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Réduction
Durée de fonctionnement d’un système

Correction - AP 17

Exercice 1 (ESSEC I 2004)
1. Il faut connâıtre (et surtout comprendre) les propriétés suivantes sur les degrés des polynômes :

• deg(P +Q) ≤ max(deg(P ), deg(Q)).

Et si deg(P ) 6= deg(Q), alors deg(P +Q) = max(deg(P ), deg(Q)).

• deg(PQ) = deg(P ) + deg(Q)

• deg(P ◦Q) = deg(P )× deg(Q).

Ici, on remarque que P (aX + 1 − a) est de la forme P ◦ Q où Q(X) = aX + 1 − a donc
deg (P (aX + 1− a)) = deg(P )× deg(Q) = deg(P )× 1 = deg(P ).

2. Soient (P,Q) ∈ RN [X] et λ ∈ R.

fa(λP +Q) = (λP +Q)(aX + 1− a) = λP (aX + 1− a) +Q(aX + 1− a) = λfa(P ) + fa(Q)

fa est donc bien linéaire.

De plus, l’équation fa(P ) = 0 admet pour unique solution P = 0. En effet, deg(P ) = deg(fa(P ))
d’après la question 1., donc deg(P ) = deg(0) = −∞ donc P = 0.

On a donc Ker(fa) = {0}, c’est-à-dire fa est un endomorphisme de RN [X] injectif donc bijectif
(même dimension de l’espace de départ et d’arrivé).

Donc fa est un automorphisme de RN [X].

3. (a) Pour tout P ∈ RN [X],

fb ◦ fa(P ) = fb(P (aX + 1− a)) = P (a(bX + 1− b) + 1− a) = P (abX + 1− ab) = fab(P ).

Ainsi, fb ◦ fa = fab.

(b) On remarque que ∀P ∈ RN [X], f1(P ) = P , c’est-à-dire f1 = Id. Comme a 6= 0, on a avec
la question précédente :

fa ◦ f1/a = f1 = Id et f1/a ◦ fa = f1 = Id.

Ainsi, f−1
a = f1/a.

(c) Montrons par récurrence sur n ∈ N, la propriété ”(fa)
n = fan”.

Ini. fa0 = f1 = Id d’après la question précédente, donc on a bien : fa0 = (fa)
0.

Héré. Soit n ∈ N. Supposons que (fa)
n = fan . Alors :

(fa)
n+1 = (fa)

n ◦ fa = fan ◦ fa︸ ︷︷ ︸
(H.R.)

= fan×a︸ ︷︷ ︸
(d’après 3.(a))

= fan+1 .

Ccl. Par récurrence, pour tout n ∈ N, (fa)
n = fan .

4. (a) On a fa(1) = 1, fa(X) = aX+1−a , fa(X
2) = (aX+1−a)2 = a2X2 +2a(1−a)X+(1−a)2

et fa(X
3) = (aX + 1− a)3 = a3X3 + 3a2(1− a)X2 + 3a(1− a)2X + (1− a)3.

Ainsi,

Ma =


1 1− a (1− a)2 (1− a)3

0 a 2a(1− a) 3a(1− a)2

0 0 a2 3a2(1− a)
0 0 0 a3


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La j + 1-ième colonne de Ma contient les coordonnées de fa(X
j) dans la base canonique.

On fa(X
j) = (aX + 1− a)j =

j∑
i=0

(
j

i

)
ai(1− a)j−iXi

︸ ︷︷ ︸
(formule du binôme)

.

La (i+ 1)-ième ligne de Ma contient donc le coefficient
(
j
i

)
ai(1− a)j−i.

(b) On sait d’après la question 3.(c) que pour tout n ∈ N, (fa)
n = fan . Donc Mcan((fa)

n) =
Mcan(fan), c’est-à-dire (Ma)

n = Man .

Montrons maintenant que pour tout n ∈ N, (Ma)
n est inversible d’inverse (Ma)

−n = Ma−n :

(Ma)
n ×Ma−n = Man ×Ma−n = Man×a−n︸ ︷︷ ︸

(d’après 3.(a))

= M1 = I

Ainsi, on a bien (Ma)
n inversible et (Ma)

−n = Ma−n .

La formule est aussi vraie pour les entiers négatifs.

5. (a) La matrice Ma est triangulaire donc ses valeurs propres sont ses coefficients diagonaux,
c’est-à-dire ∀i ∈ [[0, N ]],

(
i
i

)
ai(1− a)i−i = ai.

(b) fa((X − 1)k) = (aX + 1− a− 1)k = (a(X − 1))k = ak(X − 1)k.

