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Suites récurrentes d’ordre 1 - Suites implicites

Suites récurrentes d’ordre 1

Exercice 1

1. Notons Z(n) la propriété : "u,, est bien définie et u,, > 0”. Montrons que #(n) est vraie pour
tout n € N.

Ini. vy = g > 0 donc Z(0) est vraie.

Héré. Soit n € N. Supposons que Z(n) est vraie et montrons Z(n + 1).
Par hypotheése de récurrence, u, > 0 donc 1+ u, # 0 donc u,y1 est bien défini. Et

Upt1 =1+ T > 0. Donc Z(n + 1) est vraie.
Ccl. Par récurrence, u,, est bien défini et u,, > 0 pour tout n € N.
y w15 30 585
7 14 2 14
43 86 5 75
T T30 0T 2T 30

Donc u; < ug < ug et la suite (u,) n’est pas monotone.
3. f est définie, continue et dérivable sur R et pour tout z € R, :

, . 4
Fa) =4x g = ~agae <%

Donc f est strictement décroissante sur Ry avec f(0) =5 et ligl_l f(x)=140=1 donc:
T—r+00

x 0 +o00

/(@) \

4. Supposons que la suite (u,) converge vers une limite finie £. Comme f est continue, ¢ est un
point fixe de f. On résout donc :

1

5—22=0
241 <:>m—:|:\/5.

Comme u,, > 0 pour tout n € N, £ > 0. Donc ¢ = /5. Ainsi, la seule limite finie possible de la
suite (u,) est v/5.

flz) =z 1+

l+z+4—2(1—2)
=& =0&
1+ 1+=x

5. (a) On exprime v,11 et wy41 en fonction de v, et wy, :

Ups1 = Upy2 = f(uong1) = f(f(uzn)) = f

Wpy1 = Uzny3 = f(uant2) = f(f(uant1)) = f o flwn).
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La fonction g est donc définie par :

4 4

o) = fof@) =fUe) =1+ —— 144
1+z

4 4(1+ x) 2(1 + )

= 14— =14 — =14

R R ST A B R
1+ 2
(b) g est dérivable car c¢’est une fonction rationnelle et :
: 2(3+ ) — 2(1 + ) 1
= = > 0.
g (JU) (3 +l‘)2 (3+$>2

On en déduit que g est strictement croissante sur R .

On cherche ensuite le signe de g(z) — z :

g(x)_$:1+2(1—|—x)_$:3+x+2+2x—3w—x2 :5—962 _ (\/5—36)(\/5—1—1’)
3+ 3+ 3+ 3+

Or sur R, , on obtient immédiatement 3 +x > 0 et /5 + 2 > 0, donc g(x) — x est du signe

de Vb —x :

w | ot

g(x) —x + 0 —

Enfin, g est continue et strictement croissante sur [0, /5] et sur [v/5, +-0o[ donc :

9((0, VB)) = [9(0), g(V5)] = [25 V5] € [0, V5]

3
et
o(1V5. +o0]) = [o(V5). lim_gta)| = 1V5.31c [V5, +ox]
donc les intervalles [0, /5] et [v/5, +oco[ sont bien stables par g.

Comparons le a NGE

5\ 25 20,
2) 4 4

. . 5
done, comme z — +/x strictement croissante, B > /5.

S
(c) La suite (vy,) vérifie vg = uy = 7

Comme l'intervalle [\/5, +oo] est stable par g, on montre alors par récurrence que pour tout
n €N, v, > /5. On en déduit alors que pour tout n € N,

Un+1 — Up = g(vn) —v, <0
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d’aprés la question 5.(b). La suite (v,) est donc décroissante et minorée par v/5 donc
converge. Or le seul point fixe de g sur [v/5, +oo est v/5 (les points fixes sont les solutions
de g(x) —x = 0 obtenues a la question 5.(b) dans le tableau de signe de g(z) — x) donc (vy,)

converge vers V5.

