Travaux dirigés 5. Applications linéaires et matrices

Exercice 1

Soit $g: \mathbb{R}^4 \to \mathbb{R}^3$ définie par g(x, y, z, t) = (x + 3y + 2z, x + y + z + t, x - t).

1. Soient $\mathcal{B}_1 = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 et $\mathcal{B}_2 = (f_1, f_2, f_3)$ la base canonique de \mathbb{R}^3 .

Donner $\operatorname{Mat}_{\mathcal{B}_2,\mathcal{B}_1}(g)$ la matrice de l'application g associée à ces deux bases.

2. Soient u = (1, 3, -5, 1) vecteur \mathbb{R}^4 et la base $\mathcal{B}_1' = (u, e_2, e_3, e_4)$ de \mathbb{R}^4 . Soient $v_1 = g(e_2), v_2 = g(e_3), v_3 = g(e_4)$ et la base $\mathcal{B}_2' = (v_1, v_2, v_3)$ de \mathbb{R}^3 .

Donner $\operatorname{Mat}_{\mathcal{B}'_2,\mathcal{B}'_1}(g)$ la matrice de l'application g associée à ces deux bases.

Exercice 2

Soit $g: \mathbb{R}^4 \to \mathbb{R}^3$ définie par g(x, y, z, t) = (-3x - 2y + 3z, 3x + y - 3z - t, x - z - t).

1. Soient $\mathcal{B}_1 = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 et $\mathcal{B}_2 = (f_1, f_2, f_3)$ la base canonique de \mathbb{R}^3 .

Donner $\operatorname{Mat}_{\mathcal{B}_2,\mathcal{B}_1}(g)$ la matrice de l'application g associée à ces deux bases.

2. Soient

$$u_1 = (-1, 1, 0, -1), \ u_2 = (1, -2, -1, 1), \ u_3 = (-2, 3, 1, -1), \ u_4 = (2, -1, 0, 1)$$

et

$$v_1 = (-1, 1, 0), \ v_2 = (1, -2, -1), \ v_3 = (2, -1, 0).$$

On admet que les deux familles suivantes, \mathcal{B}'_1 et \mathcal{B}'_2 , sont deux bases de \mathbb{R}^4 et \mathbb{R}^3 respectivement:

$$\mathcal{B}'_1 = (u_1, u_2, u_3, u_4), \ \mathcal{B}'_2 = (v_1, v_2, v_3).$$

Donner $\operatorname{Mat}_{\mathcal{B}'_2,\mathcal{B}'_1}(g)$ la matrice de l'application g associée à ces deux bases.

Exercice 3

Soit $\mathcal{B} = (b_1, b_2, b_3)$ une base de \mathbb{R}^3 . On définit les vecteurs

$$\begin{cases} v_1 = -4b_1 - b_2 + b_3 \\ v_2 = -2b_1 - b_2 + 5b_3 \\ v_3 = b_1 + 5b_2 - 3b_3 \end{cases}$$

- 1. Montrer que $C = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 .
- 2. On considère l'application linéaire $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ définie par $f(b_i) = v_i$, (i = 1, 2, 3). Calculer $\operatorname{Mat}_{\mathcal{B}}(f)$, $\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f)$ et $\operatorname{Mat}_{\mathcal{C},\mathcal{B}}(f)$.

Soient $\mathcal{B} = ((1,0),(0,1))$ et $\mathcal{B}' = ((1,3),(2,5))$ deux bases de \mathbb{R}^2 .

- 1. Donner les matrices de passage $P_{\mathcal{B} \longrightarrow \mathcal{B}'}$ et $P_{\mathcal{B}' \longrightarrow \mathcal{B}}$.
- 2. Etant donné l'endomorphisme T de \mathbb{R}^2 défini par T(x,y)=(3y,2x-y), donner les matrices dans les deux bases \mathcal{B} et \mathcal{B}' .

Exercice 5

On considère la matrice:

$$P = \left(\begin{array}{rrr} 1 & -1 & 1 \\ -2 & 0 & 1 \\ 1 & 1 & 1 \end{array}\right)$$

- 1. P est-elle inversible? Le cas échéant, calculer l'inverse de P.
- 2. Soit \mathcal{B} la base canonique de \mathbb{R}^3 et soit \mathcal{C} la base telle que $P = P_{\mathcal{B} \longrightarrow \mathcal{C}}$. Soit u l'endomorphisme ayant pour matrice:

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 2 & 1 \\ -1 & 1 & 0 \end{pmatrix}$$

Déterminer la matrice de u dans la base C.

Exercice 6

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. On fixe $\lambda \in \mathbb{K}$ et on note u l'application linéaire dans E suivante:

$$u = \lambda \operatorname{Id}_{E}$$
.

