(x) = |x^2 - 1|$.

- 1. Justifier que f est continue sur \mathbb{R} et dérivable sur $\mathbb{R} \setminus \{\pm 1\}$.
- 2. Montrer que f est dérivable à droite en 1 et déterminer l'équation de la demi-tangente à droite en 1 à la courbe représentative de f.
- 3. Même question à gauche en 1.

- 1. Justifier que la fonction $f(x) = x\sqrt{x-x^2}$ est continue sur [0,1] et dérivable sur [0,1]. Est-elle dérivable en 1 ? en 0 ? Expliciter f'.
- 2. Justifier que les fonctions suivantes sont continues sur \mathbb{R}_+ et dérivables sur \mathbb{R}_+^* .

$$g(x) = \begin{cases} x \ln(x) & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases} \quad \text{et} \quad h(x) = \begin{cases} x^3 \ln(x) & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$

Sont-elles dérivables en 0 ? Si oui, calculer la dérivée correspondante.

Exercice 7

Après avoir déterminé l'ensemble de définition, de continuité et de dérivabilité des fonctions suivantes, calculer leur fonction dérivée :

$$f_1(x) = e^{3x^2 - 1} \qquad f_2(x) = x \ln(x) - x \qquad f_3(x) = 3^x$$

$$f_4(x) = x^x \qquad f_5(x) = \ln(\ln(x)) \qquad f_6(x) = \sqrt{x^2 + 5x - 6}$$

$$f_7(x) = (x^2 + 1)^{\frac{5}{2}} \qquad f_8(x) = \frac{2e^x}{3x - 1} \qquad f_9(x) = \frac{3}{\sqrt{2x^2 + 1}}$$

Exercice 8

Soit $n \in \mathbb{N}$. Calculer la dérivée n-ième des fonctions suivantes :

$$f(x) = \frac{1}{x}$$
 $g(x) = e^{2x+1}$ $h(x) = \ln(1+x)$.

Exercice 9

On considère les fonctions f et g définies par :

$$f(x) = \frac{1}{1 - x^2}$$
 et $g(x) = \frac{x}{(3x + 1)(2 - x)}$.

- 1. Déterminer deux réels a et b tels que $f(x) = \frac{a}{1-x} + \frac{b}{1+x}$. En déduire la dérivée n-ième de f.
- 2. Déterminer deux réels a et b tels que $g(x) = \frac{a}{3x+1} + \frac{b}{2-x}$. En déduire la dérivée n-ième de g.

Exercice 10

On considère la fonction $f(x) = xe^{2x}$.

1. Donner les valeurs des six réels $a_0, a_1, a_2, b_0, b_1, b_2$ vérifiant, pour tout $x \in \mathbb{R}$,

$$f(x) = (a_0x + b_0)e^{2x},$$
 $f'(x) = (a_1x + b_1)e^{2x},$ $f''(x) = (a_2x + b_2)e^{2x}.$

2. Montrer par récurrence que, pour tout entier naturel n, il existe deux réels a_n et b_n tels que :

2

$$\forall x \in \mathbb{R}, \, f^{(n)}(x) = (a_n x + b_n)e^{2x}.$$

On précisera les relations entre a_{n+1} , b_{n+1} et a_n , b_n .

- 3. Déterminer l'expression de a_n en fonction de n.
- 4. Montrer que la suite $(c_n)_{n\in\mathbb{N}}$, définie pour tout entier naturel n par $c_n = \frac{b_n}{2^n}$, est arithmétique.
- 5. Donner les expressions de c_n puis de b_n en fonction de n.
- 6. En déduire, pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}$, l'expression de $f^{(n)}(x)$.

Exercice 11

Soit f la fonction définie sur \mathbb{R} par : $f(x) = (x^2 + x)e^{2x-1}$.