15
D’autre part, on a vu que wy = uy = = qu’on compare a V5 :

1Y _225 __49x5 _ 245
7) 49 49 49

. . 5
done, comme z — /x est strictement croissante, 0 < - < /5.

Comme D'intervalle [0, \/5] est stable par g, on montre alors par récurrence que pour tout
neN, 0<w, < V5. On en déduit alors que pour tout n € N,

Wn+1 — Wp = g(wn) —wp >0

d’apres la question 5.(b). La suite (w,,) est donc croissante et majorée par /5 donc converge.
Or le seul point fixe de g sur [0, v/5] est v/5 (les points fixes sont les solutions de g(z) —2 = 0
obtenues & la question 5.(b) dans le tableau de signe de g(z) — x) donc (wy,) converge vers

V5.

Comme les suites (ugy,) (termes pairs de la suite (uy,)) et (ug,+1) (termes impairs de la suite
(up)) convergent vers la méme limite, on en déduit que la suite (u,) converge vers cette
limite. Donc (u,,) converge vers /5.

Exercice 2 (EDHEC 2023)
1. Au plus simple, on peut proposer la fonction nulle.

Si on veut une fonction un peu plus originale, on peut chercher dans le champ des fonctions
affines. Si f(x) =ax+0b, f(x)— f(y) =a(x—y) donc |f(z)— f(y)| = |a| |x —y|. 1l suffit donc
de prendre a tel que |a| < 1.

1
On peut par exemple proposer 'application affine définie par : Vx € R, f(z) = —= = + 4.

3

Soit f une fonction K-contractante. Soit zg € R. Pour tout x € R,

|f(z) — f(xo0)] < K |z — 0] .

Dongc, par le théoreme d’encadrement :

lim [f(z) = f(zo)| = 0.

T—TQ

Donc lim f(z) = f(xp) et f est continue en zy pour tout xg € R.
T—T0
Donc f est bien continue sur R.

Supposons que I’équation f(x) = x admet deux solutions distinctes x; et xs.

La propriété (x) donne :

|f(z1) = f(22)| < K|z1 — 22|

Comme f(z1) = 1 et f(z2) = x2, on obtient :

|:c1—x2\§K]x1—x2|j1§K

car |x1 — 2| > 0 (car 1 # x2). Or K €]0,1[ et on abouti donc & une contradiction.

Ainsi, I’équation f(z) = x admet au plus une solution.
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Soit n € N et posons &(n) la propriété : ”|up+1 — up| < K™ |ug — ug

|77

Ini. |u; — ug| < K°uy — up| donc 2(0) est vraie.

Héré. Soit n € N. Supposons que Z(n) est vraie et montrons Z(n + 1).

(b)

(b)

[Un+2 = Unt1| = [f(Unt1) — flun)] < Klunt1 — gl

Or, avec ’hypothese de récurrence, on obtient :
n _ grn+l
|un+2—un+1| SKXK |U1—UO|—K |U1—U0|.

Donc Z(n + 1) est vraie.

Ccl. Par le principe de récurrence, pour tout n € N, |up+1 — up| < K™ |ug — ug|.
Posons v, = up41 — up. On a donc |v,| < K™ u; — ug| avec la question précédente.

La série géométrique g K™ est convergente car 0 < K < 1. Donc la série de terme général
neN
K"™|u; — ug| converge et, par le critere de majoration des séries & termes positifs, la série

g |v| converge.
neN
La série g vy, est donc absolument convergente et donc convergente.

neN
n

Considérons S;, la somme partielle de rang n de la série convergente g vg. Par télescopage,
k=0
n

S, = Z(ulﬁ_l — UR) = Up — Ug.
k=0

Donc u, = S, + ug et, comme la série g v, converge, (S,) converge vers un réel £.
neN

Donc lim wu, = £+ ug.
n—-+00

On a bien prouver que la suite (uy,)nen est convergente vers un réel a.

Comme f est continue, on a par passage a la limite dans la relation wu,+1 = f(uy), que
a= f(a).

