Déterminants

On a toujours $\mathbb{K} = \mathbb{Q}$ ou \mathbb{R} ou \mathbb{C} .

Rappels de cours

- Définition du déterminant :
 - par la formule du développement par rapport à une ligne ou une colonne;
 - par la formule impliquant le groupe symétrique S_n ;
 - comme une certaine forme multi-linéaire alternée.
- Équivalence des définitions.
- Déterminant de la tranposée. Effet des opérations élémentaires sur les lignes et les colonnes.

Savoir faire : Comment calculer le déterminant d'une matrice?

- Déterminant du produit. Lien entre Det(M) et inversibilité de M.
- Définition du déterminant d'un endomorphisme.
- Définition du déterminant d'une famille de vecteurs.
- Définition de la comatrice. Une formule avec la comatrice et le déterminant.

Savoir faire : Comment calculer l'inverse d'une matrice à l'aide du déterminant?

• Système linéaire de Cramer. Solutions d'un système linéaire de Cramer avec les déterminants.

Déterminant d'une matrice carrée

Exercice 1

Calculer les déterminants suivants :

a)
$$\begin{vmatrix} 3 & -1 & 2 \\ 1 & 1 & -3 \\ 2 & 2 & 1 \end{vmatrix}$$
 c) $\begin{vmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{vmatrix}$ e) $\begin{vmatrix} 1 & \cos(a) & \cos(2a) \\ \cos(a) & \cos(2a) & \cos(3a) \\ \cos(2a) & \cos(3a) & \cos(4a) \end{vmatrix}$ b) $\begin{vmatrix} 3 & -4 & 1 \\ 2 & -1 & 5 \\ 1 & -1 & 1 \end{vmatrix}$ d) $\begin{vmatrix} x+2 & 2x+3 & 3x+4 \\ 2x+3 & 3x+4 & 4x+5 \\ 3x+5 & 5x+8 & 10x+17 \end{vmatrix}$ f) $\begin{vmatrix} a-b-c & 2b & 2c \\ 2a & b-c-a & 2c \\ 2a & 2b & c-a-b \end{vmatrix}$

Exercice 2

- 1. Rappeler les formules pour obtenir les solutions d'un système linéaire de Cramer à l'aide des déterminants.
- 2. Résoudre chacun des systèmes suivants :

$$\begin{cases} 3x - 6y + z = 7 \\ x + 2y + z = 5 \\ -2x + 5y - 2z = -1 \end{cases} \qquad \begin{cases} mx + y + z = 1 \\ x + my + z = m \\ x + y + mz = m^2 \end{cases} \qquad \begin{cases} x + y + z = m + 1 \\ mx + y + (m - 1)z = m \\ x + my + z = 1 \end{cases}$$

Exercice 3 (Déterminants par blocs)

Le but de cet exercice est de démontrer la formule suivante :

$$\det \begin{pmatrix} \begin{pmatrix} M_1 & \star & \dots & \star \\ 0 & M_2 & \star & \vdots \\ \vdots & 0 & \ddots & \star \\ 0 & \dots & 0 & M_p \end{pmatrix} = \det(M_1) \times \det(M_2) \times \dots \times \det(M_p).$$

où M_1, \ldots, M_p sont des matrices carrées placées sur la diagonale, il y a des 0 partout dans les blocs notés 0, et les coefficients dans les blocs notés \star sont quelconques.

1. Déterminant d'une matrice triangulaire par blocs : cas p=2.

On considère une matrice $M \in \mathcal{M}_{n+m}(\mathbb{K})$, carrée de taille n+m, qui s'écrit comme :

$$M = \begin{pmatrix} A & \star \\ 0_{m,n} & D \end{pmatrix},$$

où $A \in \mathcal{M}_{n,n}(\mathbb{K})$, $D \in \mathcal{M}_{m,m}(\mathbb{K})$ et $0_{m,n}$ est la matrice nulle de $\mathcal{M}_{m,n}(\mathbb{K})$. La notation \star signifie que les coefficients dans cette partie-là de la matrice sont quelconques.

