Correction du TP9

Étude de fonction

Exercice 1

Voici les limites à déterminer :

$$(1) \lim_{x \to -\infty} \frac{x}{e^x} = -\infty$$

$$(2) \lim_{x \to 0^{-}} e^{1/x} = 0$$

(3)
$$\lim_{x \to 0^+} \sqrt{\frac{1}{x}} = +\infty$$

(6) $\lim_{x \to 1} \frac{1}{(\ln(x))^2} = +\infty$

(4)
$$\lim_{x \to -\infty} x^2 e^x = 0$$
 par c.c.

(2)
$$\lim_{x \to 0^{-}} e^{1/x} = 0$$

(5) $\lim_{x \to +\infty} \frac{\ln(x)}{e^{x}} = 0$ par c.c.

(6)
$$\lim_{x \to 1} \frac{1}{(\ln(x))^2} = +\infty$$

$$(7) \lim_{x \to 0^+} \frac{e^x}{\sqrt{x}} = +\infty$$

$$(8) \lim_{x \to +\infty} \sqrt{\frac{1}{\ln(x)}} = 0$$

(9)
$$\lim_{x \to 0^+} \sqrt{x} \ln(x) = 0$$
 par c.c.

(10)
$$\lim_{x \to 1^+} e^{1/\ln(x)} = +\infty$$

(11)
$$\lim_{x \to 0^+} \frac{\ln(x)}{e^x} = -\infty$$

(12)
$$\lim_{x \to 0^+} \frac{\sqrt{x}}{\ln(x)} = 0$$

Exercice 2

1. f est définie si $1 + x^2 > 0$ ce qui est toujours vrai. Donc $\mathcal{D}_f = \mathbb{R}$ et f est continue et dérivable sur \mathcal{D}_f . $\lim_{x\to +\infty} f(x) = \lim_{x\to -\infty} f(x) = +\infty$. Pas d'asymptote horizontale ou verticale.

Enfin, $f'(x) = \frac{2x}{1 + x^2}$

2. g est définie si $x^2 - 1 \neq 0 \Leftrightarrow x \neq \pm 1$. Donc $\mathcal{D}_g = \mathbb{R} \setminus \{\pm 1\}$ et g est continue et dérivable sur \mathcal{D}_g .

 $\lim_{x \to -1^{-}} g(x) = \lim_{x \to 1^{+}} g(x) = +\infty, \ \lim_{x \to -1^{+}} g(x) = \lim_{x \to 1^{-}} g(x) = -\infty, \ \lim_{x \to -\infty} g(x) = 0.$

En $+\infty$, on a une forme indéterminée $\frac{\infty}{\infty}$ donc on factorise par le terme dominant :

$$\frac{e^{2x}}{x^2 - 1} = \frac{e^{2x}}{x^2} \times \frac{1}{1 - 1/x^2} \underset{x \to +\infty}{\longrightarrow} +\infty,$$

par croissances comparées. Deux asymptotes verticales d'équation x = -1 et x = 1. Une asymptote horizontale en $-\infty$ d'équation y = 0.

Enfin,
$$g'(x) = \frac{2e^{2x} \times (x^2 - 1) - e^{2x} \times 2x}{(x^2 - 1)^2}$$
.

3. h est définie si $x \neq 0$. Donc $\mathcal{D}_h = \mathbb{R}^*$ et h est continue et dérivable sur \mathcal{D}_h .

 $\lim_{x\to -\infty} h(x) = \lim_{x\to 0^-} h(x) = 0, \ \lim_{x\to +\infty} h(x) = \lim_{x\to 0^+} h(x) = +\infty. \ \text{Une asymptote verticale d'équation } x=0.$ Une asymptote horizontale en $-\infty$ d'équation y=0.

Enfin,
$$h'(x) = \left(1 - \frac{1}{x^2}\right) \exp\left(x + \frac{1}{x}\right)$$
.

4. i est définie si $x^2 + 1 \ge 0$ ce qui est toujours vrai (on a même $x^2 + 1 > 0$). Donc $\mathcal{D}_i = \mathbb{R}$ et i est continue et dérivable sur \mathcal{D}_i .

 $\lim_{x\to +\infty}i(x)=+\infty$. En $-\infty$, on a une forme indéterminée $\infty-\infty$ donc on multiplie par l'expression conjuguée :

$$\sqrt{x^2 + 1} + x = (\sqrt{x^2 + 1} + x) \times \frac{\sqrt{x^2 + 1} - x}{\sqrt{x^2 + 1} - x} = \frac{1}{\sqrt{x^2 + 1} - x} \xrightarrow{x \to -\infty} 0.$$

Pas d'asymptote verticale. Une asymptote horizontale en $-\infty$ d'équation y=0.