L’équation f(x) = x admet donc une solution a = £+ ug et elle est unique puisqu’il ne peut
y en avoir plus qu’une (question 2).

Pour tout i € N, |u;y1 — w;| < K*|uy — ugl.

Donc, en sommant, on obtient bien :

n—+p—1 n—+p—1
E |ui+1—ui\ < E K* % \ul—uo .
i=n i=n
n+p—1
On commence par remarquer que Up4p — Uy = E (ui+1 — u;). Donc :
i=n
n—+p—1
Un+p — Un| = E (Uit1 — ui)
i=n
n+p—1
< E |uiv1 — u;| (inégalité triangulaire)
i=n
n+p—1 n+p—1
<

D K xfur—ug| = fur —ug| Y K
i=n i=n
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Or d’apres le cours (somme géométrique), on a :

n+p—1 _1)—
. 1 — K(ntp—1)—n+l1 1— KP
Kz — Kn — Kn .
; % 1-K “1-K
1-KP

On a bien l'inégalité : |uy4p — up| < K™ X TR |ur — ug-

(c¢) L’inégalité précédente étant vraie pour tout p € N, on fait tendre p vers +o0o. On sait que

lim wup4p=aet lim K? =0 donc, on obtient I'inégalité :
p——+o00 p——+o00

n

- K

|a—un\§1 X |up — gl -
6. (a) t— 1+ e’ est C™ sur R et strictement positive, donc, par quotient, f est C* sur R.
Pour dériver, on peut écrire f(t) = (1 + et)fl. Pour tout t € R :

et

(L+et)?
7 = (e 0+e) ) —2 (=) (1)

= [—e'(1+e") +2¢*]

i) = —é (1 + et)_2 =—

(1+et)?
1

= el —1) m

(b) f"(t) est du signe de €' — 1 et ¢! > 1 <=t > 0. On peut dresser le tableau des variations

de ' sur R :
t —00 0 400
f'(@) - 0 +
0 0
(0

Pour les limites :
1
/ ~ 1 !/ =0.
e en +oo, f/(t) = 0 donc t_gnoof (t)=0
e cn —o0, le numérateur de f'(t) tend vers 0 et son dénominateur tend vers 1 donc
lim f'(t) = 0.
t——o0

Pour tout ¢t € R, f’(t) est négatif donc |f/(t)] = —f'(¢) et le maximum de |f/(¢)| sur R est
1

| =

On a donc bien : Vt € R, |f/(t)] <

(c) fest ClsurRetVt R, |f(t)] <-. On peut donc appliquer I'inégalité des accroissements

finis :

A~ =

Ve,y eR, [f(2) = fy)l < 7 |z —yl.

=

1
Ainsi, f est bien Z—contractante.
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Par définition de la suite (u,), on peut appliquer les résultats de la question 4 (car f est

K-contractante avec K = 1 €]0, 1[). Donc la suite (u,) converge vers un réel a.

La fonction Python qui calcule le terme d’indice n d’une suite est un grand classique. On
complete :

1 [def suite(n):

2 u=20

3 for k in range(1,n+1):

4 u = 1/(1+np.exp(u))
5 return u

On a vu a la question 5.(c) que :

|up, —al < T &K |ur — wuo
. 1 K" 1 4 1
IClezdoncl_K:EX§:W.

1 1
De plus, u; = f(0) = 5 donc |u; — ug| = 3 Ainsi,

1 2

1
Z = .
2 3 x4n-1l 3 x4n

luy, —al <

<1073 :
X 4n =

On veut une valeur approchée de a & 10~2 pres, donc il suffit d’avoir 3

2 2 x 103
<1078 = 4" >
3 x4n — - 3

Poursuivons le calcul précédent :

2 % 103
>
- 3

4TL

<= nln(4) > In(2) + 31n(10) — In(3)

In(2) + 31n(10) — In(3)

>
= n> (1)

On prendra donc :

