TP11

Sommes doubles

1 Sommes doubles à indices indépendants

On considère des réels $x_{i,j}$ avec $i \in [1, n]$ et $j \in [1, m]$. On range ces valeurs dans un tableau :

On souhaite calculer la somme S de tous ces termes :

• Sommation suivant les lignes : On calcule la somme des termes de la première ligne, puis on ajoute les termes de la deuxième ligne, \dots et enfin la somme des termes de la n-ième ligne :

$$S = \sum_{j=1}^{m} x_{1,j} + \sum_{j=1}^{m} x_{2,j} + \ldots + \sum_{j=1}^{m} x_{i,j} + \ldots + \sum_{j=1}^{m} x_{n,j} = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} x_{i,j} \right)$$

• Sommation suivant les colonnes : On calcule la somme des termes de la première colonne, puis on ajoute les termes de la deuxième colonne, ... et enfin la somme des termes de la *m*-ième colonne :

$$S = \sum_{i=1}^{n} x_{i,1} + \sum_{i=1}^{n} x_{i,2} + \dots + \sum_{i=1}^{n} x_{i,j} + \dots + \sum_{i=1}^{n} x_{i,m} = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} x_{i,j}\right)$$

On obtient évidement la même somme avec ces deux méthodes d'où la formule d'interversion suivante :

Propriété 1 (Interversion de sommes à indices indépendants) -

Considérons $n \times m$ réels $x_{i,j}$, avec $i \in [1, n]$ et $j \in [1, m]$. Alors la somme S de tous ces termes est :

$$S = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} x_{i,j} \right) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} x_{i,j} \right).$$

On notera S sous la forme plus concise $\sum_{\substack{1 \leq i \leq n \\ 1 \leq i \leq m}} x_{i,j}$ ou $\sum_{1 \leq i,j \leq n} x_{i,j}$ lorsque n=m.

Exemple. Avec n = 3, on a :

$$\sum_{1 \le i,j \le 3} x_{i,j} = \sum_{i=1}^{3} \left(\sum_{j=1}^{3} x_{i,j} \right) = x_{1,1} + x_{1,2} + x_{1,3} + x_{2,1} + x_{2,2} + x_{2,3} + x_{3,1} + x_{3,2} + x_{3,3}$$
$$= \sum_{j=1}^{3} \left(\sum_{i=1}^{3} x_{i,j} \right) = x_{1,1} + x_{2,1} + x_{3,1} + x_{1,2} + x_{2,2} + x_{3,2} + x_{1,3} + x_{2,3} + x_{3,3}.$$

Exercice 1 1. Écrire sans les symboles $\sum_{\substack{1 \le i \le 2 \\ 1 \le j \le 4}} \frac{i}{j}$.

2. Écrire avec le symbole \sum l'expression : $1 \times 1^2 + 2 \times 1^2 + 3 \times 1^2 + 1 \times 2^2 + 2 \times 2^2 + 3 \times 2^2$.

1

ECE1 Lycée Clemenceau, Reims

Exercice 2 On considère la procédure suivante :

```
n=input('Donner_une_valeur_de_n:_')
S=0
for i=1:n do
    for j=1:n do
        S=S+i*j^2
    end
end
disp(S)
```

- 1. Entrer dans l'éditeur de Scilab cette procédure. Tester pour différentes valeurs de n. A quoi correspond la valeur de S donnée en sortie ?
- 2. Calculer S "à la main" et vérifier le résultat grâce aux valeurs obtenues avec Scilab.

Exercice 3 On considère les sommes suivantes, où n est un entier ≥ 2 :

$$S_n = \sum_{1 \le i, j \le n} i,$$
 $T_n = \sum_{1 \le i, j \le n} j 2^i$ et $U_n = \sum_{1 \le i, j \le n} ij$

- 1. Construire une procédure qui, étant donné un entier $n \geq 2$, calcule S_n , T_n et U_n .
- 2. Calculer ces sommes "à la main" et vérifier avec les résultats obtenus avec Scilab.

2 Sommes doubles à indices dépendants

Considérons maintenant des réels $x_{i,j}$ avec $1 \le i \le j \le n$ rangés dans le tableau carré suivant :

On souhaite calculer la somme S de tous ces termes :

• Sommation suivant les lignes : On calcule la somme des termes de la première ligne, puis on ajoute les termes de la deuxième ligne, \dots et enfin la somme des termes de la n-ième ligne :

$$S = \sum_{j=1}^{n} x_{1,j} + \sum_{j=2}^{n} x_{2,j} + \ldots + \sum_{j=i}^{n} x_{i,j} + \ldots + \sum_{j=n}^{n} x_{n,j} = \sum_{i=1}^{n} \left(\sum_{j=i}^{n} x_{i,j} \right)$$

• Sommation suivant les colonnes : On calcule la somme des termes de la première colonne, puis on ajoute les termes de la deuxième colonne, ... et enfin la somme des termes de la n-ième colonne :

$$S = \sum_{i=1}^{1} x_{i,1} + \sum_{i=1}^{2} x_{i,2} + \dots + \sum_{i=1}^{j} x_{i,j} + \dots + \sum_{i=1}^{n} x_{i,n} = \sum_{j=1}^{n} \left(\sum_{i=1}^{j} x_{i,j} \right)$$

On obtient évidement la même somme avec ces deux méthodes d'où la formule d'interversion suivante :

- Propriété 2 (Interversion de sommes à indices dépendants)

Considérons des réels $x_{i,j}$ avec $1 \le i \le j \le n$. Alors la somme S de tous ces termes est :

$$S = \sum_{i=1}^{n} \left(\sum_{j=i}^{n} x_{i,j} \right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{j} x_{i,j} \right)$$

