Variables aléatoires à densité

Exercice 1 (ECRICOME)

Après une enquête, on estime que le temps de passage à une caisse, exprimé en unité de temps, est une variable aléatoire T dont une densité de probabilité est donnée par la fonction f définie par :

$$f(x) = \begin{cases} xe^{-x} & \text{si } x \ge 0, \\ 0 & \text{si } x < 0. \end{cases}$$

- 1. Rappeler la définition d'une densité de probabilité d'une variable aléatoire X suivant une loi exponentielle de paramètre $\lambda=1$. Donner la valeur de l'espérance et de la variance de X.
- 2. (a) Utiliser la question précédente pour vérifier que f est bien une densité de probabilité.
 - (b) Montrer que T admet une espérance que l'on déterminera. Quel est le temps moyen de passage en caisse ?
- 3. (a) Démontrer que la fonction de répartition de T, notée F_T , est définie par :

$$F_T(x) = \begin{cases} 0 & \text{si } x < 0, \\ 1 - (x+1)e^{-x} & \text{si } x \ge 0 \end{cases}$$

- (b) Montrer que la probabilité que le temps de passage en caisse soit inférieur à deux unités de temps sachant qu'il est supérieur à une unité est égale à $\frac{2e-3}{2e}$.
- 4. Un jour donné, trois clients A, B, C se présentent simultanément devant deux caisses libres. Par courtoisie, C décide de laisser passer A et B et de prendre la place du premier d'entre eux qui aura terminé. On suppose que les variables aléatoires T_A et T_B correspondant au temps de passage en caisse de A et de B sont indépendantes.
 - (a) M désignant le temps d'attente du client C, exprimer M en fonction de T_A et de T_B .
 - (b) Montrer que la fonction de répartition F_M de la variable aléatoire M est donnée par :

$$F_M(x) = \begin{cases} 0 & \text{si } x < 0, \\ 1 - (1+x)^2 e^{-2x} & \text{si } x \ge 0. \end{cases}$$

(c) Prouver que M est une variable à densité et expliciter une densité de M.

Exercice 2 (EDHEC)

Toutes les variables aléatoires sont supposées définies sur un même espace probabilisé (Ω, \mathcal{A}, P) . On désigne par p un réel de [0, 1].

On considère deux variables aléatoires indépendantes U et V, telles que U suit la loi uniforme sur [-3,1], et V suit la loi uniforme sur [-1,3].

On considère également une variable aléatoire Z, indépendante de U et V, dont la loi est donnée par :

$$P(Z = 1) = p$$
 et $P(Z = -1) = 1 - p$.

Enfin, on note X la variable aléatoire, définie par :

$$\forall \omega \in \Omega, \quad X(\omega) = \left\{ \begin{array}{l} U(\omega) \text{ si } Z(\omega) = 1 \\ V(\omega) \text{ si } Z(\omega) = -1 \end{array} \right.$$

Autrement dit:

$$X = \begin{cases} U \text{ si } Z = 1\\ V \text{ si } Z = -1 \end{cases}$$

On note F_X , F_U et F_V les fonctions de répartition respectives des variables X, U et V.

- 1. Donner les expressions de $F_U(x)$ et $F_V(x)$ selon les valeurs de x.
- 2. (a) Établir, grâce au système complet d'événements ((Z=1), (Z=-1)), que :

$$\forall x \in \mathbb{R}, \ F_X(x) = pF_U(x) + (1-p)F_V(x).$$

(b) Vérifier que $X(\Omega) = [-3, 3]$ puis expliciter $F_X(x)$ dans les cas :

$$x < -3$$
, $-3 \le x \le -1$, $-1 \le x \le 1$, $1 \le x \le 3$ et $x > 3$.

- (c) On admet que X est une variable à densité. Donner une densité f_X de la variable aléatoire X.
- (d) Établir que X admet une espérance E(X) et une variance V(X), puis les déterminer.
- 3. On se propose de montrer d'une autre façon que X possède une espérance et un moment d'ordre 2 puis de les déterminer.
 - (a) Vérifier que l'on a : $X = U\frac{1+Z}{2} + V\frac{1-Z}{2}$.
 - (b) Déduire de l'égalité précédente que X possède une espérance et retrouver la valeur de E(X).
 - (c) En déduire également que X possède un moment d'ordre 2 et retrouver la valeur de $E(X^2)$.
- 4. (a) Soit T une variable aléatoire suivant la loi de Bernoulli de paramètre p. Déterminer la loi de 2T-1.
 - (b) On rappelle que rd.uniform(a,b) et rd.binomial(1,p) sont des commandes Python permettant de simuler respectivement une variable aléatoire à densité suivant la loi uniforme sur [a,b] et une variable aléatoire suivant la loi de Bernoulli de paramètre p. Écrire des commandes Python permettant de simuler U, V, Z, puis X.