In(2) + 31n(10) — In(3)
e R

On peut donc proposer d’ajouter les lignes suivantes au script Python précédent :
1 [n = np.floor((np.log(2)+3*np.log(10)-np.log(3))/np.log
(4))+1

2 |print (suite(n))

On peut aussi faire moins de maths et une boucle :

1|ln =20
2 |while 4%*n < 2000/3:
3 n = n+l

4 |print(suite(n))

Dans les deux cas on obtient 'affichage suivant :

0.401384704466
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Suites implicites

Exercice 3
1. On applique le théoreme de la bijection :

e Pour tout n € N, la fonction f,, est polynomiale, donc continue.

e f, est également dérivable sur Ry (car polynomiale), et on a pour tout x € Ry :

fi(z) =—1—na""1 <0.

Donc f,, est strictement décroissante sur R.

e Ona f,(0) =1et xgrfm fn(x) = —00.

D’apres le théoreme de la bijection, f,, réalise donc une bijection de R sur | — oo, 1]. Puisque

0 €]

— 00, 1], '"équation f,(z) = 0 admet donc une unique solution sur R;. On la note dans la

suite uy,.

2. (a)
(b)

On a f,(0) =1, fo(un) =0et f,(1) = —1. Donc f(0) > fn(un) > fr(l). Comme f, est
strictement décroissante, 0 < u,, < 1 donc u,, appartient a 'intervalle |0, 1].

Puisque u, €]0,1[, on a u?*! < u? et donc :
frp1(un) =1 —up —u™™ > 1 —wu, —u® = fo(u,) = 0.
Puisque f,41 est strictement décroissante sur R et que

fn—l—l(un) >0= fn+1(un+1)7

on en déduit que u, < up+1. Ceci étant vrai pour tout n € N, on en déduit que la suite
(up) est croissante.

La suite (uy) est croissante et majorée (car u, €]0, 1] pour tout n € N). Par le théoreme
des suites monotones, on peut donc conclure que la suite (u,) converge vers une limite ¢
finie. De plus on a :

YneN, 0<u,<]l.
Par passage a la limite dans une inégalité, on obtient donc que 0 < ¢ < 1.

Par ’absurde, supposons que 0 < £ < 1. Pour tout n € N, on a :
fo(up) =0 soit 1—wu,—u,=0.
(un) étant croissante et convergente vers ¢, on a pour tout n € N :
0<u, <t dou 0<u, </

Or par hypothese 0 < ¢ < 1, donc on a lirf " = 0. Par le théoréeme d’encadrement, on
n—-+00

en déduit que lil_}_l u, = 0. Ainsi tous les termes de 1’égalité 1 — u,, — u]} = 0 convergent.
n—-+400

Par passage a la limite, on en déduit que :
1—-¢—-0=0 soit encore £ = 1.
D’ot1 une contradiction puisque ¢ < 1 par hypothese. On peut donc conclure que ¢ = 1.

Puisque u,, €]0,1[ pour tout n € N, on a bien v, = 1 — u, €]0,1[ et In(v,) est bien défini
pour tout n € N. De pluson a 1 —u, —u! =0 et donc :

In(vy,) = In(1 — up) = In(uy) = nln(u,) = nln(l + (u, — 1)).

n

Puisque lim w, —1=0,0na:
n—-+oo

In(1+ (up —1)) ~ wup—1=—v,.

n—-+o0o

D’ou finalement In(v,) ~ —nuw,.
n—-+00
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b li =0",d lim 1 = —oo. D’aut t 1 ~  —nuy,.
(b) On a i v, 0™, donc Jm n(vy,) 00 autre part, on a In(vy,) Wl TMn

—In(vy,) —In(vy,)

Donc lim = 1 et on obtient lim ln< > = 0. Par opération sur les

n——+o00 nuy n—+00 NUp
limites, on en déduit que :
—In(v
In << n)>
. Nup
lim ———2 =0.
n—+oo  —In(vy)

On a —In(v,) > 0 et nv, > 0, d’ou :