1. Montrer par récurrence que, pour tout $n \in \mathbb{N}$, il existe trois réels a_n , b_n et c_n telles que :

$$\forall x \in \mathbb{R}, \ f^{(n)}(x) = (a_n x^2 + b_n x + c_n)e^{2x-1}.$$

2. Soit
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$
 et $B = A - 2I_3$.

Calculer B^2 , B^3 puis montrer que : $\forall n \in \mathbb{N}, A^n = 2^n I_3 + n 2^{n-1} B + n(n-1) 2^{n-3} B^2$.

3. A l'aide des questions précédentes, déterminer $f^{(n)}$.

Étude de fonctions

Exercice 12

- 1. Déterminer l'ensemble D des réels x tel que $e^x e^{-x} > 0$.
- 2. On définit la fonction f sur D par $f(x) = \ln(e^x e^{-x})$. On note \mathcal{C}_f sa courbe représentative dans un repère orthonormé.
 - (a) Étudier le sens de variation de f et donner les limites de f aux bornes de D.
 - (b) Montrer l'existence d'un unique réel a vérifiant f(a) = 0, et donner la valeur exacte de a.
 - (c) Montrer que le coefficient directeur de la tangente à C_f au point d'abscisse a vaut $\sqrt{5}$.

Exercice 13

On définit la fonction f sur \mathbb{R} par : $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

- 1. Étudier le sens de variation de f, ses limites aux bornes de son ensemble de définition et tracer enfin sa courbe représentative dans un repère orthonormé.
- 2. Montrer que, quel que soit le réel x, on a : $f'(x) = 1 (f(x))^2$.
- 3. (a) Montrer que f est bijective de \mathbb{R} sur]-1,1[.
 - (b) Montrer que f^{-1} est dérivable sur]-1,1[et donner une expression de $(f^{-1})'(x)$.

Exercice 14

On note f la fonction définie par : f(0) = 1, f(1) = 0 et $\forall x \in]0, 1[\cup]1, +\infty[$, $f(x) = \exp\left(\frac{1}{\ln(x)}\right)$.

1. (a) Montrer que f est continue en 0 et continue à gauche en 1.

- (b) Est-elle continue à droite en 1?
- 2. (a) Déterminer les limites suivantes : $\lim_{x\to 0^+} \frac{1}{x\ln(x)}$ et $\lim_{x\to 0^+} \frac{\exp(1/\ln(x)) 1}{1/\ln(x)}$. Pour cette dernière limite, on pourra poser $X = \frac{1}{\ln(x)}$.
 - (b) La fonction f est-elle dérivable en 0 ?
- 3. (a) Déterminer les limites suivantes : $\lim_{x \to 1^-} \frac{\ln(x)}{x-1}$ et $\lim_{x \to 1^-} \frac{1}{\ln(x)} \exp\left(\frac{1}{\ln(x)}\right)$.
 - (b) En déduire que f est dérivable à gauche en 1, et donner $f'_g(1)$.
- 4. Dresser le tableau de variation de f. On précisera la valeur de f en e^1 et sa limite en $+\infty$.
- 5. Tracer la courbe représentative de f.

Fonctions convexes

Exercice 15

Prouver à l'aide d'arguments de convexité les inégalités suivantes :

- 1. $\forall x > 1$, $\ln(x) \le x 1$.
- $2. \ \forall x \in \mathbb{R}, \ e^x \ge 1 + x.$
- 3. $\forall x \in [1, e], \ln(x) \ge \frac{x 1}{e 1}$.

Exercice 16

- 1. Montrer que la fonction $f:]1, +\infty[\to \mathbb{R}$ définie par $f(x) = \ln(\ln(x))$ est concave.
- 2. En déduire l'inégalité suivante :

$$\forall x, y \in]1, +\infty[, \ln\left(\frac{x+y}{2}\right) \ge \sqrt{\ln(x)\ln(y)}.$$

Exercice 17

Étudier la convexité des foncions suivantes sur leur domaine de définition respectif (on étudiera également les éventuels points d'inflexions) puis tracer leurs courbes représentatives :

$$f(x) = x^3 + 3x^2 - 9x + 5$$
, $g(x) = \frac{x^2}{x+1}$, $h(x) = e^{-x^2}$, $i(x) = \ln\left(\frac{x-1}{x+1}\right)$.