- 1. Déterminer $Mat_{\mathcal{B}}(u)$ la matrice de l'application u dans la base \mathcal{B} .
- 2. On définit la base $\mathcal{B}' = (e_n, \dots, e_1)$. Donner la matrice $\operatorname{Mat}_{\mathcal{B}', \mathcal{B}}(u)$.

Exercice 7

Soient E et F deux \mathbb{R} -espaces vectoriels de dimension 3 et 2 respectivement. On considère $\mathcal{B} = (e_1, e_2, e_3)$ et $\mathcal{C} = (f_1, f_2)$ des bases de E et F respectivement. Soit u une application linéaire de E dans F et $A = \operatorname{Mat}_{\mathcal{C},\mathcal{B}}(u)$.

On suppose que

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 4 & 1 \end{pmatrix}.$$

- 1. Donner u(x) pour $x = e_1 + 2e_2 + e_3$.
- 2. A-t-on $f_2 \in \text{Im}(u)$?

Soit $u: E \to F$ une application linéaire de \mathbb{K} -espaces vectoriels de dimension finie. On considère une base $\mathcal{B} = (e_1, \dots, e_n)$ de E et $r \in \mathbb{N}$ tels que (e_{r+1}, \dots, e_n) soit une base de $\operatorname{Ker}(u)$.

- 1. Montrer que $\operatorname{Im}(u) = \operatorname{Vect}((u(e_1), \dots, u(e_r))).$
- 2. Montrer que $(u(e_1), \ldots, u(e_r))$ est une base de Im (u).
- 3. En complétant $(u(e_1), \ldots, u(e_r))$ à une base \mathcal{C} de F, montrer que,

$$\operatorname{Mat}_{\mathcal{C},\mathcal{B}}(u) = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.$$

Exercice 9

Dans le \mathbb{R} -espace vectoriel \mathbb{R}^3 muni de sa base canonique $\mathcal{B} = (e_1, e_2, e_3)$, on donne l'application f de \mathbb{R}^3 dont la matrice dans la base \mathcal{B} est donnée par

$$M = \left(\begin{array}{rrr} 3 & -1 & 1 \\ -1 & 3 & 1 \\ 0 & 0 & 4 \end{array}\right).$$

- 1. Soit $v = (x_1, x_2, x_3) \in \mathbb{R}^3$. Déterminer f(v).
- 2. Déterminer le noyau de f. L'application f est-elle injective ?
- 3. Est-ce que f est un automorphisme de \mathbb{R}^3 ? (Justifier).
- 4. Déterminer l'image de f.
- 5. Soient $v_1 = (1, 1, 0)$; $v_2 = (0, 1, 1)$; $v_3 = (1, 0, 1)$. Montrer que $\mathcal{B}' = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 .
- 6. Déterminer la matrice de passage P de \mathcal{B} vers \mathcal{B}' et la matrice de passage Q de \mathcal{B}' vers \mathcal{B} .
- 7. Déterminer M' la matrice de f dans la base \mathcal{B}' .
- 8. Montrer que l'ensemble $E_{\alpha} = \{X = (x_1, x_2, x_3) \mid MX = \alpha X\}$ est un sous-espace vectoriel de \mathbb{R}^3 pour α un réel quelconque.
- 9. Ecrire les équations définissant E_2 (E_{α} défini à la question précédente avec $\alpha = 2$). Déterminer la dimension et trouver une base de E_2 .
- 10. Ecrire les équations définissant E_4 (E_{α} défini à la question 8 avec $\alpha = 4$). Déterminer la dimension et trouver une base de E_4 .
- 11. Montrer que E_2 et E_4 sont supplémentaires dans \mathbb{R}^3 .

Soit:

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \longrightarrow & (-4x+2y+6z, -x+y+z, -3x+y+5z) \end{array} \right.$$

On désigne par $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

- 1. Montrer que f est une application linéaire.
- 2. Déterminer la matrice \mathcal{M} de f relativement à la base canonique.
- 3. Déterminer la ou les équations cartésiennes, une base et la dimension de Ker f.
- 4. Déterminer la ou les équations cartésiennes, une base et la dimension de Im f. On vérifiera que la dimension de l'image et cohérente avec celle du noyau.
- 5. Soient $q_1 = (1, 0, 1)$, $q_2 = (2, 1, 1)$ et $q_3 = (2, 2, 1)$ et soit $\mathcal{C} = (q_1, q_2, q_3)$, montrer que \mathcal{C} est une base de \mathbb{R}^3 .
- 6. Déterminer P la matrice de passage de \mathcal{B} vers \mathcal{C} .
- 7. Soit (α, β, γ) les coordonnées d'un élément u de \mathbb{R}^3 dans la base \mathcal{C} , déterminer les coordonnées (e, f, g) de cet élément dans la base \mathcal{B} (pas de calcul).
- 8. Soit (e, f, g) les coordonnées d'un élément u de \mathbb{R}^3 dans la base \mathcal{B} , déterminer les coordonnées (α, β, γ) de cet élément dans la base \mathcal{C} .
- 9. Déterminer $Q = P^{-1}$ la matrice de passage de C vers B.
- 10. Sans calcul, exprimer e_1, e_2, e_3 en fonction de q_1, q_2, q_3 .
- 11. Déterminer $f(q_1), f(q_2), f(q_3)$ puis exprimer les en fonction de q_1, q_2, q_3 .
- 12. Déterminer $\mathcal{M}' = \operatorname{Mat}_{\mathcal{C}}(f)$.
- 13. En déduire sans calcul QMP.

