TP10

Suites réelles et récurrence

Exercice 1 On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0$ et pour tout entier naturel $n, u_{n+1}=u_n^2+1$.

- 1. Construire une procédure en langage Scilab qui, étant donné un entier $n \in \mathbb{N}$, calcule u_n .
- 2. Montrer que, pour tout entier naturel $n, u_n \geq n$.
- 3. En déduire le comportement asymptotique de $(u_n)_{n\in\mathbb{N}}$.
- 4. Construire une procédure en langage Scilab qui permet de déterminer le plus petit $n \in \mathbb{N}$ tel que $u_n \ge 10^5$.

Exercice 2 On considère les deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ définies par $a_0=1,\ b_0=2$, ainsi que par les relations :

$$\forall n \in \mathbb{N}, \ a_{n+1} = \sqrt{a_n b_n} \quad \text{ et } \quad b_{n+1} = \frac{a_n + b_n}{2}. \tag{1}$$

- 1. Montrer que, pour tout $n \in \mathbb{N}$, a_n et b_n sont bien définies et strictement positifs.
- 2. Construire une procédure en langage Scilab qui, étant donné un entier $n \in \mathbb{N}$, calcule a_n et b_n .
- 3. (a) Montrer que : $\forall n \in \mathbb{N}, b_{n+1} a_{n+1} = \frac{1}{2} \left(\sqrt{b_n} \sqrt{a_n} \right)^2$. En déduire que : $\forall n \in \mathbb{N}, a_n \leq b_n$.
 - (b) Montrer que : $\forall n \in \mathbb{N}, \ a_{n+1} a_n = \left(\sqrt{b_n} \sqrt{a_n}\right) \sqrt{a_n}$. En déduire que la suite $(a_n)_{n \in \mathbb{N}}$ est croissante.
 - (c) Montrer que : $\forall n \in \mathbb{N}, b_{n+1} b_n = \frac{1}{2}(a_n b_n).$ En déduire que la suite $(b_n)_{n \in \mathbb{N}}$ est décroissante.
- 4. (a) Montrer que la suite $(a_n)_{n\in\mathbb{N}}$ est majorée par 2. En déduire qu'elle converge vers une limite finie qu'on notera ℓ_1 .
 - (b) Montrer que la suite $(b_n)_{n\in\mathbb{N}}$ est minorée par 1. En déduire qu'elle converge vers une limite finie qu'on notera ℓ_2 .
 - (c) En passant à la limite dans les relations (??), montrer que $\ell_1 = \ell_2$.

On a ainsi démontré que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ convergent vers la même limite ℓ et que :

$$\forall n \in \mathbb{N}, \ a_n \le \ell \le b_n.$$

5. Construire une procédure en langage Scilab qui, étant donné un $\varepsilon > 0$, calcule une approximation de ℓ à ε près.

Exercice 3 Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et, pour tout entier naturel n, $u_{n+1}=\frac{2u_n^2}{1+5u_n}$.

- 1. Construire une procédure en langage Scilab qui, étant donné un entier $n \in \mathbb{N}$, calcule u_n .
- 2. Montrer que pour tout entier naturel n, u_n est bien définie et $u_n \geq 0$.
- 3. En déduire la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
- 4. La suite $(u_n)_{n\in\mathbb{N}}$ est-elle convergente ? Si oui, déterminer sa limite.
- 5. Montrer que, pour tout entier naturel $n, u_{n+1} \leq \frac{2u_n}{5}$.
- 6. En déduire que, pour tout entier naturel $n, u_n \leq \left(\frac{2}{5}\right)^n$.
- 7. Déterminer un entier N vérifiant, pour tout $n \ge N$, $u_n \le 10^{-9}$.
- 8. Construire une procédure en langage Scilab qui permet de déterminer le plus petit $n \in \mathbb{N}$ tel que $u_n \leq 10^{-9}$. Comparer avec le résultat obtenu à la question précédente.