Exercice 18

Soit f la fonction définie par f(0) = 0 et, pour tout $x \in]0,1[, f(x) = \frac{1}{\ln(x)}]$

- 1. Étudier la continuité et la dérivabilité de f sur [0,1[.
- 2. Déterminer les variations de f sur]0,1[.
- 3. Étudier la convexité de f sur]0,1[.
- 4. Montrer que f possède un unique point d'inflexion et déterminer la tangente de f en ce point.
- 5. Tracer l'allure de la courbe représentative de f.

On définit sur $]0, +\infty[$ la fonction f par $f(x) = \sqrt{x} \ln(x)$.

- 1. Justifier que f est continue et dérivable sur $]0, +\infty[$.
- 2. Montrer que f est prolongeable par continuité en 0, en précisant la valeur en 0 de la fonction prolongée. On appellera toujours f la fonction prolongée, définie sur $[0, +\infty[$.
- 3. Étudier la dérivabilité de f en 0. Quelle est l'allure de la courbe représentative de f au point d'abscisse x = 0?
- 4. Dresser le tableau de variation de f, en précisant valeurs et limites aux bornes.
- 5. Étudier la convexité de f (on étudiera également les éventuels points d'inflexions).
- 6. Tracer l'allure de la courbe représentative de f.

Suites récurrentes $u_{n+1} = f(u_n)$

Exercice 20

Soit $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie par $u_0>0$ et par la relation : $\forall n\in\mathbb{N},\ u_{n+1}=\sqrt{\frac{u_n+1}{2}}$.

1. (a) On pose $f(x) = \sqrt{\frac{x+1}{2}}$.

Étudier les variations de f et tracer sa courbe représentative.

- (b) Tracer sur le même graphique la droite y = x.
- (c) Tracer toujours sur le même graphique les premiers termes de la suite lorsque $u_0 = \frac{1}{2}$, lorsque $u_0 = 1$ et lorsque $u_0 = 4$.
- 2. Que se passe-t-il si $u_0 = 1$? Retrouver ce résultat par le calcul.
- 3. On suppose que $0 < u_0 < 1$.
 - (a) Montrer que pour tout entier $n \in \mathbb{N}$, u_n est bien défini et $u_n \in]0,1[$.
 - (b) Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante.
 - (c) Que peut-on conclure?
- 4. On suppose que $u_0 > 1$.
 - (a) Montrer que pour tout entier $n \in \mathbb{N}$, u_n est bien défini et $u_n > 1$.
 - (b) Montrer que $(u_n)_{n\in\mathbb{N}}$ est décroissante.
 - (c) Que peut-on conclure?

Exercice 21

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0 > 1$ et par la relation de récurrence : $\forall n \in \mathbb{N}, u_{n+1} = 1 + \ln(u_n)$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, u_n est bien défini et $u_n > 1$.
- 2. Étudier les variations de la fonction $f(x) = \ln(x) x + 1$ sur $]1, +\infty[$ puis en déduire son signe.
- 3. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est monotone.
- 4. En déduire qu'elle converge et déterminer sa limite.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et par la relation : $\forall n\in\mathbb{N}, u_{n+1}=u_n-3+e^{u_n}$.

- 1. Montrer que, pour tout $n \in \mathbb{N}$, $u_n < \ln(3)$.
- 2. Montrer que $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante.
- 3. Montrer que $(u_n)_{n\in\mathbb{N}}$ est divergente et que $\lim_{n\to+\infty} u_n = -\infty$.

Exercice 23

On considère la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\geq 0$ et par la relation : $\forall n\in\mathbb{N}, u_{n+1}=u_n^2+\frac{3}{16}$.

