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Suites récurrentes d’ordre 1 - Suites implicites

Correction - AP 1

Suites récurrentes d’ordre 1

Exercice 1
1. Notons P(n) la propriété : ”un est bien définie et un > 0”. Montrons que P(n) est vraie pour

tout n ∈ N.

Ini. u0 =
5

2
> 0 donc P(0) est vraie.

Héré. Soit n ∈ N. Supposons que P(n) est vraie et montrons P(n+ 1).

Par hypothèse de récurrence, un > 0 donc 1 + un 6= 0 donc un+1 est bien défini. Et

un+1 = 1 +
4

1 + un
> 0. Donc P(n+ 1) est vraie.

Ccl. Par récurrence, un est bien défini et un > 0 pour tout n ∈ N.

2. u1 =
15

7
=

30

14
< u0 =

5

2
=

35

14
.

u2 =
43

15
=

86

30
> u0 =

5

2
=

75

30
.

Donc u1 < u0 < u2 et la suite (un) n’est pas monotone.

3. f est définie, continue et dérivable sur R+ et pour tout x ∈ R+ :

f ′(x) = 4× −1

(1 + x)2
= − 4

(1 + x)2
< 0.

Donc f est strictement décroissante sur R+ avec f(0) = 5 et lim
x→+∞

f(x) = 1 + 0 = 1 donc :

x

f ′(x)

f(x)

0 +∞

−

55

11

4. Supposons que la suite (un) converge vers une limite finie `. Comme f est continue, ` est un
point fixe de f . On résout donc :

f(x) = x⇔ 1 +
4

1 + x
= x⇔ 1 + x+ 4− x(1− x)

1 + x
= 0⇔

{
5− x2 = 0
x 6= −1

⇔ x = ±
√

5.

Comme un > 0 pour tout n ∈ N, ` ≥ 0. Donc ` =
√

5. Ainsi, la seule limite finie possible de la
suite (un) est

√
5.

5. (a) On exprime vn+1 et wn+1 en fonction de vn et wn :

vn+1 = u2n+2 = f(u2n+1) = f(f(u2n)) = f ◦ f(vn)

wn+1 = u2n+3 = f(u2n+2) = f(f(u2n+1)) = f ◦ f(wn).
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La fonction g est donc définie par :

g(x) = f ◦ f(x) = f(f(x)) = 1 +
4

1 + f(x)
= 1 +

4

1 + 1 +
4

1 + x

= 1 +
4

2(1 + x) + 4

1 + x

= 1 +
4(1 + x)

2(1 + x) + 4
= 1 +

2(1 + x)

3 + x
.

(b) g est dérivable car c’est une fonction rationnelle et :

g′(x) =
2(3 + x)− 2(1 + x)

(3 + x)2
=

4

(3 + x)2
> 0.

On en déduit que g est strictement croissante sur R+.

On cherche ensuite le signe de g(x)− x :

g(x)− x = 1 +
2(1 + x)

3 + x
− x =

3 + x+ 2 + 2x− 3x− x2

3 + x
=

5− x2

3 + x
=

(
√

5− x)(
√

5 + x)

3 + x
.

Or sur R+, on obtient immédiatement 3 + x > 0 et
√

5 + x > 0, donc g(x)− x est du signe
de
√

5− x :

x

g′(x)

g(x)

g(x) − x

0
√

5 +∞

+ +

5

3

5

3

33√
5

+ 0 −

Enfin, g est continue et strictement croissante sur [0,
√

5] et sur [
√

5,+∞[ donc :

g([0,
√

5]) = [g(0), g(
√

5)] = [
5

3
;
√

5] ⊂ [0,
√

5]

et

g([
√

5,+∞[) =

[
g(
√

5), lim
x→+∞

g(x)

[
= [
√

5, 3[⊂ [
√

5,+∞[

donc les intervalles [0,
√

5] et [
√

5,+∞[ sont bien stables par g.