Exercice 11

Soit u, l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique (e_1, e_2, e_3) est donnée par

$$A = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 1 & 3 & -1 \\ 1 & 1 & 1 \end{array}\right).$$

- 1. On pose $\mathcal{B}' = (v_1, v_2, v_3)$ avec $v_1 = e_2 + e_3$, $v_2 = e_1 + e_3$ et $v_3 = e_1 + e_2$. Montrer que \mathcal{B}' est une base de \mathbb{R}^3 .
- 2. Déterminer M la matrice de u associée à la base \mathcal{B}' .
- 3. Calculer M^2 et M^3 (on pourra écrire $M = xI_3 + J$ avec x un réel, I_3 la matrice identité d'ordre 3 et J une matrice carrée d'ordre 3). En déduire M^n pour n un entier non nul.

$$(\underline{\text{rappel}} : (a+b)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} a^{n-k} b^k.)$$

- 4. En déduire A^n .
- 5. On considère trois suites de nombres réels $(x_n)_{n\geq 0}$, $(y_n)_{n\geq 0}$, $(z_n)_{n\geq 0}$ définies par $x_0=y_0=z_0=1$ et

$$\begin{cases} x_{n+1} = 2x_n \\ y_{n+1} = x_n + 3y_n - z_n \\ z_{n+1} = x_n + y_n + z_n \end{cases}$$

- (a) Ecrire le système matriciel que doit vérifier $X_{n+1} = \begin{pmatrix} x_{n+1} \\ y_{n+1} \\ z_{n+1} \end{pmatrix}$.
- (b) En utilisant ce qui a été fait précédemment, déterminer x_n , y_n et z_n en fonction de n.

Dans le \mathbb{R} -espace vectoriel \mathbb{R}^3 muni de sa base canonique $\mathcal{B} = (e_1, e_2, e_3)$, on se donne les deux ensembles suivants :

$$E = \left\{ X = (x, y, z) \in \mathbb{R}^3 \mid x + 2y - z = 0 \right\}$$

$$F = \left\{ X = (x, y, z) \in \mathbb{R}^3 \mid \left\{ \begin{array}{ccc} x & + & y & = & 0 \\ y & + & z & = & 0 \end{array} \right\}$$

- 1. Montrer que E et F sont deux sous-espaces vectoriels de \mathbb{R}^3 . En donner une base et leur dimension respective.
- 2. Montrer que $E \oplus F = \mathbb{R}^3$.
- 3. Soit l'application f de \mathbb{R}^3 dont la matrice dans la base \mathcal{B} est donnée par

$$M = \frac{1}{2} \left(\begin{array}{rrr} 3 & 2 & -1 \\ -1 & 0 & 1 \\ 1 & 2 & 1 \end{array} \right).$$

- 4. Déterminer le noyau de f. L'application f est-elle injective ?
- 5. Déterminer l'image de f. En donner une base.
- 6. Calculer l'image par f de la base de E que vous avez trouvée, ainsi que l'image par f de la base de F que vous avez trouvée. Conclure.
- 7. Calculer la matrice associée à l'application $f \circ f$.
- 8. Interpréter géométriquement l'application f.

Exercice 13

Soit l'endomorphisme u de $\mathbb{R}_3[X]$ (polynômes de degré inférieur ou égal à 3 à coefficients réels) défini par

$$\begin{array}{ccc} u & : & \mathbb{R}_3[X] & \longrightarrow & \mathbb{R}_3[X] \\ & P & \longmapsto & P(X+1) \end{array}$$

20

- 1. Ecrire la matrice de u dans la base canonique de $\mathbb{R}_3[X]$. En déduire que u est un automorphisme.
- 2. Soit la matrice A suivante :

$$A = \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

Justifier que A est inversible et calculer son inverse A^{-1} .

- 3. On suppose que A^{-1} est la matrice dans la base canonique d'une application linéaire v de $\mathbb{R}_3[X]$ dans $\mathbb{R}_3[X]$, déterminer l'image par v d'un polynôme de $\mathbb{R}_3[X]$.
- 4. Faire le lien entre la question 1 et la question 3 : que représente l'application v ?