- 1. (a) Étudier les variations de la fonction $f(x) = x^2 + \frac{3}{16}$ et le signe de f(x) x.
 - (b) Quelles sont les limites finies possibles de $(u_n)_{n\in\mathbb{N}}$?
- 2. On suppose que $u_0 \in [0, \frac{1}{4}]$.
 - (a) Montrer que pour tout $n \in \mathbb{N}$, $u_n \in [0, \frac{1}{4}]$.
 - (b) Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante.
 - (c) Quelle est la nature de la suite $(u_n)_{n\in\mathbb{N}}$ (si elle est convergente, préciser sa limite) ?
- 3. On suppose que $u_0 \in]\frac{1}{4}, \frac{3}{4}[$.
 - (a) Montrer que pour tout $n \in \mathbb{N}$, $u_n \in]\frac{1}{4}, \frac{3}{4}[$.
 - (b) Montrer que $(u_n)_{n\in\mathbb{N}}$ est décroissante.
 - (c) Quelle est la nature de la suite $(u_n)_{n\in\mathbb{N}}$ (si elle est convergente, préciser sa limite) ?
- 4. On suppose que $u_0 = \frac{3}{4}$. Que peut-on dire de la suite $(u_n)_{n \in \mathbb{N}}$?
- 5. On suppose que $u_0 > \frac{3}{4}$.
 - (a) Montrer que pour tout $n \in \mathbb{N}$, $u_n > \frac{3}{4}$.
 - (b) Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante.
 - (c) Quelle est la nature de la suite $(u_n)_{n\in\mathbb{N}}$ (si elle est convergente, préciser sa limite)?

Exercice 24

On considère la fonction $h(x) = e^{-x} + 1$ et la suite $(u_n)_{n \in \mathbb{N}}$ définie par :

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = h(u_n).$

- 1. Montrer que l'équation h(x) = x admet une unique solution sur l'intervalle [1,2] notée α .
- 2. Étudier les variations de h et montrer que $h([1,2]) \subset [1,2]$ (on pourra utiliser que $h(1) \simeq 1,4$ et $h(2) \simeq 1,1$).
- 3. Montrer que, pour tout entier $n \in \mathbb{N}$, $1 \le u_n \le 2$.
- 4. Montrer que, pour tout réel $x \in [1, 2], |h'(x)| \le \frac{1}{e}$.

- 5. Montrer que, pour tout entier $n \in \mathbb{N}$, $|u_{n+1} \alpha| \leq \frac{1}{e}|u_n \alpha|$.
- 6. En déduire que, pour tout entier $n \in \mathbb{N}$, $|u_n \alpha| \leq \frac{1}{e^n}$.
- 7. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge et préciser sa limite.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=4$ et la relation : $\forall n\in\mathbb{N},\ u_{n+1}=4+\frac{\ln(u_n)}{\Lambda}$.

- 1. Soit $f(x) = 4 + \frac{\ln(x)}{4}$. Étudier la fonction f et montrer que $[1, e^2]$ est stable par f.
- 2. Montrer que f possède un unique point fixe dans l'intervalle $[1,e^2]$ noté α .
- 3. Montrer que, pour tout $n \in \mathbb{N}$, u_n existe et appartient à l'intervalle $[1, e^2]$.
- 4. (a) Montrer que, pour tout $x, y \in [1, e^2], |f(y) f(x)| \le \frac{1}{4}|y x|$.
 - (b) En déduire que : $\forall n \in \mathbb{N}, |u_{n+1} \alpha| \leq \frac{1}{4} |u_n \alpha|.$
 - (c) Montrer alors que : $\forall n \in \mathbb{N}, |u_n \alpha| \leq \left(\frac{1}{4}\right)^{n-1}$.
 - (d) En déduire $\lim_{n\to+\infty} u_n$.
- 5. (a) Déterminer un entier N tel que : $\forall n \geq N, |u_n \alpha| \leq 10^{-6}$.
 - (b) En déduire un programme en langage Scilab permettant d'obtenir une approximation de α à 10^{-6} près.

Exercice 26

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par : $u_0\in\mathbb{R}_+$ et $\forall n\in\mathbb{N},\ u_{n+1}=\frac{2u_n}{3u_n+1}$. On pose $f(x)=\frac{2x}{3x+1}$.