(c) La suite (vn) vérifie v0 = u0 =
5

2
. Comparons le à

√
5 :

(
5

2

)2

=
25

4
>

20

4
= 5

donc, comme x 7→
√
x strictement croissante,

5

2
>
√

5.

Comme l’intervalle [
√

5,+∞[ est stable par g, on montre alors par récurrence que pour tout
n ∈ N, vn ≥

√
5. On en déduit alors que pour tout n ∈ N,

vn+1 − vn = g(vn)− vn ≤ 0
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d’après la question 5.(b). La suite (vn) est donc décroissante et minorée par
√

5 donc
converge. Or le seul point fixe de g sur [

√
5,+∞[ est

√
5 (les points fixes sont les solutions

de g(x)−x = 0 obtenues à la question 5.(b) dans le tableau de signe de g(x)−x) donc (vn)
converge vers

√
5.

D’autre part, on a vu que w0 = u1 =
15

7
, qu’on compare à

√
5 :

(
15

7

)2

=
225

49
< 5 =

49× 5

49
=

245

49

donc, comme x 7→
√
x est strictement croissante, 0 <

15

7
<
√

5.

Comme l’intervalle [0,
√

5] est stable par g, on montre alors par récurrence que pour tout
n ∈ N, 0 ≤ wn ≤

√
5. On en déduit alors que pour tout n ∈ N,

wn+1 − wn = g(wn)− wn ≥ 0

d’après la question 5.(b). La suite (wn) est donc croissante et majorée par
√

5 donc converge.
Or le seul point fixe de g sur [0,

√
5] est

√
5 (les points fixes sont les solutions de g(x)−x = 0

obtenues à la question 5.(b) dans le tableau de signe de g(x)− x) donc (wn) converge vers√
5.

(d) Comme les suites (u2n) (termes pairs de la suite (un)) et (u2n+1) (termes impairs de la suite
(un)) convergent vers la même limite, on en déduit que la suite (un) converge vers cette
limite. Donc (un) converge vers

√
5.

Exercice 2 (EDHEC 2023)
1. Au plus simple, on peut proposer la fonction nulle.

Si on veut une fonction un peu plus originale, on peut chercher dans le champ des fonctions
affines. Si f(x) = ax+ b, f(x)− f(y) = a(x− y) donc |f(x)− f(y)| = |a| |x− y|. Il suffit donc
de prendre a tel que |a| < 1.

On peut par exemple proposer l’application affine définie par : ∀x ∈ R, f(x) = −1

3
x+ 4.

2. Soit f une fonction K-contractante. Soit x0 ∈ R. Pour tout x ∈ R,

|f(x)− f(x0)| ≤ K |x− x0| .

Donc, par le théorème d’encadrement :

lim
x→x0

|f(x)− f(x0)| = 0.

Donc lim
x→x0

f(x) = f(x0) et f est continue en x0 pour tout x0 ∈ R.

Donc f est bien continue sur R.

3. Supposons que l’équation f(x) = x admet deux solutions distinctes x1 et x2.

La propriété (∗) donne :
|f(x1)− f(x2)| ≤ K|x1 − x2|.

Comme f(x1) = x1 et f(x2) = x2, on obtient :

|x1 − x2| ≤ K|x1 − x2| ⇒ 1 ≤ K

car |x1 − x2| > 0 (car x1 6= x2). Or K ∈]0, 1[ et on abouti donc à une contradiction.

Ainsi, l’équation f(x) = x admet au plus une solution.
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4. (a) Soit n ∈ N et posons P(n) la propriété : ”|un+1 − un| ≤ Kn |u1 − u0|”.

Ini. |u1 − u0| ≤ K0|u1 − u0| donc P(0) est vraie.

Héré. Soit n ∈ N. Supposons que P(n) est vraie et montrons P(n+ 1).

|un+2 − un+1| = |f(un+1)− f(un)| ≤ K|un+1 − un|.