Exercice 3 (ESSEC - Une propriété limite des lois de Pareto) Question préliminaire

- 1. Soit g une fonction continue sur un intervalle I, à valeurs réelles.
 - (a) Montrer que pour tout α et β dans I tels que $\alpha < \beta$,

$$\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} g(t) dt = \int_{0}^{1} g(\alpha + (\beta - \alpha)x) dx.$$

(b) Soit a, b, c, d dans I tels que a < c < d < b. On suppose g décroissante sur I, établir l'encadrement :

$$\frac{1}{b-c} \int_a^b g(t) dt \le \frac{1}{d-c} \int_a^d g(t) dt \le \frac{1}{d-a} \int_a^d g(t) dt.$$

Partie I - Partie fractionnaire d'une variable à densité

Pour tout réel x positif ou nul :

- on note $\lfloor x \rfloor$ la partie entière de x. On rappelle qu'il s'agit de l'unique entier naturel n qui vérifie l'encadrement : $n \le x < n+1$.
- on note $\{x\} = x |x|$, que l'on appelle la partie fractionnaire de x.

Par exemple, si $x = 12, 34, \text{ alors } |x| = 12 \text{ et } \{x\} = 0, 34.$

Dans cette partie, X désigne une variable aléatoire à valeurs réelles admettant une densité f qui vérifie les propriétés :

- f est nulle sur $]-\infty,0[$;
- la restriction de f à $[0, +\infty[$ est continue et décroissante.

On pose M = f(0), c'est le maximum de f sur \mathbb{R} .

Soit $Y = \{X\} = X - \lfloor X \rfloor$, la variable aléatoire égale à la partie fractionnaire de X. On note F_Y la fonction de répartition de Y.

- 2. Que vaut $F_Y(y)$ lorsque y < 0? Que vaut $F_Y(y)$ lorsque $y \ge 1$? On justifiera les réponses.
- 3. Justifier l'égalité entre événements : $(Y=0)=\bigcup_{n\in\mathbb{N}}(X=n).$

En déduire : $F_Y(0) = 0$.

- 4. Soit y un réel de l'intervalle]0,1[.
 - (a) Montrer l'égalité : $F_Y(y) = \sum_{n=0}^{+\infty} \int_n^{n+y} f(t) dt$.
 - (b) Montrer, en utilisant la question préliminaire, les inégalités :
 - Pour tout *n* entier naturel, $\int_{n}^{n+y} f(t) dt \ge y \int_{n}^{n+1} f(t) dt$.
 - Pour tout n entier naturel non nul, $\int_{n}^{n+y} f(t) dt \leq y \int_{n-1+y}^{n+y} f(t) dt$.
 - (c) En déduire : $y \int_0^{+\infty} f(t) dt \le F_Y(y) \le \int_0^y f(t) dt + y \int_y^{+\infty} f(t) dt$, puis l'encadrement $y \le F_Y(y) \le y + M.$

Partie II - Premier chiffre significatif d'une variable de Pareto

Pour tout réel λ strictement positif, on définit la fonction g_{λ} sur \mathbb{R} par :

$$g_{\lambda}: x \mapsto \begin{cases} \frac{\lambda}{x^{\lambda+1}} & \text{si } x \ge 1, \\ 0 & \text{sinon.} \end{cases}$$

5. Montrer que pour tout réel λ strictement positif, g_{λ} est une densité de probabilité sur \mathbb{R} (loi dite de Pareto).

Dans toute la suite, on note Z_{λ} une variable aléatoire admettant g_{λ} pour densité.

- 6. Déterminer la fonction de répartition G_{λ} de Z_{λ} .
- 7. On note ln la fonction logarithme népérien, et log la fonction logarithme décimal.

Cette fonction est définie sur $]0, +\infty[$ par : $\log(x) = \frac{\ln(x)}{\ln(10)}$ pour tout réel x strictement positif.

On pose $X_{\lambda} = \log(Z_{\lambda})$, et on note F_{λ} la fonction de répartition de X_{λ} .

- (a) Établir, pour tout réel x, l'égalité : $F_{\lambda}(x) = G_{\lambda}(10^{x})$.
- (b) En déduire que X_{λ} suit une loi exponentielle dont on précisera le paramètre en fonction de λ .
- 8. On pose $Y_{\lambda} = \{X_{\lambda}\}$, la partie fractionnaire de X_{λ} .

Montrer, en utilisant les résultats de la partie I, que pour tout réel y de l'intervalle [0,1[:

$$\lim_{\lambda \to 0^+} P(Y_{\lambda} \le y) = y.$$

En déduire que, lorsque λ tend vers 0, Y_{λ} converge en loi vers une variable aléatoire suivant la loi uniforme sur l'intervalle [0,1].

9. Pour tout réel x supérieur ou égal à 1, on note $\alpha(x)$ le premier chiffre dans l'écriture décimale de x. C'est un entier de l'intervalle [1, 9].

Par exemple, $\alpha(50) = 5$ et $\alpha(213, 43) = 2$.

(a) Pour tout $k \in [1, 9]$, montrer l'équivalence :

$$\alpha(x) = k \quad \Leftrightarrow \quad \left\{ \log(x) \right\} \in \left[\log(k), \log(k+1) \right[.$$

(b) On note $C_{\lambda} = \alpha(Z_{\lambda})$ la variable aléatoire prenant comme valeur le premier chiffre de Z_{λ} . Montrer, pour tout $k \in [1, 9]$, $\lim_{\lambda \to 0^+} P(C_{\lambda} = k) = \log\left(1 + \frac{1}{k}\right)$.

Cette loi limite obtenue pour le premier chiffre de Z_{λ} est appelée loi de Benford.