Enfin,
$$i'(x) = \frac{2x}{2\sqrt{x^2 + 1}} + 1$$
.

5. j est définie si $\frac{2-x}{x+3} > 0$ et $x+3 \neq 0$. En faisant un tableau de signe, on obtient que $\mathcal{D}_j =]-3,2[$ et jest continue et dérivable sur \mathcal{D}_i .

1

 $\lim_{x\to 2^-} j(x) = -\infty$ et $\lim_{x\to -3^+} j(x) = +\infty$. Deux asymptotes verticales d'équation x=-3 et x=2. Pas d'asymptote horizontale.

ECE1 Lycée Clemenceau, Reims

Enfin,
$$j'(x) = \frac{\frac{(-1) \times (x+3) - (2-x) \times 1}{(x+3)^2}}{\frac{2-x}{x+3}} = \frac{-5}{(x+3)^2} \times \frac{x+3}{2-x} = \frac{-5}{(x+3)(2-x)}.$$

6. k est définie si $x^2 + x + 1 \ge 0$ et si $x^2 + x + 1 \ne 0$ ce qui est toujours vrai. Donc $\mathcal{D}_k = \mathbb{R}$ et k est continue et dérivable sur \mathcal{D}_k .

 $\lim_{x\to+\infty} k(x) = 0$. En $-\infty$, on a une forme indéterminée $\infty - \infty$ donc on factorise par le terme dominant :

$$\frac{1}{\sqrt{x^2 + x + 1}} = \frac{1}{\sqrt{x^2 (1 + 1/x + 1/x^2)}} \xrightarrow[x \to -\infty]{} 0.$$

Pas d'asymptote verticale. Une asymptote horizontale en $\pm \infty$ d'équation y = 0.

Enfin, comme
$$k(x) = (x^2 + x + 1)^{-1/2}$$
, $k'(x) = -\frac{1}{2}(2x+1)(x^2 + x + 1)^{-3/2} = \frac{-2x-1}{2(x^2 + x + 1)^{3/2}}$.

7. l est définie si $x \ge 0$ et si $3 - \sqrt{x} > 0 \Rightarrow 9 > x$. Donc $\mathcal{D}_l = [0, 9[$ et l est continue sur [0, 9[, dérivable sur [0, 9[(d'après les propriétés des fonctions logarithme et racine carrée).

 $l(0) = \ln(3)$ (pas de limite ici car l est continue en 0) et $\lim_{x\to 9^-} l(x) = -\infty$. Une asymptote verticale d'équation x = 9. Pas d'asymptote horizontale.

Enfin,
$$l'(x) = \frac{-\frac{1}{2\sqrt{x}}}{3 - \sqrt{x}} = \frac{-1}{6\sqrt{x} - 2x} = \frac{1}{2x - 6\sqrt{x}}.$$

8. $m(x) = x^{1/x} = \exp\left(\frac{\ln(x)}{x}\right)$ est définie si x > 0 et $x \neq 0$. Donc $\mathcal{D}_m =]0, +\infty[$ et m est continue et dérivable sur \mathcal{D}_m .

 $\lim_{x\to 0^+}\frac{\ln(x)}{x}=-\infty \text{ donc } \lim_{x\to 0^+}m(x)=0 \text{ par composition par exp.}$

 $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0 \text{ par croissances comparées donc } \lim_{x \to +\infty} m(x) = 1 \text{ par composition par exp.}$

Pas d'asymptote verticale. Une asymptote horizontale en $+\infty$ d'équation y=1.

Enfin,
$$m'(x) = \left(\frac{1 - \ln(x)}{x^2}\right) \exp\left(\frac{\ln(x)}{x}\right)$$
.

9. $n(x) = (3-x)^{\ln(x)} = e^{\ln(x)\ln(3-x)}$ est définie si x > 0 et 3-x > 0. Donc $\mathcal{D}_n =]0,3[$ et n est continue et dérivable sur \mathcal{D}_n .

 $\lim_{x\to 0^+}\ln(x)\ln(3-x)=-\infty \text{ donc } \lim_{x\to 0^+}n(x)=0 \text{ par composition par exp.}$

 $\lim_{x \to 3^{-}} \ln(x) \ln(3-x) = -\infty \text{ donc } \lim_{x \to 3^{-}} n(x) = 0 \text{ par composition par exp.}$

Pas d'asymptote verticale ou horizontale.

