Statistiques descriptives univariées

1	Pri	ncipales notions en statistiques descriptives	2
	1.1	Présentation des données	2
	1.2	Indicateurs de position	
	1.3	Indicateurs de dispersion	,
2	Rep	orésentations graphiques	(
	2.1	Diagrammes en bâtons	(
	2.2	Histogrammes	,
	2.3	Boites à moustaches	,
3	La	librairie pandas	9
	3.1	Exploitation des données	Ç
	3.2	Indicateurs statistiques	1(
			1:

Compétences attendues.

- ✓ Regrouper une série statistique par modalités ou par classes.
- ✓ Connaître les indicateurs de position (moyenne, médiane, quartiles) et les commandes associées.
- ✓ Connaître les indicateurs de dispersion (écart-type, étendue, distance inter-quartile) et les commandes associées.
- ✓ Représenter graphiquement une série statistique.

Liste des commandes Python exigibles aux concours.

- Dans la librairie numpy: np.sum, np.min, np.max, np.cumsum, np.mean, np.median, np.var, np.std.
- Dans la librairie matplotlib.pyplot : plt.hist, plt.bar, plt.boxplot.
- Dans la librairie pandas : pd.read_csv, pd.head, pd.shape, pd.discribe, pd.mean, pd.median, pd.var, pd.std, pd.count, pd.sort_values

Anthony Mansuy

Professeur de Mathématiques en deuxième année de CPGE filière ECG au Lycée Clemenceau (Reims)

 $Page\ personnelle: \verb|http://anthony-mansuy.fr|\\$

E-mail: mansuy.anthony@hotmail.fr

L'objet des statistiques descriptives univariées (ou unidimensionnelles) est de fournir des résumés synthétiques, graphiques et numériques, de séries de valeurs observées sur une population ou un échantillon. On présente ici les indicateurs les plus couramment employés pour décrire une série statistique.

L'étude statistique ressemble beaucoup à la théorie des probabilités. La différence fondamentale entre statistiques et probabilités est la suivante :

- En probabilités, on cherche à anticiper l'avenir (en calculant nos chances de gagner à un jeu avant de jouer par exemple), c'est-à-dire à obtenir des informations avant d'effectuer une expérience aléatoire. On parle de calculs théoriques (qui induisent/anticipent les résultats).
- En statistiques, on cherche à obtenir des informations après avoir effectué des expériences, souvent après avoir répété plusieurs fois la même expérience. On parle de calculs empiriques (déduits de l'expérience).

1 Principales notions en statistiques descriptives

1.1 Présentation des données

On considère un ensemble Ω appelé **population** en statistique descriptive. On appellera ses éléments ω des **individus**.

Exemple. Ω = l'ensemble de la population française, Ω = l'ensemble des voitures immatriculées en France.

On étudie un caractère de cette population :

Définition.

Un caractère (ou variable) sur la population Ω est une application $X:\Omega\to E,$ où E désigne un ensemble quelconque.

Si E est un ensemble de nombres, on dit que X est un caractère **quantitatif**. Dans le cas contraire, on parle de caractère **qualitatif**.

Exemple. Un caractère possible sur la population française est la taille (caractère quantitatif) ou encore la couleur des yeux (caractère qualitatif).

Nous ne traiterons que du cas des caractères quantitatifs.

Contrairement aux probabilités, nous allons observer les valeurs prises par la variable X sur une grande population (c'est-à-dire simuler un grand nombre de fois la variable X) et obtenir des informations sur X grâce à ces simulations (loi empirique : tableau des fréquences, moyenne empirique...) au lieu de l'étudier théoriquement avant de faire une expérience.

Pour obtenir un renseignement exact sur un caractère X, il faudrait étudier tous les individus de la population Ω . Lorsque cela n'est pas possible, on étudie seulement les individus d'une partie finie $\{\omega_1, \ldots, \omega_n\}$ de Ω appelée échantillon observé. Son cardinal n est alors la taille ou l'effectif de l'échantillon.

Définition.

- On appelle série statistique d'un échantillon $\{\omega_1, \ldots, \omega_n\}$ de Ω pour le caractère X la donnée de la liste $(x_1, \ldots, x_n) = (X(\omega_1), \ldots, X(\omega_n))$ des valeurs prises par X sur l'échantillon.
- Les valeurs m_i prises par X sont appelées **modalités**.
- L'effectif d'une modalité m_i est le nombre n_i de fois où m_i apparait dans la série statistique (x_1, \ldots, x_n) .
- La fréquence d'une modalité m_i est le réel $f_i = \frac{\text{effectif}}{\text{effectif total}} = \frac{n_i}{n}$. En pratique, c'est le taux de la population dont le caractère X prend la valeur m_i .
- La fréquence cumulée d'une modalité m_i le réel $p_i = \sum_{m_j \leq m_i} f_j$.