Or, avec l’hypothèse de récurrence, on obtient :

|un+2 − un+1| ≤ K ×Kn|u1 − u0| = Kn+1|u1 − u0|.

Donc P(n+ 1) est vraie.

Ccl. Par le principe de récurrence, pour tout n ∈ N, |un+1 − un| ≤ Kn |u1 − u0|.
(b) Posons vn = un+1 − un. On a donc |vn| ≤ Kn|u1 − u0| avec la question précédente.

La série géométrique
∑
n∈N

Kn est convergente car 0 < K < 1. Donc la série de terme général

Kn|u1 − u0| converge et, par le critère de majoration des séries à termes positifs, la série∑
n∈N
|vn| converge.

La série
∑
n∈N

vn est donc absolument convergente et donc convergente.

Considérons Sn la somme partielle de rang n de la série convergente
n∑

k=0

vk. Par télescopage,

Sn =
n∑

k=0

(uk+1 − uk) = un − u0.

Donc un = Sn + u0 et, comme la série
∑
n∈N

vn converge, (Sn) converge vers un réel `.

Donc lim
n→+∞

un = `+ u0.

On a bien prouver que la suite (un)n∈N est convergente vers un réel a.

(c) Comme f est continue, on a par passage à la limite dans la relation un+1 = f(un), que
a = f(a).

L’équation f(x) = x admet donc une solution a = `+u0 et elle est unique puisqu’il ne peut
y en avoir plus qu’une (question 2).

5. (a) Pour tout i ∈ N, |ui+1 − ui| ≤ Ki |u1 − u0|.
Donc, en sommant, on obtient bien :

n+p−1∑
i=n

|ui+1 − ui| ≤
n+p−1∑
i=n

Ki × |u1 − u0| .

(b) On commence par remarquer que un+p − un =

n+p−1∑
i=n

(ui+1 − ui). Donc :

|un+p − un| =

∣∣∣∣∣
n+p−1∑
i=n

(ui+1 − ui)

∣∣∣∣∣
≤

n+p−1∑
i=n

|ui+1 − ui| (inégalité triangulaire)

≤
n+p−1∑
i=n

Ki × |u1 − u0| = |u1 − u0|
n+p−1∑
i=n

Ki
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Or d’après le cours (somme géométrique), on a :

n+p−1∑
i=n

Ki = Kn × 1−K(n+p−1)−n+1

1−K
= Kn × 1−Kp

1−K
.

On a bien l’inégalité : |un+p − un| ≤ Kn × 1−Kp

1−K
|u1 − u0|.

(c) L’inégalité précédente étant vraie pour tout p ∈ N, on fait tendre p vers +∞. On sait que
lim

p→+∞
un+p = a et lim

p→+∞
Kp = 0 donc, on obtient l’inégalité :

|a− un| ≤
Kn

1−K
× |u1 − u0| .

6. (a) t 7→ 1 + et est C∞ sur R et strictement positive, donc, par quotient, f est C∞ sur R.

Pour dériver, on peut écrire f(t) =
(
1 + et

)−1
. Pour tout t ∈ R :

f ′(t) = −et
(
1 + et

)−2
= − et

(1 + et)2

f ′′(t) =
(
−et

(
1 + et

)−2)− 2
(
−et
)2 (

1 + et
)−3

=
[
−et(1 + et) + 2e2t

] 1

(1 + et)3

= et(et − 1)
1

(1 + et)3

(b) f ′′(t) est du signe de et − 1 et et ≥ 1⇐⇒ t ≥ 0. On peut dresser le tableau des variations
de f ′ sur R :

t

f ′′(t)

f ′

−∞ 0 +∞

− 0 +

00

f ′(0)f ′(0)

00

Pour les limites :

• en +∞, f ′(t) ∼ − 1

et
→ 0 donc lim

t→+∞
f ′(t) = 0.