Enfin,
$$n'(x) = \left(\frac{\ln(3-x)}{x} - \frac{\ln(x)}{3-x}\right) e^{\ln(x)\ln(3-x)}.$$

Exercice 3

- 1. f(x) est définie si x > 0 et si $x \neq 0$. Donc $\mathcal{D}_f =]0, +\infty[$.
- 2. En 0 : $\lim_{x\to 0^+} (\ln(x) + 2x^2 + 2 = -\infty$ et $\lim_{x\to 0^+} x = 0^+$. Donc par quotient, $\lim_{x\to 0^+} f(x) = -\infty$. En particulier \mathcal{C}_f admet une asymptote verticale d'équation x=0.

 $\text{En } +\infty: \ f(x) = \frac{\ln(x) + 2x^2 + 2}{x} = \frac{\ln(x)}{x} + 2x + \frac{2}{x}. \ \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0 \ \text{(par croissance compar\'ee)}, \\ \lim_{x \to +\infty} 2x = +\infty \text{ et } \lim_{x \to +\infty} \frac{2}{x} = 0. \ \text{Donc par somme}, \lim_{x \to +\infty} f(x) = +\infty.$

3. (a) f est continue et dérivable sur $]0, +\infty[$ comme quotient de deux fonctions continues et dérivables sur $]0, +\infty[$ dont le dénominateur ne s'annule pas. On a, pour tout $x \in]0, +\infty[$:

$$f'(x) = \frac{\left(\frac{1}{x} + 4x\right) \times x - (\ln(x) + 2x^2 + 2) \times 1}{x^2} = \frac{2x^2 - \ln(x) - 1}{x^2}.$$

ECE1 Lycée Clemenceau, Reims

(b) g est continue et dérivable sur $]0, +\infty[$ car c'est la somme de fonctions continues et dérivables sur $]0, +\infty[$. On a, pour tout $x \in]0, +\infty[$,

$$g'(x) = 4x - \frac{1}{x} = \frac{4x^2 - 1}{x} = \frac{(2x - 1)(2x + 1)}{x}.$$

On en déduit le tableau de variation de g:

x	0	$\frac{1}{2}$ $+\infty$
g'(x)		- 0 +
g(x)		$g(\frac{1}{2})$

(c) D'après le tableau de variations de g, on a, pour tout $x \in]0, +\infty[$, $g(x) \ge g(\frac{1}{2})$. Donc g admet un minimum sur $]0, +\infty[$ atteint en $\frac{1}{2}$. Et on a :

$$g(\frac{1}{2}) = 2 \times \frac{1}{4} - \ln(\frac{1}{2}) - 1 = \frac{1}{2} + \ln(2) - 1 = \ln(2) - \frac{1}{2} > 0.$$

Donc ce minimum est strictement positif et g est strictement positive sur $]0, +\infty[$.

(d) On remarque que, pour tout $x \in]0, +\infty[$, $f'(x) = \frac{g(x)}{x^2}$. Comme g est strictement positive sur $]0, +\infty[$ (d'après la question précédente), on en déduit que f' est strictement positive sur $]0, +\infty[$. On peut alors en déduire le tableau de variation de f:

x	0	+∞
f'(x)		+
f(x)		+∞

4. (a) Pour tout x > 0, on a :

$$\frac{f(x)}{x} = \frac{\ln(x) + 2x^2 + 2}{x^2} = \frac{\ln(x)}{x^2} + 2 + \frac{2}{x^2} \underset{x \to +\infty}{\longrightarrow} 2,$$

par croissances comparées. Donc a=2.

(b) Pour tout x > 0, on a:

$$f(x) - 2x = \frac{\ln(x) + 2x^2 + 2}{x} - 2x = \frac{\ln(x) + 2}{x} = \frac{\ln(x)}{x} + \frac{2}{x} \underset{x \to +\infty}{\longrightarrow} 0,$$

par croissances comparées. Donc b=0.

- (c) D'après la question précédente, $\lim_{x\to +\infty}(f(x)-2x)=0$. Donc \mathcal{C}_f admet une asymptote oblique Δ d'équation y=2x au voisinage de $+\infty$.
- (d) Pour tout x > 0, $f(x) 2x = \frac{\ln(x) + 2}{x}$. On a :

$$ln(x) + 2 \ge 0 \Leftrightarrow ln(x) \ge -2 \Leftrightarrow x \ge e^{-2}$$
.

On fait un tableau de signes :

x	()		e^{-2}		$+\infty$
ln(x) + 2			_	0	+	
x				+		
f(x) - 2x			_	0	+	

Donc C_f est en dessous de Δ sur $]0, e^{-2}]$ et au dessus de Δ sur $[e^{-2}, +\infty[$ (C_f et Δ se coupent en e^{-2}).

5. On obtient le tracé suivant :