En pratique, c'est le taux de la population dont le caractère X prend une valeur inférieure ou égale à la modalité m_i .

Remarques.

1. Si $x=(x_1,\ldots,x_n)$ est une série statistique, (m_1,\ldots,m_p) ses modalités, (n_1,\ldots,n_p) ses effectifs et (f_1,\ldots,f_p) ses fréquences, alors on a :

$$\sum_{i=1}^{p} n_i = n \qquad \text{et} \qquad \sum_{i=1}^{p} f_i = \sum_{i=1}^{p} \frac{n_i}{n} = \frac{\sum_{i=1}^{p} n_i}{n} = 1$$

2. Les notions suivantes se correspondent en probabilités et en statistiques :

X variable aléatoire \leftrightarrow X variable statistique

Support $X(\Omega)$ \leftrightarrow L'ensemble des modalités m_i

Probabilité $P(X = x_i)$ \leftrightarrow Fréquence f_i Fonction de répartition F_X \leftrightarrow Fréquence cumulée p_i

Définition.

Pour présenter les données d'une série statistique, on peut effectuer :

- Un regroupement par modalités (dans le cas où le nombre de modalités est faible) : On regroupe la série statistique par modalités - effectifs, c'est-à-dire qu'on donne :
 - la liste (m_i) des modalités du caractère X,
 - les effectifs (n_i) correspondants.

On peut aussi choisir de présenter cette série regroupée par modalité - fréquence, en donnant les modalités (m_i) et les fréquences des modalités (f_i) correspondantes.

- Un regroupement par classes (dans le cas où le nombre de modalités est grand) : Plutôt que de conserver toutes les valeurs, il est plus intéressant de les regrouper par classes :
 - on considère une suite de réels $c = (c_0 < \cdots < c_k)$ définissant les **classes** $I_1 = [c_0, c_1], I_2 =]c_1, c_2], \ldots, I_k =]c_{k-1}, c_k]$, l'**amplitude** de la classe I_i étant $c_i c_{i-1}$;
 - On note n_i le nombre d'éléments de X appartenant à l'intervalle I_i pour $1 \le i \le k$.

On se ramène ainsi à une série statistique de taille k, dont les modalités sont les milieux $y_i = \frac{c_{i-1} + c_i}{2}$ des classes et d'effectifs correspondants les n_i .

1.2 Indicateurs de position

Définition.

On appelle moyenne empirique de la série statistique $x=(x_1,\ldots,x_n)$ le réel :

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Remarques.

1. Si la série statistique x est groupée par modalités - effectifs, avec les modalités (m_1, \ldots, m_p) d'effectifs (n_1, \ldots, n_p) et de fréquences (f_1, \ldots, f_p) , alors on a :

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{p} m_i \cdot n_i = \sum_{i=1}^{p} m_i \cdot \frac{n_i}{n} = \sum_{i=1}^{p} m_i \cdot f_i.$$

2. Les notions d'espérance en probabilités et de moyenne en statistiques se correspondent :

$$E(X) = \sum_{x_i \in X(\Omega)} x_i P(X = x_i) \quad \leftrightarrow \quad \overline{x} = \sum_{i=1}^p m_i \cdot f_i.$$

Définition.

La **médiane** d'une série statistique ordonnée est un réel m partageant la série en deux séries d'effectifs égaux. Si $(x_1 \le x_2 \le \cdots \le x_n)$ est la série statistique ordonnée, m est défini par :

- si n = 2p 1 est impaire, $m = x_p$ (la valeur du milieu);
- si n=2p est paire, $m=\frac{x_p+x_{p+1}}{2}$ (la moyenne des deux termes du milieu).

Remarque. La médiane ne s'intéresse qu'à la valeur "centrale", sans tenir compte des valeurs extrémales. La moyenne est au contraire "déformée" par les valeurs extrémales.

Propriété 1 (Moyenne et médiane) -

Soit x un vecteur.

- np.mean(x) donne la moyenne du vecteur x.
- np.median(x) donne une médiane du vecteur x (non nécessairement ordonné).