• en −∞, le numérateur de f ′(t) tend vers 0 et son dénominateur tend vers 1 donc
lim

t→−∞
f ′(t) = 0.

Pour tout t ∈ R, f ′(t) est négatif donc |f ′(t)| = −f ′(t) et le maximum de |f ′(t)| sur R est

M = −f ′(0) =
1

4
.

On a donc bien : ∀t ∈ R, |f ′(t)| ≤ 1

4
.

(c) f est C1 sur R et ∀t ∈ R, |f ′(t)| ≤ 1

4
. On peut donc appliquer l’inégalité des accroissements

finis :

∀x, y ∈ R, |f(x)− f(y)| ≤ 1

4
|x− y|.

Ainsi, f est bien
1

4
-contractante.
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(d) Par définition de la suite (un), on peut appliquer les résultats de la question 4 (car f est

K-contractante avec K =
1

4
∈]0, 1[). Donc la suite (un) converge vers un réel a.

(e) La fonction Python qui calcule le terme d’indice n d’une suite est un grand classique. On
complète :

1 def suite(n):

2 u = 0

3 for k in range(1,n+1):

4 u = 1/(1+np.exp(u))

5 return u

(f) On a vu à la question 5.(c) que :

|un − a| ≤
Kn

1−K
|u1 − u0|

Ici K =
1

4
donc

Kn

1−K
=

1

4n
× 4

3
=

1

3× 4n−1
.

De plus, u1 = f(0) =
1

2
donc |u1 − u0| =

1

2
. Ainsi,

|un − a| ≤
1

2
× 1

3× 4n−1
=

2

3× 4n
.

On veut une valeur approchée de a à 10−3 près, donc il suffit d’avoir
2

3× 4n
≤ 10−3 :

2

3× 4n
≤ 10−3 ⇐⇒ 4n ≥ 2× 103

3

(g) Poursuivons le calcul précédent :

4n ≥ 2× 103

3
⇐⇒ n ln(4) ≥ ln(2) + 3 ln(10)− ln(3)

⇐⇒ n ≥ ln(2) + 3 ln(10)− ln(3)

ln(4)

On prendra donc :

n =

⌊
ln(2) + 3 ln(10)− ln(3)

ln(4)

⌋
+ 1.

On peut donc proposer d’ajouter les lignes suivantes au script Python précédent :

1 n = np.floor((np.log(2)+3*np.log(10)-np.log(3))/np.log

(4))+1

2 print(suite(n))

On peut aussi faire moins de maths et une boucle :

1 n = 0

2 while 4**n < 2000/3:

3 n = n+1

4 print(suite(n))

Dans les deux cas on obtient l’affichage suivant :

0.401384704466
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Suites implicites

Exercice 3
1. On applique le théorème de la bijection :

• Pour tout n ∈ N, la fonction fn est polynomiale, donc continue.

• fn est également dérivable sur R+ (car polynomiale), et on a pour tout x ∈ R+ :

f ′n(x) = −1− nxn−1 < 0.

Donc fn est strictement décroissante sur R+.

• On a fn(0) = 1 et lim
x→+∞

fn(x) = −∞.

D’après le théorème de la bijection, fn réalise donc une bijection de R+ sur ] −∞, 1]. Puisque
0 ∈] −∞, 1], l’équation fn(x) = 0 admet donc une unique solution sur R+. On la note dans la
suite un.

2. (a) On a fn(0) = 1, fn(un) = 0 et fn(1) = −1. Donc fn(0) > fn(un) > fn(1). Comme fn est
strictement décroissante, 0 < un < 1 donc un appartient à l’intervalle ]0, 1[.

(b) Puisque un ∈]0, 1[, on a un+1
n ≤ unn, et donc :

fn+1(un) = 1− un − un+1
n ≥ 1− un − unn = fn(un) = 0.

Puisque fn+1 est strictement décroissante sur R+ et que

fn+1(un) ≥ 0 = fn+1(un+1),

on en déduit que un ≤ un+1. Ceci étant vrai pour tout n ∈ N, on en déduit que la suite
(un) est croissante.