- (a) Supposons $A = I_n$. Montrer que dans ce cas $\det(M) = \det(D)$ (on pourra développer par rapport à la première colonne et faire une récurrence sur n).
- (b) Supposons $D = I_m$. Montrer que dans ce cas det(M) = det(A) (on pourra développer par rapport à la dernière ligne et faire une récurrence sur m).
- (c) Supposons A inversible. Vérifier que :

$$\begin{pmatrix} A & B \\ 0_{m,n} & D \end{pmatrix} = \begin{pmatrix} A & 0_{n,m} \\ 0_{m,n} & I_m \end{pmatrix} \begin{pmatrix} I_n & A^{-1}B \\ 0_{m,n} & D \end{pmatrix}$$

et en déduire la formule à démontrer dans ce cas.

- (d) Supposons que A n'est pas inversible.
 - i. Montrer qu'il existe un élément non-nul $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{K})$ dans le noyau de A.
 - ii. Montrer que l'élément $\begin{pmatrix} x_1\\ \vdots\\ x_n\\ 0\\ \vdots\\ 0 \end{pmatrix} \in \mathcal{M}_{n+m,1}(\mathbb{K}) \text{ appartient au noyau de }M.$
 - iii. En déduire que M n'est pas inversible et en déduire la formule à démontrer dans ce

2. Déterminant d'une matrice triangulaire par blocs : cas général.

- (a) Montrer la formule dans le cas général par récurrence sur $p \geq 2$.
- (b) En déduire la formule analogue pour les matrices triangulaires inférieures par blocs.

Exercice 4 (Déterminants circulants)

On considère *n* nombres complexes $a_0, a_1, \ldots, a_{n-1}$, on pose $\omega = \exp(\frac{2i\pi}{n})$, puis :

$$\forall p \in \mathbb{N}, \quad S_p = a_0 + a_1 \omega^p + a_2 \omega^{2p} + \dots + a_{n-1} (\omega^p)^{n-1}.$$

On désigne par A et M les deux matrices d'ordre n suivantes :

$$A = \begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_{n-1} \\ a_{n-1} & a_0 & a_1 & \dots & a_{n-2} \\ a_{n-2} & a_{n-1} & a_0 & \dots & a_{n-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_1 & a_2 & a_3 & \dots & a_0 \end{pmatrix} \quad ; \quad M = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & (\omega^{n-1})^{n-1} \end{pmatrix}.$$

- 1. Calculer M^2 et en déduire son déterminant.
- 2. Calculer AM et MAM en fonction de S_0, \ldots, S_{n-1} , et en déduire le déterminant de A.

Exercice 5

Calculer le déterminant de la matrice $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ où $\forall i, j \in [|1, n|], \quad a_{i,j} = \min(i, j).$

Exercice 6

Calculer $\det(A)$ où $A = (|i-j|)_{i,j \in [|1,n|]}$.

Exercice 7

Si $A \in \mathcal{M}_3(\mathbb{R})$ est une matrice antisymétrique, montrer que $\det(A) = 0$. Généraliser.

Exercice 9

Soient $a, b \in \mathbb{R}$, $n \in \mathbb{N}$ et $M_n \in \mathcal{M}_{2n}(\mathbb{R})$ telle que :

$$M_n = \begin{pmatrix} a & 0 & \dots & \dots & 0 & b \\ 0 & a & 0 & 0 & b & 0 \\ 0 & 0 & a & b & 0 & 0 \\ 0 & 0 & b & a & 0 & 0 \\ 0 & b & 0 & 0 & a & 0 \\ b & 0 & \dots & \dots & 0 & a \end{pmatrix}.$$

Montrer que $det(M_n) = (a^2 - b^2)^n$.

Exercice 10

Soient $a,b \in \mathbb{K}$ avec $a \neq b$. Pour tout $n \geq 1$, on considère le déterminant $n \times n$ suivant :

$$D_n = \begin{vmatrix} a+b & ab & 0 & 0 & \cdots & 0 & 0 \\ 1 & a+b & ab & 0 & \cdots & 0 & 0 \\ 0 & 1 & a+b & ab & 0 & 0 \\ 0 & 0 & 1 & a+b & ab & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 & a+b & ab \\ 0 & 0 & \cdots & 0 & 1 & a+b \end{vmatrix}$$

- 1. Calculer D_1 , D_2 et D_3 .
- 2. Exprimer D_4 en fonction de D_3 et D_2 , puis D_n en fonction de D_{n-1} et D_{n-2} pour tout $n \ge 4$.
- 3. En déduire que $D_n = \frac{b^{n+1} a^{n+1}}{b-a}$, pour tout $n \ge 1$.