Définition.

Soit $x = (x_1, \ldots, x_n)$ une série statistique.

- Le **premier quartile** q_1 de x est la plus petite valeur de x telle que 25 % des valeurs lui soient inférieures ou égales.
 - C'est donc la médiane de la sous-série statistique formée en ne gardant que la première moitié des valeurs x_i rangées dans l'ordre croissant.
- Le troisième quartile q_3 de x est la plus petite valeur de x telle que 75 % des valeurs lui soient inférieures ou égales.
 - C'est donc la médiane de la sous-série statistique formée en ne gardant que la seconde moitié des valeurs x_i rangées dans l'ordre croissant.

Remarque. De même, on définit les déciles et les centiles d'une série statistique :

- Pour $k \in [1, 99]$, le k-ième centile est la valeur c_k de la série pour laquelle moins de k % de la population prend des valeurs strictement inférieures à c_k et moins de (100 k) % de la population prend des valeurs strictement supérieures à c_k .
- Pour $k \in [1, 9]$, le k-ième décile est la valeur d_k de la série pour laquelle moins de k % de la population prend des valeurs strictement inférieures à d_k et moins des (10 k) dixièmes de la population prend des valeurs strictement supérieures à d_k .

Définition.

- Si une série statistique est regroupée par modalité, on appelle alors **mode** toute modalité pour laquelle l'effectif est maximal (il peut y en avoir plusieurs).
- Si une série statistique est regroupée par classes, on appelle alors **classe modale** toute classe correspondant au rectangle de plus grande hauteur de l'histogramme de cette série.

1.3 Indicateurs de dispersion

Définition.

Soit $x = (x_1, \ldots, x_n)$ une série statistique.

• On appelle variance empirique de x le nombre réel positif :

$$s_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2.$$

• On appelle écart-type empirique de x le réel s_x .

Remarques.

- 1. Comme en probabilités, la variance mesure la dispersion des valeurs de x par rapport à sa moyenne.
- 2. Comme en probabilités, la formule de Koenig-Huygens est valable :

$$s_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{1}{n} \sum_{i=1}^n (x_i^2 - 2x_i \overline{x} + \overline{x}^2) = \frac{1}{n} \sum_{i=1}^n x_i^2 - 2 \times \overline{x} \times \underbrace{\frac{1}{n} \sum_{i=1}^n x_i}_{-\overline{x}} + \overline{x}^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \overline{x}^2.$$

3. Si la série statistique x est groupée par modalités - effectifs, avec les modalités (m_1, \ldots, m_p) d'effectifs (n_1, \ldots, n_p) et de fréquences (f_1, \ldots, f_p) , alors on a :

$$s_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{1}{n} \sum_{i=1}^p (m_i - \overline{x})^2 \cdot n_i = \sum_{i=1}^p (m_i - \overline{x})^2 \cdot \frac{n_i}{n} = \sum_{i=1}^p (m_i - \overline{x})^2 \cdot f_i.$$

4. Les notions de variance et d'écart type en probabilités et en statistique se correspondent :

$$V(X) = \sum_{x_i \in X(\Omega)} (x_i - E(X))^2 P(X = x_i) \qquad \leftrightarrow \qquad s_x^2 = \sum_{i=1}^p (m_i - \overline{x})^2 \cdot f_i$$
$$\sigma(X) = \sqrt{V(X)} \qquad \leftrightarrow \qquad s_x$$

Définition.

- On appelle étendue d'une série statistique la différence entre la plus grande et la plus petite modalité.
- On appelle distance inter-quartile le réel $q_3 q_1$.

Remarque. La distance inter-quartile est un indicateur de dispersion : c'est la longueur de l'intervalle inter-quartile $[q_1, q_3]$, lequel contient la moitié des valeurs de la série, réparties autour de la médiane m.

Propriété 2 (Variance, écart-type et étendue) —

Soit ${\tt x}$ un vecteur.

- np.var(x) donne la variance du vecteur x.
- np.std(x) (pour standard deviation) donne l'écart-type du vecteur x.
- np.max(x)-np.min(x) donne l'étendue du vecteur x.

Remarques.

- 1. On peut aussi obtenir la variance de x avec la commande v = np.mean(x-np.mean(x))**2) (en utilisant sa définition) ou indifféremment v = np.mean(x**2)-np.mean(x)**2 (par Koenig-Huygens).
- 2. On peut aussi déduire l'écart-type de x à partir de sa variance v avec la commande np.sqrt(v) (en utilisant sa définition).