- 1. (a) Étudier les variations de f sur \mathbb{R}_+ et montrer que : $\forall x \geq \frac{1}{3}, |f'(x)| \leq \frac{1}{2}$.
 - (b) Déterminer le signe de f(x) x sur \mathbb{R}_+ ainsi que les points fixes de f.
 - (c) Montrer que $\left[0,\frac{1}{3}\right]$ et $\left[\frac{1}{3},+\infty\right[$ sont des intervalles stables par f.
- 2. On suppose dans cette question que $u_0 \in \left[0, \frac{1}{3}\right]$.
 - (a) Montrer que, pour tout $n \in \mathbb{N}$, u_n est bien définie et $0 \le u_n \le \frac{1}{3}$.
 - (b) En déduire la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) En déduire la convergence de $(u_n)_{n\in\mathbb{N}}$ ainsi que sa limite.
- 3. On suppose dans cette question que $u_0 \in \left[\frac{1}{3}, +\infty\right[$.
 - (a) Montrer que, pour tout $n \in \mathbb{N}$, u_n est bien défini et que $u_n \ge \frac{1}{3}$.
 - (b) En déduire la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) En déduire la convergence de $(u_n)_{n\in\mathbb{N}}$ ainsi que sa limite.

- (d) Montrer que : $\forall n \in \mathbb{N}, \left| u_{n+1} \frac{1}{3} \right| \leq \frac{1}{2} \left| u_n \frac{1}{3} \right|.$
- (e) En déduire que : $\forall n \in \mathbb{N}, \left| u_n \frac{1}{3} \right| \leq \frac{1}{2^n} \left| u_0 \frac{1}{3} \right|.$
- (f) Retrouver $\lim_{n\to+\infty} u_n$.

On pose $f(x) = \frac{e^x}{x+2}$ et on définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0 = 0$ et la relation : $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

- 1. Étudier les variations de f et de f' sur [0,1].
- 2. Montrer que l'équation f(x) = x admet une unique solution dans l'intervalle [0,1] notée α .
- 3. Montrer que, pour tout $n \in \mathbb{N}$, $u_n \in [0, 1]$.
- 4. Montrer que : $\forall n \in \mathbb{N}, |u_{n+1} \alpha| \leq \frac{2}{3} |u_n \alpha|$.
- 5. En déduire que : $\forall n \in \mathbb{N}, |u_n \alpha| \le \left(\frac{2}{3}\right)^n$.
- 6. En déduire $\lim_{n\to+\infty} u_n$.

Exercice 28

Partie 1

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \exp\left(-\frac{x^2}{2}\right)$.

- 1. Justifier que f est de classe C^2 sur \mathbb{R} .
- 2. Étudier la parité de f. Que peut-on en déduire sur la courbe représentative de f?
- 3. Déterminer f' et dresser le tableau de variation de f. Préciser les limites en $+\infty$ et en $-\infty$.
- 4. Déterminer les points d'inflexions de f et les équations des tangentes en chacun des points d'inflexions.
- 5. Tracer la courbe représentative de f. Donnée numérique: $e^{-1/2} \simeq 0.61$.

Partie 2

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=0$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=f(u_n)$.

- 6. Montrer que l'équation f(x) = x, d'inconnue $x \in [0,1]$, admet une seule solution, notée λ .
- 7. (a) Montrer que, pour tout $x \in [0, 1], f(x) \in [0, 1].$
 - (b) En déduire que, pour tout $n \in \mathbb{N}$, $u_n \in [0, 1]$.
- 8. (a) Montrer que, pour tout $x \in [0,1], |f'(x)| \le \frac{1}{\sqrt{e}}$.
 - (b) En déduire que, pour tout $n \in \mathbb{N}$, $|u_{n+1} \lambda| \leq \frac{1}{\sqrt{e}} |u_n \lambda|$.
 - (c) En déduire que, pour tout $n \in \mathbb{N}$, $|u_n \lambda| \leq \left(\frac{1}{\sqrt{e}}\right)^n$.
- 9. (a) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.
 - (b) Déterminer un entier N tel que, pour tout $n \ge N$, $|u_n \lambda| \le 10^{-9}$.