On notera S sous la forme plus concise $\sum_{1 \leq i \leq j \leq n} x_{i,j}.$

ECE1

Exemple. Avec n = 4, on a :

$$\sum_{1 \le i \le j \le 4} x_{i,j} = \sum_{i=1}^{4} \left(\sum_{j=i}^{4} x_{i,j} \right) = x_{1,1} + x_{1,2} + x_{1,3} + x_{1,4} + x_{2,2} + x_{2,3} + x_{2,4} + x_{3,3} + x_{3,4} + x_{4,4}$$

$$= \sum_{j=1}^{4} \left(\sum_{i=1}^{j} x_{i,j} \right) = x_{1,1} + x_{1,2} + x_{2,2} + x_{1,3} + x_{2,3} + x_{3,3} + x_{1,4} + x_{2,4} + x_{3,4} + x_{4,4}.$$

Exercice 4 1. Écrire sans les symboles \sum l'expression : $\sum_{1 \le i \le j \le 5} (j-i)$.

2. Écrire avec le symbole \sum l'expression : $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{2}{2} + \frac{2}{3} + \frac{2}{4} + \frac{3}{3} + \frac{3}{4} + \frac{4}{4}$

Méthode.

Pour intervertir les symboles \sum dans la somme $\sum_{i=1}^n \left(\sum_{j=i}^n x_{i,j}\right)$, on peut procéder ainsi :

- Le système d'indices qui décrit la somme est $1 \le i \le n$ et $i \le j \le n$.
- On synthétise ces conditions : $1 \le i \le j \le n$.
- \bullet On les réorganise en "commençant" par $j\colon 1\leq j\leq n$ et $1\leq i\leq j.$

On en déduit que la somme double s'écrit : $\sum_{j=1}^{n} \left(\sum_{i=1}^{j} x_{i,j} \right)$.

Si on ne somme pas les termes diagonaux du tableau précédent, on obtient la formule d'interversion suivante :

- Propriété 3 (Interversion de sommes à indices dépendants) -

Considérons des réels $x_{i,j}$ avec $1 \leq i < j \leq n$. Alors la somme S de tous ces termes est :

$$S = \sum_{i=1}^{n-1} \left(\sum_{j=i+1}^{n} x_{i,j} \right) = \sum_{j=2}^{n} \left(\sum_{i=1}^{j-1} x_{i,j} \right).$$

On notera S sous la forme plus concise $\sum_{1 \leq i < j \leq n} x_{i,j}.$

Exemple. Avec n = 4, on a :

$$\sum_{1 \le i < j \le 4} x_{i,j} = \sum_{i=1}^{3} \left(\sum_{j=i+1}^{4} x_{i,j} \right) = x_{1,2} + x_{1,3} + x_{1,4} + x_{2,3} + x_{2,4} + x_{3,4}$$
$$= \sum_{i=2}^{4} \left(\sum_{j=1}^{j-1} x_{i,j} \right) = x_{1,2} + x_{1,3} + x_{2,3} + x_{1,4} + x_{2,4} + x_{3,4}.$$

3

Exercice 5 1. Écrire sans les symboles \sum l'expression : $\sum_{1 \le i < j \le 5} (j-i)$.

2. Écrire avec le symbole \sum l'expression : $\frac{2}{1} + \frac{3}{1} + \frac{4}{1} + \frac{5}{1} + \frac{3}{2} + \frac{4}{2} + \frac{5}{2} + \frac{4}{3} + \frac{5}{3} + \frac{5}{4}$.

Méthode.

Pour intervertir les symboles \sum dans la somme $\sum_{i=1}^{n-1} \left(\sum_{j=i+1}^{n} x_{i,j}\right)$, on peut procéder ainsi :

- Le système d'indices qui décrit la somme est $1 \le i \le n-1$ et $i+1 \le j \le n$.
- On synthétise ces conditions : $1 \le i < j \le n$.
- On les réorganise en "commençant" par j: $2 \le j \le n$ et $1 \le i \le j-1$.

On en déduit que la somme double s'écrit : $\sum_{i=2}^{n} \left(\sum_{j=1}^{j-1} x_{i,j} \right)$.

Exercice 6 On considère la procédure suivante :

```
n=input('Donner_une_valeur_de_n:_')
for i=1:n do
     for j=i:n do
         S=S+i/j
    end
end
\mathbf{disp}(S)
```

- 1. Entrer dans l'éditeur de Scilab cette procédure. Tester pour différentes valeurs de n. A quoi correspond la valeur de S donnée en sortie ?
- 2. Calculer S "à la main" et vérifier le résultat grâce aux valeurs obtenues avec Scilab.

Exercice 7 On considère les deux sommes suivantes, où n est un entier ≥ 2 :

$$S_n = \sum_{1 \le i \le j \le n} 1,$$
 et $T_n = \sum_{1 \le i < j \le n} i.$

- 1. Construire une procédure qui, étant donné un entier $n \geq 2$, calcule S_n et T_n .
- 2. Calculer ces sommes "à la main" et vérifier avec les résultats obtenus avec Scilab.

Exercice 8 Calculer les sommes doubles suivantes :

(1)
$$\sum_{1 \le i \le j \le n} \frac{1}{j}$$
 (2) $\sum_{1 \le i \le j \le n} ij$ (3) $\sum_{1 \le i < j \le n} (i+j)$ (4) $\sum_{0 \le i, j \le n} 2^{i+j}$ (5) $\sum_{1 \le i, j \le n} |i-j|$ (6) $\sum_{1 \le i, j \le n} \min(i, j)$

(6)
$$\sum_{1 \le i \le r}^{1 \le i \le r} \min(i, j)$$