- Propriété 3 (Transformation affine) ——

Soit $x=(x_1,\ldots,x_n)$ une série statistique de moyenne \overline{x} , de médiane m, de variance v et d'écart type σ .

Considérons la série statistique obtenue en transformant chaque x_i en $ax_i + b$, où a et b sont deux réels. Alors, la moyenne, la médiane, la variance et l'écart type de cette nouvelle série statistique sont :

$$a \cdot \overline{x} + b$$
, $a \cdot m + b$, $a^2 \cdot v$ et $|a| \cdot \sigma$.

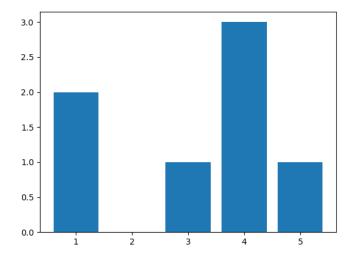
2 Représentations graphiques

2.1 Diagrammes en bâtons

Définition.

On représente une série statistique **groupée par modalités** en plaçant sur l'axe horizontal les modalités et en dressant à la verticale de chacune un bâton de hauteur égale à son effectif ou sa fréquence (resp. son effectif cumulé ou sa fréquence cumulée).

– **Propriété 4** (Diagrammes en bâtons) ———


Soit m et n deux vecteurs de même longueur.

L'instruction plt.bar(m,n) commande le tracé du diagramme en bâtons associé à la série statistique, la liste m définissant les modalités distinctes d'une série statistique (représentés en abscisse) et n les effectifs associés (représentés par la hauteur des bâtons).

Exemple. En entrant les instructions suivantes dans la console,

```
>>> m = np.array([1, 3, 4, 5])
>>> n = np.array([2, 1, 3, 1])
>>> plt.bar(m,n)
>>> plt.show()
```

on obtient le diagramme en bâtons :

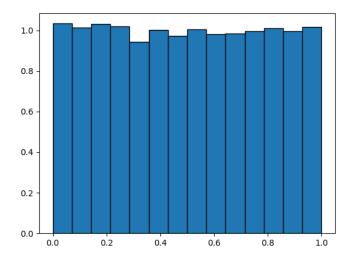
2.2 Histogrammes

Définition.

On représente une série statistique **groupée par classes** en plaçant les c_i sur un axe horizontal et en traçant à la verticale un rectangle de base $[c_i, c_{i+1}]$ d'aire égale à la fréquence de la classe correspondante.

- **Propriété 5** (Histogrammes) —

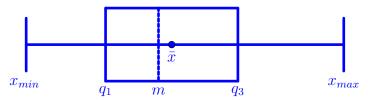
Soit x un vecteur.


- L'instruction plt.hist(x,n) commande le tracé de l'histogramme associé à la série x en n classes découpées entre la plus petite valeur de x et la plus grande (par défaut, n vaut 10).
- Si c contient un vecteur (c₁,..., c_m), l'instruction plt.hist(x,c) définit les classes à l'aide de c : la i-ième classe a pour extrémités c_i et c_{i+1}.

Remarque. plt.bar et plt.hist possèdent un grand nombre d'options dont aucune n'est exigible mais qui peuvent être pratique pour rendre les schémas lisibles (notamment legend qui s'emploie comme pour les courbes de fonctions, density = 'True' qui calibre les rectangles pour que le total de leurs surfaces soit égales à 1 et edgecolor = 'k' qui permet de délimiter les rectangles en noir).

Exemple. En entrant les instructions suivantes dans la console,

```
>>> x = rd.random(10000)
>>> cl = np.linspace(0,1,15)
>>> plt.hist(x, cl, density = 'True', edgecolor = 'k')
>>> plt.show()
```

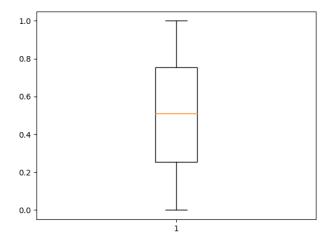

on obtient l'histogramme:

2.3 Boites à moustaches

Définition.

La **boîte à moustache** d'une série statistique est un schéma permettant de visualiser l'étendu de la série (la plus petite valeur et la plus grande), les valeurs des quartiles q_1 et q_3 entre lesquelles se concentrent la moitié de la masse ainsi que la médiane :

Propriété 6 (Boites à moustaches)


Soit x un vecteur.