Exercice 11

Calculer les déterminants $n \times n$ suiva

$$A_n = \begin{vmatrix} 2\cos\theta & 1 & 0 & 0 \\ 1 & 2\cos\theta & \ddots & 0 \\ 0 & \ddots & \ddots & 1 \\ 0 & 0 & 1 & 2\cos\theta \end{vmatrix} \quad ; \quad B_n = \begin{vmatrix} 1+x^2 & x & 0 & 0 \\ x & 1+x^2 & \ddots & 0 \\ 0 & \ddots & \ddots & x \\ 0 & 0 & x & 1+x^2 \end{vmatrix}$$

Soient $a, b, c \in \mathbb{K}$. On souhaite calculer le déterminant $n \times n$ défini par $D_n = \begin{vmatrix} b & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & c \\ b & & b & c \end{vmatrix}$.

1. Montrer que le déterminant suivant est un polynôme de degré au plus 1 :

$$D_n = \begin{vmatrix} a+X & c+X & \dots & c+X \\ b+X & a+X & \ddots & \vdots \\ \vdots & \ddots & \ddots & c+X \\ b+X & \dots & b+X & a+X \end{vmatrix}.$$

2. Calculer $D_n(-b)$ et $D_n(-c)$ et en déduire D_n pour tout $b \neq c$ et b = c.

Exercice 13 (Déterminant de Vandermonde)

On considère n+1 éléments $a_0, a_1, \ldots, a_n \in \mathbb{K}$ et le déterminant suivant :

$$D(a_0, a_1, \dots, a_n) = \begin{vmatrix} 1 & a_0 & a_0^2 & \dots & a_0^n \\ 1 & a_1 & a_1^2 & \dots & a_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & a_{n-1} & a_{n-1}^2 & \dots & a_{n-1}^n \\ 1 & a_n & a_n^2 & \dots & a_n^n \end{vmatrix}.$$

On donne trois méthodes pour calculer ce déterminant.

1. Méthode 1.

Calculer $D(a_0, a_1, \ldots, a_n)$ à l'aide d'opérations élémentaires sur les colonnes et les lignes (on pourra par exemple remplacer C_n par $C_n - x_1C_{n-1}$, puis remplacer C_{n-1} par $C_{n-1} - x_1C_{n-2}$, et ainsi de suite jusqu'à C_2 par $C_2 - x_1C_1$ puis développer par rapport à la première ligne).

2. Méthode 2. On considère le déterminant suivant :

$$D(a_0, a_1, \dots, X) = \begin{vmatrix} 1 & a_0 & a_0^2 & \dots & a_0^n \\ 1 & a_1 & a_1^2 & \dots & a_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & a_{n-1} & a_{n-1}^2 & \dots & a_{n-1}^n \\ 1 & X & X^2 & \dots & X^n \end{vmatrix}.$$

- (i) Justifier que $D(a_0, a_1, \dots, X)$ est un polynôme.
- (ii) Déterminer la factorisation de $D(a_0, a_1, ..., X)$ dans $\mathbb{K}[X]$.
- (iii) Conclure.
- 3. **Méthode 3.** On considère les polynômes de Lagrange $L_0, \ldots, L_n \in \mathbb{K}_n[X]$ associés à $a_0, a_1, \ldots, a_n \in \mathbb{K}$. Montrer que :

$$D(a_0, a_1, \ldots, a_n) = det_{\mathcal{B}}(L_0, L_1, \ldots, L_n)$$

où \mathcal{B} désigne la base canonique de $\mathbb{K}_n[X]$.

Exercice 14

Soient $A, A' \in \mathcal{M}_n(\mathbb{R})$. On suppose qu'il existe $P \in GL_n(\mathbb{C})$ tels que

$$A' = P^{-1}AP$$
 (on dit alors que les matrices sont semblables dans \mathbb{C}).