(c) La suite (un) est croissante et majorée (car un ∈]0, 1[ pour tout n ∈ N). Par le théorème
des suites monotones, on peut donc conclure que la suite (un) converge vers une limite `
finie. De plus on a :

∀n ∈ N, 0 < un < 1.

Par passage à la limite dans une inégalité, on obtient donc que 0 ≤ ` ≤ 1.

(d) Par l’absurde, supposons que 0 ≤ ` < 1. Pour tout n ∈ N, on a :

fn(un) = 0 soit 1− un − unn = 0.

(un) étant croissante et convergente vers `, on a pour tout n ∈ N :

0 ≤ un ≤ `, d’où 0 ≤ unn ≤ `n.

Or par hypothèse 0 ≤ ` < 1, donc on a lim
n→+∞

`n = 0. Par le théorème d’encadrement, on

en déduit que lim
n→+∞

unn = 0. Ainsi tous les termes de l’égalité 1− un − unn = 0 convergent.

Par passage à la limite, on en déduit que :

1− `− 0 = 0 soit encore ` = 1.

D’où une contradiction puisque ` < 1 par hypothèse. On peut donc conclure que ` = 1.

3. (a) Puisque un ∈]0, 1[ pour tout n ∈ N, on a bien vn = 1 − un ∈]0, 1[ et ln(vn) est bien défini
pour tout n ∈ N. De plus on a 1− un − unn = 0 et donc :

ln(vn) = ln(1− un) = ln(unn) = n ln(un) = n ln(1 + (un − 1)).

Puisque lim
n→+∞

un − 1 = 0, on a :

ln(1 + (un − 1)) ∼
n→+∞

un − 1 = −vn.

D’où finalement ln(vn) ∼
n→+∞

−nvn.
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(b) On a lim
n→+∞

vn = 0+, donc lim
n→+∞

ln(vn) = −∞. D’autre part, on a ln(vn) ∼
n→+∞

−nvn.

Donc lim
n→+∞

− ln(vn)

nvn
= 1 et on obtient lim

n→+∞
ln

(
− ln(vn)

nvn

)
= 0. Par opération sur les

limites, on en déduit que :

lim
n→+∞

ln

(
− ln(vn)

nvn

)
− ln(vn)

= 0.

On a − ln(vn) > 0 et nvn > 0, d’où :

ln

(
− ln(vn)

nvn

)
− ln(vn)

=
ln(− ln(vn))− ln(n)− ln(vn)

− ln(vn)
=

ln(− ln(vn))

− ln(vn)
+

ln(n)

ln(vn)
+ 1.

On a donc finalement :

lim
n→+∞

ln

(
− ln(vn)

nvn

)
− ln(vn)

= 0 ⇒ lim
n→+∞

ln(− ln(vn))

− ln(vn)
+

ln(n)

ln(vn)
+ 1 = 0.

De plus, lim
n→+∞

− ln(vn) = +∞ et lim
u→+∞

ln(u)

u
= 0 par croissances comparées, d’où par

composition des limites :

lim
n→+∞

ln(− ln(vn))

− ln(vn)
= 0.

On a donc lim
n→+∞

ln(n)

ln(vn)
= −1, et donc ln(vn) ∼

n→+∞
− ln(n).

(c) On a montré que ln(vn) ∼
n→+∞

−nvn et que ln(vn) ∼
n→+∞

− ln(n).

Donc, on a nvn ∼
n→+∞

ln(n), soit encore vn ∼
n→+∞

ln(n)

n
.

4. La série
∑

vn est à termes positifs d’après les questions précédentes. On utilise le théorème de

comparaison des séries à termes positifs.

• vn ∼
n→+∞

ln(n)

n
;

• 0 ≤ 1

n
≤ ln(n)

n
pour tout n ≥ 3 ;

• la série
∑ 1

n
est divergente (série harmonique).