L'instruction plt.boxplot(x) commande le tracé de la boîte à moustache associée à x.

Exemple. En entrant les instructions suivantes dans la console,

```
>>> x = rd.random(10000)
>>> plt.boxplot(x)
>>> plt.show()
```

on obtient la boite à moustaches :

Exercice 1 (★)

- 1. On souhaite étudier le nombre de buts par match de foot durant un tournoi. Préciser la population Ω étudiée et le caractère observé X.
- 2. Pour éviter d'avoir à regarder tous les matchs du tournoi, nous allons faire une étude sur un échantillon de 20 matchs. Taper dans la console l'instruction suivante donnant les nombres de buts marqués lors de ces matchs :

- 3. Avec Python, calculer la moyenne de buts par match, la médiane, la variance, l'écart type et l'étendue.
- 4. Compléter "à la main" le tableau suivant :

Modalités				
Effectifs				
Fréquences				
Fréquences cumulées				

- 5. Déduire du tableau précédent le mode, le premier, le deuxième et le troisième quartile.
- 6. Définir sur Python deux vecteurs m et n représentant les modalités et les effectifs. En déduire les vecteurs f et fcc des fréquences et des fréquences cumulées.
- 7. Entrer les instructions np.sum(n) et np.sum(f). Quelles sont les valeurs renvoyées? Pourquoi?
- 8. Tracer les diagrammes en bâtons des effectifs, des fréquences et des fréquences cumulées.
- 9. Tracer la boîte à moustaches associée à x.

Exercice 2 (*)

Rappelons que la commande rd.random(n) (dans la librairie numpy.random avec le raccourci rd) permet de simuler un vecteur de taille n dont chaque coefficient est un nombre réel choisi aléatoirement entre 0 et 1.

- 1. Créer une série statistique contenant 10000 nombres réels choisis aléatoirement entre 1 et 5.
- 2. Avec Python, calculer la moyenne, la médiane, la variance, l'écart type et l'étendue de la série statistique.
- 3. Faut-il mieux regrouper cette série statistique par modalités ou par classes ? Pourquoi ?
- 4. Tracer l'histogramme associé à cette série statistique en la regroupant par classes (choisir 100 classes de même amplitude).
- 5. Tracer la boîte à moustaches associée à cette série statistique.

3 La librairie pandas

Commençons par importer la bibliothèque pandas à l'aide de la commande :

>>> import pandas as pd

Une fois cette commande exécutée, nous avons maintenant accès aux fonctions associées à cette librairie.

3.1 Exploitation des données

De nombreuses bases de données sont stockées sous la forme de fichiers numériques de format csv (Comma-Separated Values). Les outils de la librairie Pandas permettent à Python de les prendre en charge pour en faciliter l'analyse.

- **Propriété 7** (Importation de fichiers csv) —

Si un fichier comportant des séries de données (nommé ici fichier) de format csv est chargé dans le répertoire de travail de Python, alors df = pd.read_csv("fichier.csv") affecte à la variable df la série de données sous la forme d'une table ordonnée en ligne et en colonne prête à être exploitée à l'aide des outils de la librairie pandas.

Exemple. On importe un fichier csv nommé test :

>>> df=pd.read_csv("test.csv"); print(df)

	Prenom	Age	Ville	Dispo	Permis	Enfants
0	Ines	22	Bondy	8	non	2
1	Leo	19	Paris	10	oui	0
2	Tom	20	Paris	12	non	0
3	Lea	18	Orly	8	oui	0
4	Mick	20	Paris	8	oui	0
5	Eva	22	Paris	8	oui	1
6	Mael	17	Gagny	18	non	0

- **Propriété 8** (Premières commandes) -

Supposons que la variable df contienne une table pandas.

- La commande df.head() permet de visualiser les cinq premières lignes de la table.
- La commande df.shape renvoie le nombre de lignes et le nombre de colonnes de la table.

Remarque. La commande df.head() donne un aperçu de la table df. Elle est utile pour vérifier la validité des opérations commandées.

Exemple.

>>> df.head()

	Prenom	Age	Ville	Dispo	Permis	Enfants
0	Ines	22	Bondy	8	non	2
1	Leo	19	Paris	10	oui	0
2	Tom	20	Paris	12	non	0
3	Lea	18	Orly	8	oui	0
4	Mick	20	Paris	8	oui	0

>>> df.shape

(7, 6)

3.2 Indicateurs statistiques

- Propriété 9 (Pour obtenir l'ensemble des indicateurs statistiques) —

Si la variable df contient une table pandas, la commande df.describe() renvoie des informations statistiques concernant les colonnes numériques.