—In(vy,)
In ( nup, > _ In(—~In(v,)) —In(n) — In(v,) In(—In(v,)) In(n)

—In(v,) —In(vy)  —1In(vn) In(vy,)

+ 1.
On a donc finalement :

In(—In(v,))  In(n)

li = li 1=0.
ntoo  — In(vy,) oo — In(vy,) In(vy,) -
In(u)

De plus, lim —In(v,) = 400 et lim
n——+o0o u—+o00 U
composition des limites :

= 0 par croissances comparées, d’ou par

In(—In(vy,))

li = 0.
nﬁlr—&r-loo —In(vy,) 0
. In(n)
On a donc lim = —1, et donc In(vy,) ~ —In(n).
n—-+oo 1n(1}n> n——+oo
(c) On a montré que In(vy,) Loy TN et que In(vy,) ety In(n).
In(n)

Donc, on a nv,, ~ In(n), soit encore v,, ~
n——+o0o n——+00 n

4. La série E vy, est & termes positifs d’apres les questions précédentes. On utilise le théoreme de
comparaison des séries a termes positifs.

pour tout n > 3 ;
- 1 . - .
e la série E — est divergente (série harmonique).
n

Par théoreme de comparaison, on en déduit que g vy, diverge.

De méme, la série E v,% est a termes positifs, et on a :

2
o0 ~ In(n) .
" p—otoo n2 ’
In(n)?
In(n)? . n2 In(n)? -0 : ;
[ ] = _— — .
3 o\ 55 ) puisque —7 1 par croissances comparées ;
n3/2

e la série Z —375 st convergente (série de Riemann d’exposant o = 3/2 > 1).
n

Par théoreme de comparaison, on en déduit que g vﬁ converge.
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Exercice 4

1. (a)

fx est dérivable sur |0, 1[ et |1, +oo[ car z + In(x), x + ¥ et x +— 2z —1 le sont, et z—1 # 0.
De plus :

k(In ()

/ . (z —1) — (In(z))* In(z)*1  k(z—1)—2zIn(z)
fr(x) = (-1 T o1z T '

On considere le taux d’accroissement :

fu(@) = fr(1) _ In(z)* (110(90))2 o« In()F—2
n(z)" 7.

r—1 (w12 \z-1

In(x)

Or lim 1= In’(1) = 1 car c’est le taux d’accroissement de la fonction logarithme en 1

=1 T —
(qui est dérivable en ce point). Donc :

fe(w) — fr(1)

e Sik=2, lirr% =1 donc fy est dérivable et f5(1) = 1.
Tr—r

r—1
— fr(1
e Sik >3, lim Julx) = fu1) = 0 donc f;, est dérivable et f; (1) = 0.
z—1 z—1

oy, est dérivable sur R et

() =k — g —In(z) =k —1—In(z)

qui est strictement positive avant e*~1, nulle en e*~1 et strictement négative apres. Donc

@) est strictement croissante sur [0, e*~!] et strictement décroissante sur [eF~!, +oc].

La fonction ¢y, est continue et strictement croissante sur |1, ek_l] donc réalise une bijection
de |1, e*71] dans Jor(1), @ (eF~1)] =]0, e~ — ]

Or 0 ¢]0,e*~1 — k] (i3, est strictement croissante sur l'intervalle donc ef~! — k > 0), donc
’équation ¢ (z) = 0 n’admet aucune solution sur |1, e*~1].

La fonction ¢y, est continue et strictement décroissante sur |e*~!, +-00[ donc réalise une

bijection de ]e*~!, 4-00[ dans | ET or(x), or(e" =] — oo, ¥t — k[ car :
() =kx —k —zln(zx) = —zln(z) ( 1+ ok — -
Pr\T) = AT PHNL) = T zln(z) In(z)) s—+oc e

par produit, quotient et somme de limites.
Or 0 €] — o0, e~ — k[ (on a vu que e*~! — k > 0), donc I’équation o (x) = 0 admet une
unique solution sur e, +-o0].