Par théorème de comparaison, on en déduit que
∑

vn diverge.

De même, la série
∑

v2n est à termes positifs, et on a :

• v2n ∼
n→+∞

ln(n)2

n2
;

•
ln(n)2

n2
= o

(
1

n3/2

)
puisque

ln(n)2

n2
1

n3/2

=
ln(n)2

n1/2
→ 0 par croissances comparées ;

• la série
∑ 1

n3/2
est convergente (série de Riemann d’exposant α = 3/2 > 1).

Par théorème de comparaison, on en déduit que
∑

v2n converge.
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Exercice 4
1. (a) fk est dérivable sur ]0, 1[ et ]1,+∞[ car x 7→ ln(x), x 7→ xk et x 7→ x−1 le sont, et x−1 6= 0.

De plus :

f ′k(x) =

k(ln(x))k−1

x
(x− 1)− (ln(x))k

(x− 1)2
=

ln(x)k−1

(x− 1)2
× k(x− 1)− x ln(x)

x
.

(b) On considère le taux d’accroissement :

fk(x)− fk(1)

x− 1
=

ln(x)k

(x− 1)2
=

(
ln(x)

x− 1

)2

× ln(x)k−2.

Or lim
x→1

ln(x)

x− 1
= ln′(1) = 1 car c’est le taux d’accroissement de la fonction logarithme en 1

(qui est dérivable en ce point). Donc :

• Si k = 2, lim
x→1

fk(x)− fk(1)

x− 1
= 1 donc f2 est dérivable et f ′2(1) = 1.

• Si k ≥ 3, lim
x→1

fk(x)− fk(1)

x− 1
= 0 donc fk est dérivable et f ′k(1) = 0.

(c) ϕk est dérivable sur R+ et

ϕ′k(x) = k − x

x
− ln(x) = k − 1− ln(x)

qui est strictement positive avant ek−1, nulle en ek−1 et strictement négative après. Donc
ϕk est strictement croissante sur [0, ek−1] et strictement décroissante sur [ek−1,+∞[.

(d) La fonction ϕk est continue et strictement croissante sur ]1, ek−1] donc réalise une bijection
de ]1, ek−1] dans ]ϕk(1), ϕk(ek−1)] =]0, ek−1 − k].

Or 0 /∈]0, ek−1 − k] (ϕk est strictement croissante sur l’intervalle donc ek−1 − k > 0), donc
l’équation ϕk(x) = 0 n’admet aucune solution sur ]1, ek−1].

La fonction ϕk est continue et strictement décroissante sur ]ek−1,+∞[ donc réalise une
bijection de ]ek−1,+∞[ dans ] lim

x→+∞
ϕk(x), ϕk(ek−1)[=]−∞, ek−1 − k[ car :

ϕk(x) = kx− k − x ln(x) = −x ln(x)

(
1 +

k

x ln(x)
− k

ln(x)

)
−→

x→+∞
−∞

par produit, quotient et somme de limites.

Or 0 ∈] −∞, ek−1 − k[ (on a vu que ek−1 − k > 0), donc l’équation ϕk(x) = 0 admet une
unique solution sur ]ek−1,+∞[.

Cela fait donc au total une unique solution ak sur ]1,+∞[, qui vérifie ak ≥ ek−1.