Exemple.

>>> df.describe()

	Age	Dispo	Enfants
count	7.000000	7.000000	7.000000
mean	19.714286	10.857143	0.428571
std	1.889822	3.625308	0.786796
min	17.000000	8.000000	0.00000
25%	18.500000	8.000000	0.00000
50%	20.000000	10.000000	0.00000
75%	21.000000	12.000000	0.500000
max	22.000000	18.000000	2.000000

On obtient dans l'ordre le nombre de lignes, la moyenne, l'écart-type, la valeur minimale, le premier, deuxième et troisième quartiles et la valeur maximale par colonne.

Remarque. Il est possible de ne visualiser qu'une colonne. Par exemple, pour n'avoir que les indicateurs de la colonne "Age", on commande : df['Age'].describe().

- Propriété 10 (Pour obtenir séparément les indicateurs statistiques) —

Si la variable \mathtt{df} contient une table \mathtt{pandas} , les commandes suivantes permettent d'isoler des indicateurs statistiques :

- df.mean() renvoie la liste des moyennes pour chaque colonne numérique.
- df.var() renvoie la liste des variances pour chaque colonne numérique.
- df.std() renvoie la liste des écarts-types pour chaque colonne numérique.
- df.median() renvoie la liste des médianes pour chaque colonne numérique.
- df.count() renvoie le nombre de valeurs pour chaque colonne numérique.

Remarques.

- 1. Il est possible d'isoler la moyenne (ou autre) pour une colonne donnée. Par exemple, pour n'avoir que la moyenne de la colonne "Age", on commande : df['Age'].mean().
- 2. Sur le même modèle, il est possible de faire la somme sum(), la somme cumulée cumsum(), le maximum max(), le minimum min() d'une colonne donnée. Par exemple, pour avoir le nombre maximum d'enfants, on commande : df['Enfants'].max().

3.3 Classement, sélection

- Propriété 11 (Classement et sélection conditionnelle) -

Supposons que la variable df contienne une table pandas.

- La commande df.sort_values('Nom_de_colonne') classe la table suivant les valeurs croissantes de la colonne concernée (par ordre alphabétique dans le cas de lettres).
- La commande df [condition], où condition est un booléen énonçant une condition partant sur df ['Nom_de_colonne'], affiche les lignes dont la condition est réalisée.

Remarques.

- 1. Pour définir la *condition*, on pourra utiliser les comparaisons ==, <, >, <=, >=, != et les connecteurs logiques & (et) et | (ou).
- 2. On peut également obtenir un classement par ordre décroissant des valeurs d'une colonne avec la commande df.sort_values('Nom_de_colonne', ascending==False).

Exemple. Reprenons la table df utilisée précédemment.

• Pour classer la table par ordre croissant suivant les ages :

```
>>> df.sort_values('Age')
```

	Prenom	Age	Ville	Dispo	Permis	Enfants
6	Mael	17	Gagny	18	non	0
3	Lea	18	Orly	8	oui	0
1	Leo	19	Paris	10	oui	0
2	Tom	20	Paris	12	non	0
4	Mick	20	Paris	8	oui	0
0	Ines	22	Bondy	8	non	2
5	Eva	22	Paris	8	oui	1

• Pour sélectionner les personnes qui ont 20 ans :

	Prenom	Age	Ville	Dispo	Permis	Enfants
2	Tom	20	Paris	12	non	0
4	Mick	20	Paris	8	oui	0

• Pour sélectionner les personnes disponibles 8 heures et qui habitent Paris :

	Prenom	Age	Ville	Dispo	Permis	Enfants
4	Mick	20	Paris	8	oui	0
5	Eva	22	Paris	8	oui	1

Exercice 3 (*)

On s'intéresse à certains aspects des 20 villes les plus peuplées de France. On s'intéresse plus particulièrement :

- à leur région d'appartenance ;
- à leur population (en nombre d'habitant) ;
- à leur densité (en habitants par km²;
- à leur taux de chômage (en pourcentage de la population) ;
- à leur label "ville fleurie";
- à leur label "ville connectée" (en nombre de @) ;
- à leur pluviométrie (en mm) ;
- à leur ensoleillement (en heure).