Cela fait donc au total une unique solution ay sur |1, +oo|, qui vérifie a, > e*~1.

1 k—1
Pour tout = €]0,+00[, z #1,ona: fj(z) = n(z) X gok(x) On en déduit les variations

(x —1)2 x
de fi :

e Sikestpairet k> 2:
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T 0 1 ay +00
ln(aj)k_l - 0 + +
or(z) — 0 - 0 -
fr(@) + + 0 —
fi(e) /0/ \
—00 0
e Si k est impair et k£ > 3 :
T 0 1 a 400
In(z)~! + 0 + +
or(x) — 0 + 0 -
k(@) - 0 + 0 -
“+00
0 0

(a) On a déja vu que eF~

par ¢y, :

@k(e

donc gpk(ek) < vr(ag)

I < ap. Pour l'autre inégalité, comme a; est implicite, on compose

My=k(eF—1)—e!xk=-k<0 et @plap) =0

. Or ¢}, est strictement décroissante sur [e¥~!, +-00[ donc on obtient

ek > aj. Finalement, on a bien ¥~ < a; < eF.

Par passage a la limite dans la seule inégalité de gauche, a; diverge vers +oo lorsque k tend

vers +oo0.

Par définition de ay, on sait que :

or(ar) =0 & k(ap —1) —agln(ay) = 0.

On remplace a par e¥(1 + bg), et on obtient :

L

k(eF(1+by) — 1) = (1 + by,) x In(e®(1 + b))
R(eP(14by) = 1) = (1 4 by) x (In(e") + In(1 + b))
R(eP(1 4 by) — 1) = (1 4 ) x (k + In(1 + b))

keF (14 by) —k = keP(1 +by,) + (1 + by) In(1 + by,)
—k = eP(1 4 b) In(1 + b)
—ke™F = (14 b)) In(1 + by,).

(¢) Avec la question précédente, on a :

—kek

_ —k
% _ak'

—kek

In(1+by) = o

e

10
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Or aj, > €1 d’apres la question 2.(a). Donc, par passage a I'inverse puis en multipliant
par —k <0 :

1 —k
ap >l —<elF s 2> kel Th o In(1+b) > —kel ™k,
ag ag

On va alors chercher la limite de In(1 + b) par encadrement. On remarque que :

—kelF = —ex ke — 0
k—+o0

par croissances comparées. Pour avoir 'autre coté, on essaie de majorer In(1 + by) par 0.
D’apres la définition de by, :
ag
In(1+by) = In (?k) <0

. a .. .y s . .
car In est croissante et —Z < 1 en divisant 'inégalité de droite de la question 2.(a) par
e

ek > 0. On en déduit donc que

0>1In(l+by) > —kel™ — 0

k——+o0

donc par encadrement et continuité de exp,

In(14b,) — 0 donc 14+b, — =1 donc by — 1—-1=0.
k—+o0 k—+o0 k—+o0

Enfin, pour trouver un équivalent de by, on revient a 1’égalité de la question précédente :
—ke™™ = (1 + by,) In(1 + by).

On vient de voir que by — 0, donc (1 + b) ~ 1 et In(1 + bg) ~ bg. Par produit des
équivalents,
—ke™ = (1 + by) In(1 + by) ~ by.

Donc by, ~ —ke™*.

On isole le o() pour se ramener & une limite :

—eF 4k
ak:ek—k—i-o(k:)(:)ak—ek—i-k:o(k:)@u — 0.
k k—+o00
Or aj, — €* = €*by,, donc :
ak—ek—f-k: _ bkek—i—k _ bkek 1.
k k k
b k —k -k k

Or on a vu que by, ~ —ke ¥ donc kke ~ ek c _ —1. On en déduit que

bkek . ap — €k +k bkek

—_ -1 = 1 0.

k ko4ee - PUS k T o

D’apres 1’équivalence écrite au début de la question, on a donc bien aj, = e* — k + o(k).

11