(e) Pour tout x ∈]0,+∞[, x 6= 1, on a : f ′k(x) =
ln(x)k−1

(x− 1)2
× ϕk(x)

x
. On en déduit les variations

de fk :

• Si k est pair et k ≥ 2 :
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x

ln(x)k−1

ϕk(x)

f ′k(x)

fk(x)

0 1 ak +∞

− 0 + +

− 0 + 0 −

+ + 0 −

−∞−∞ 00

0

• Si k est impair et k ≥ 3 :

x

ln(x)k−1

ϕk(x)

f ′k(x)

fk(x)

0 1 ak +∞

+ 0 + +

− 0 + 0 −

− 0 + 0 −

+∞+∞

00 00

2. (a) On a déjà vu que ek−1 ≤ ak. Pour l’autre inégalité, comme ak est implicite, on compose
par ϕk :

ϕk(ek) = k(ek − 1)− ek × k = −k < 0 et ϕk(ak) = 0

donc ϕk(ek) ≤ ϕk(ak). Or ϕk est strictement décroissante sur [ek−1,+∞[ donc on obtient
ek ≥ ak. Finalement, on a bien ek−1 ≤ ak ≤ ek.

Par passage à la limite dans la seule inégalité de gauche, ak diverge vers +∞ lorsque k tend
vers +∞.

(b) Par définition de ak, on sait que :

ϕk(ak) = 0 ⇔ k(ak − 1)− ak ln(ak) = 0.

On remplace ak par ek(1 + bk), et on obtient :

k(ek(1 + bk)− 1) = ek(1 + bk)× ln(ek(1 + bk))

⇒ k(ek(1 + bk)− 1) = ek(1 + bk)× (ln(ek) + ln(1 + bk))

⇒ k(ek(1 + bk)− 1) = ek(1 + bk)× (k + ln(1 + bk))

⇒ kek(1 + bk)− k = kek(1 + bk) + ek(1 + bk) ln(1 + bk)

⇒ −k = ek(1 + bk) ln(1 + bk)

⇒ −ke−k = (1 + bk) ln(1 + bk).

(c) Avec la question précédente, on a :

ln(1 + bk) =
−ke−k

1 + bk
=
−ke−k
ak
ek

=
−k
ak
.
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Or ak ≥ ek−1 d’après la question 2.(a). Donc, par passage à l’inverse puis en multipliant
par −k < 0 :

ak ≥ ek−1 ⇒
1

ak
≤ e1−k ⇒ −k

ak
≥ −ke1−k ⇒ ln(1 + bk) ≥ −ke1−k.

On va alors chercher la limite de ln(1 + bk) par encadrement. On remarque que :

−ke1−k = −e× ke−k −→
k→+∞

0

par croissances comparées. Pour avoir l’autre coté, on essaie de majorer ln(1 + bk) par 0.
D’après la définition de bk :

ln(1 + bk) = ln
(ak
ek

)
≤ 0

car ln est croissante et
ak
ek
≤ 1 en divisant l’inégalité de droite de la question 2.(a) par

ek > 0. On en déduit donc que

0 ≥ ln(1 + bk) ≥ −ke1−k −→
k→+∞

0

donc par encadrement et continuité de exp,

ln(1 + bk) −→
k→+∞

0 donc 1 + bk −→
k→+∞

e0 = 1 donc bk −→
k→+∞

1− 1 = 0.

Enfin, pour trouver un équivalent de bk, on revient à l’égalité de la question précédente :

−ke−k = (1 + bk) ln(1 + bk).

On vient de voir que bk → 0, donc (1 + bk) ∼ 1 et ln(1 + bk) ∼ bk. Par produit des
équivalents,

−ke−k = (1 + bk) ln(1 + bk) ∼ bk.

Donc bk ∼ −ke−k.

(d) On isole le o() pour se ramener à une limite :

ak = ek − k + o(k)⇔ ak − ek + k = o(k)⇔ ak − ek + k

k
−→

k→+∞
0.

Or ak − ek = ekbk, donc :

ak − ek + k

k
=
bke

k + k

k
=
bke

k

k
+ 1.

Or on a vu que bk ∼ −ke−k donc
bke

k

k
∼ −ke

−kek

k
= −1. On en déduit que

bke
k

k
−→

k→+∞
−1 puis

ak − ek + k

k
=
bke

k

k
+ 1 −→

k→+∞
0.

D’après l’équivalence écrite au début de la question, on a donc bien ak = ek − k + o(k).
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