Montrer qu'il existe $Q \in GL_n(\mathbb{R})$ tel que $A' = Q^{-1}AQ$, i.e. que A et A' sont semblables dans \mathbb{R} .

Déterminant d'une famille de vecteurs

Exercice 15

Utiliser un déterminant pour montrer que les familles suivantes sont des bases de E:

1.
$$E = \mathbb{R}^3$$
 et $e_1 = (1, 2, 3), e_2 = (2, 3, 1), e_3 = (3, 2, 1)$;

2.
$$E = \mathbb{R}_2[X]$$
 et $P_1 = X^2$, $P_2 = X(X - 1)$, $P_3 = (X - 1)^2$;

3.
$$E = \mathbb{C}^3$$
 et $e_1 = (1+i, 1, i)$, $e_2 = (i, -1, 1-i)$, $e_3 = (-2+i, 0, -i)$.

Exercice 16

Donner une condition nécessaire et suffisante sur a, b, c pour que $((1, \cos(a), \cos^2(a)), (1, \cos(b), \cos^2(b)),$ $(1,\cos(c),\cos^2(c))$ soit une base de \mathbb{R}^3 .

Exercice 17

Établir, si a_0, \ldots, a_n sont n+1 scalaires distincts, que les n+1 polynômes définis pour tout $0 \le k \le n$ par $P_k(X) = (X - a_k)^n$ forment une base de $\mathbb{K}_n[X]$.

Exercice 18
Soient
$$a_1, ..., a_n \in \mathbb{R}$$
. Calculer
$$\begin{vmatrix}
\cos(a_1 + a_1) & \cos(a_1 + a_2) & ... & \cos(a_1 + a_n) \\
\cos(a_2 + a_1) & \cos(a_2 + a_2) & ... & \cos(a_2 + a_n) \\
\vdots & \vdots & & \vdots \\
\cos(a_n + a_1) & \cos(a_n + a_2) & ... & \cos(a_n + a_n)
\end{vmatrix}$$

Déterminant d'un endomorphisme

Exercice 19

Soit $A \in \mathcal{M}_2(\mathbb{K})$. Montrer que l'application :

$$u_A: \left\{ \begin{array}{ccc} \mathcal{M}_2(\mathbb{K}) & \to & \mathcal{M}_2(\mathbb{K}) \\ M & \mapsto & AM \end{array} \right.$$

est un endomorphisme de $\mathcal{M}_2(\mathbb{K})$. Montrer que $\det(u_A) = (\det(A))^2$.

Exercice 20

Soit φ l'application qui, à tout polynôme réel P de degré ≤ 2 , associe Q défini par :

$$\forall x \in \mathbb{R}, \quad Q(x) = \int_{x}^{x+1} P(t)dt.$$

Montrer que $\varphi \in \mathcal{L}(\mathbb{R}_2[X])$ et calculer $\det(\varphi)$.

Exercice 21

Soit ψ l'application définie par :

$$\psi: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{K}) & \to & \mathcal{M}_n(\mathbb{K}) \\ M & \mapsto & {}^tM \end{array} \right.$$

Montrer que ψ est un endomorphisme de $\mathcal{M}_n(\mathbb{K})$ et calculer $\det(\psi)$.

Exercice 22

Soit f l'endomorphisme de \mathbb{R}^4 canoniquement associé à :

$$A = \frac{1}{2} \begin{pmatrix} 5 & -3 & 3 & -3 \\ -1 & 3 & 1 & -1 \\ 1 & -1 & 5 & 1 \\ -1 & 1 & -1 & 7 \end{pmatrix}.$$

- 1. On pose $u_1 = (1, 1, 0, 0), u_2 = (0, 1, 1, 0), u_3 = (0, 0, 1, 1), u_4 = (-1, 0, 0, 1).$ Montrer que $\mathcal{B} = (0, 0, 1, 1), u_4 = (0, 0, 1, 1$ (u_1, u_2, u_3, u_4) est une base de \mathbb{R}^4 .
- 2. Déterminer $B = Mat_{\mathcal{B}}(f)$.
- 3. Déterminer det(B), det(f) et det(A).