Ces données sont saisies dans un fichier nommé TP3-ex3 converti au format csv disponible sur mon site anthony-mansuy.fr/. Écrire les commandes qui permettent de :

- 1. Importer le fichier TP3-ex3 et l'afficher sur Python.
- 2. Donner les indications statistiques correspondant à la population.
- 3. Déterminer la moyenne du taux de chômage pour ces 20 villes.
- 4. Classer les villes par ordre croissant de leur indice pluviométrique.
- 5. Isoler les villes (s'il y en a) dont la densité est inférieure à 4000 hab/km² et dont la durée annuelle d'ensoleillement est d'au moins 2000 heures.
- 6. Isoler les villes (s'il y en a) de la région PACA et classées "4 fleurs".

Exercice 4 (★★)

À partir de mon site anthony-mansuy.fr/, télécharger le fichier TP3-ex4 converti au format csv. C'est un tableau dont les colonnes sont :

- Index, qui contient l'index des pays ;
- Pays, qui contient les noms des pays ;
- Superficie, qui contient la surface terrestre en milliers de km^2 de chaque pays ;
- Population, qui contient le nombre d'habitants en millions de chaque pays ;
- Naissance, qui contient le nombre de naissances sur 1000 habitants ;
- Mort, qui contient le nombre de décès sur 1000 habitants ;
- Homme, qui contient l'espérance de vie des hommes ;
- Femme, qui contient l'espérance de vie des femmes.

Ces données sont issues de l'étude 2017 de l'Institut National d'Études Démographiques (disponible également sur mon site). Pour répondre aux questions qui suivent, vous trouverez en annexe de ce TP la liste des pays et leurs index.

- 1. Importer et afficher le fichier TP3-ex4 sur Python.
- 2. (a) Calculer la surface terrestre mondiale, le nombre d'habitants mondial et la densité moyenne d'habitants au km^2 .
 - (b) Calculer la surface terrestre, le nombre d'habitants et la densité moyenne d'habitants au km^2 pour chaque continent.
 - (c) Représenter la densité moyenne d'habitants au km^2 pour chaque continent en utilisant un diagramme en bâtons (on mettra en abscisse des entiers de 1 à 6).

- 3. On considère l'espérance de vie des hommes et des femmes par pays.
 - (a) Calculer la moyenne sur l'ensemble des pays.
 Ce résultat correspond-il à l'espérance de vie mondiale des hommes et des femmes ?
 - (b) Calculer la médiane, la variance et l'écart-type.
 - (c) Représenter l'histogramme de l'espérance de vie des hommes sur l'intervalle [0, 100] avec 20 classes. Quelle est la classe modale de l'espérance de vie des hommes ?
 - (d) Classer la table suivant les valeurs croissantes de la colonne Femme.
 En déduire le pays où l'espérance de vie des femmes est la plus grande et celui où elle est la plus petite.
 - (e) A l'aide de la commande describe, déterminer les valeurs du premier et du troisième quartile ainsi que l'écart inter-quartile de la colonne Femme.
 - En déduire la liste des pays dont l'espérance de vie est inférieure au premier quartile.
- 4. On rappelle que le taux d'accroissement naturel est la différence entre la natalité et la mortalité.
 - (a) Quels sont les accroissements minimaux et maximaux ?
 - (b) Faire afficher la liste des pays pour lesquels l'accroissement est négatif.
 - (c) Déterminer l'accroissement mondial moyen.
 - (d) Dans ses projections, l'INED prévoit une population mondiale de 9731 millions d'habitants en 2050. Cela est-il conforme à l'hypothèse d'un taux d'accroissement constant ?

20. Nigeria

23. Togo

Annexe: Liste des pays et de leurs index

Afrique

Afrique septentrionale

1. Algérie	4. Maroc	7. Tunisie
,		

14. Guinée

19. Niger

2. Égypte 5. Sahara occidental

3. Libye 6. Soudan

Afrique occidentale

8. Bénin

13. Ghana

o. Beiiiii	11. Guinec	20. 111gc11a
9. Burkina Faso	15. Guinée-Bissau	
10. Cap-Vert	16. Liberia	21. Sénégal
11. Côte d'Ivoire	17. Mali	22. Sierra Leone
12. Gambie	18. Mauritanie	

Afrique orientale

24. Burundi	31. Malawi	38.	Seychelles
25. Comores	32. Maurice	39.	Somalie
26. Djibouti	33. Mayotte	40.	Sud-Soudan
27. Érythrée	34. Mozambique		
28. Éthiopie	35. Ouganda	41.	Tanzanie
29. Kenya	36. Réunion	42.	Zambie
30. Madagascar	37. Rwanda	43.	Zimbabwe

Afrique centrale

- 44. Angola 47. Congo 50. Guinée équatoriale
- 45. Cameroun 48. Congo(Rép. dém.) 51. Sao Tomé-et-Principe
- 46. Centrafricaine (Rép.) 49. Gabon 52. Tchad

Afrique australe

- 53. Afrique du Sud 55. Lesotho 57. Swaziland
- 54. Botswana 56. Namibie

Amérique du Nord

Amérique septentrionale

58. Canada 59. États Unis

Amérique centrale

- 60. Belize 63. Honduras 66. Panama
- 61. Costa Rica 64. Mexique
- 62. Guatemala 65. Nicaragua 67. Salvador

Caraïbes

- 68. Antigua-et-Barbuda 75. Dominique 82. Sainte Lucie
- 69. Aruba 76. Grenade 83. St Vincent Grenadines
- 70. Bahamas 77. Guadeloupe
- 71. Barbade 78. Haïti 84. St.Kitts-et-Nevis
- The Surface of February Constitution of Februa
- 72. Cuba 79. Jamaïque 85. Trinité-et-Tobago
- 73. Curação 80. Martinique
- 74. Dominicaine (Rép.) 81. Porto Rico 86. Vierges (Îles)

Amérique du Sud

- 87. Argentine 92. Équateur 97. Surinam
- 88. Bolivie 93. Guyana
- 89. Brésil 94. Guyane (française) 98. Uruguay
- 90. Chili 95. Paraguay
- 91. Colombie 96. Pérou 99. Venezuela

Asie

Asie occidentale

- 100. Arabie saoudite105. Émirats arabes unis110. Koweït101. Arménie106. Géorgie111. Liban
- 102. Azerbaïdjan 107. Irak 112. Oman
- 103. Bahreïn 108. Israël 113. Palestine (Territoires)
- 104. Chypre 109. Jordanie 114. Qatar

115. Syrie	116. Turquie	117. Yémen
Asie centrale		
118. Kazakhstan	120. Tadjikistan	122. Ouzbékistan
119. Kirghizistan	121. Turkménistan	
Asie du sud		
123. Afghanistan	126. Pakistan	129. Maldives
124. Bangladesh	127. Inde	130. Népal
125. Bhoutan	128. Iran	131. Sri Lanka
Asie du sud-ouest		
132. Brunei	136. Malaisie	140. Thaïlande
133. Cambodge	137. Myanmar (Birmanie)	141 T
134. Indonésie	138. Philippines	141. Timor-Est
135. Laos	139. Singapour	142. Viêt Nam
Asie orientale		
143. Chine	146. Corée du Nord	149. Mongolie
144. Chine-Hong Kong	147. Corée du Sud	
145. Chine-Macao	148. Japon	150. Taïwan
Europe		
Europe septentrionale		
151. Danemark	155. Islande	159. Royaume-Uni
152. Estonie	156. Lettonie	160. Suède
153. Finlande	157. Lituanie	
154. Irlande	158. Norvège	
Europe occidentale		
161. Allemagne	164. France (métropolitaine)	167. Monaco
162. Autriche	165. Liechtenstein	168. Pays-Bas
163. Belgique	166. Luxembourg	169. Suisse
Europe orientale		
170. Biélorussie	174. Pologne	178. Tchèque (République)
171. Bulgarie	175. Roumanie	179. Ukraine
172. Hongrie	176. Russie	
173. Moldavie	177. Slovaquie	

Europe méridionale

180. Albanie185. Grèce190. Monténégro181. Andorre186. Italie191. Portugal182. Bosnie-Herzégovine187. Kosovo192. Saint-Marin183. Croatie188. Macédoine193. Serbie184. Espagne189. Malte194. Slovénie

Océanie

195. Australie 200. Micronésie (États fédérés de) 205. Salomon (Îles)

196. Fidji 201. Nouvelle-Calédonie 206. Samoa occidentales

197. Guam 202. Nouvelle-Zélande

198. Kiribati 203. Papouasie-Nouvelle Guinée 207. Tonga

199. Marshall (Îles) 204. Polynésie française 208. Vanuatu