(c) Notons, pour tout k ∈ [[0, N ]], Pk(X) = (X − 1)k de sorte que fa(Pk) = akPk.

La famille F = (P0, P1, ..., PN ) est libre car c’est une famille de polynômes de degrés
échelonnés et card(F) = N + 1 = dim(RN [X]) donc F est une base de RN [X]. De plus,

MF (fa) =


1 0 · · · 0

0 a
. . .

...
...

. . .
. . . 0

0 · · · 0 aN

 .

Cette matrice est semblable à Ma car elle représente le même endomorphisme fa. Ainsi,
Ma est semblable à une matrice diagonale et elle est donc diagonalisable.

Problème : Durée de fonctionnement d’un système (ESSEC II 2010)

1. (a) X suit la loi exponentielle de paramètre µ donc admet une espérance et une variance qui
valent :

E(X) =
1

µ
et V (X) =

1

µ2
.

(b) Par théorème de transfert et relation de Chasles, on s’intéresse à l’absolue convergence de :∫ +∞

−∞
tnfµ(t)dt =

∫ 0

−∞
0dt+ µ

∫ +∞

0
tne−µtdt.

La première intégrale converge absolument et vaut 0 comme intégrale de la fonction nulle,
la seconde est l’intégrale d’une fonction positive, qui n’est généralisée qu’en +∞. Or :

tne−µt

1
t2

= tn+2e−µt −−−−→
t→+∞

0 donc tne−µt = o

(
1

t2

)
au voisinage de +∞. De plus l’intégrale

∫ +∞
1

1
t2
dt converge absolument (intégrale de Rie-

mann avec α = 2 > 1 donc par théorème de comparaison,
∫ +∞

0 tne−µtdt converge absolu-
ment.
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On obtient finalement que Xn admet une espérance pour tout n et on obtient une relation
de récurrence par intégration par parties :

E(Xn+1) =

∫ +∞

0
µtn+1e−µtdt.

On se place entre 0 et x et on pose :

u = tn+1 et v = −e−µt

qui sont de classe C1 sur R+, avec

u′ = (n+ 1)tn et v′ = µe−µt.

L’intégration par parties donne :∫ x

0
µtn+1e−µtdt =

[
−tn+1e−µt

]x
0
+(n+1)

∫ x

0
tne−µtdt = −xn+1e−µx+

n+ 1

µ

∫ x

0
µtn+1e−µtdt.

On fait tendre x vers +∞ et on obtient (le terme devant l’intégrale tend vers 0 par crois-
sances comparées) :

E(Xn+1) =
n+ 1

µ
E(Xn).

(c) On en déduit alors que :

E(Xn) =
n

µ
E(Xn−1) =

n(n− 1)

µ2
E(Xn−2) = · · · = n(n− 1)× · · · × 1

µn
E(X0)

et comme X0 = 1 est une variable certaine dont l’espérance vaut 1, on obtient :

E(Xn) =
n!

µn
.

(d) D’où par formule de Koenig-Huygens,

V (X) = E(X2)− [E(X)]2 =
2

µ2
− 1

µ2
=

1

µ2
.

2. (a) Pour tout x ≥ 0,

P (X > x) =

∫ +∞

x
µe−µtdt = e−µx > 0.

Pour tous réels positifs x et y, (X > x+ y) ⊂ (X > x) donc :

P(X>x)(X > x+ y) =
P [(X > x) ∩ (X > x+ y)]

P (X > x)
=
P [(X > x+ y)]

P (X > x)

=
e−µ(x+y)

e−µx
= e−µy = P (X > y)

(b) i. f est continue strictement positive sur R+, donc R(x) = 1 − FX(x) est de classe C1

sur R+ et sa dérivée est −f(x), strictement négative.
De plus par propriétés d’une fonction de répartition on sait que lim

x→+∞
R(x) = 0, limite

qui n’est jamais atteinte car R est strictement décroissante. D’où :

∀x ≥ 0, R(x) > 0 = lim
t→+∞

R(t).
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ii. On vient de voir que R est de classe C1, on a de plus (X > x+ y) ⊂ (X > x) donc :

P(X>x)(X > x+ y) = P (X > y) ⇔ P [(X > x+ y) ∩ (X > x)]

P (X > x)
= P (X > y)

⇔ R(x+ y)

R(x)
= R(y)

⇔ R(x+ y) = R(x)R(y).

On dérive cette relation par rapport à y et on obtient :

∀x, y ∈ R+, R
′(x+ y) = R(x)R′(y).

Enfin on pose y = 0 et on a :

∀x ∈ R+, R
′(x) = R(x)R′(0).

Or on a vu que R′(x) = −f(x) et pour x = 0 on a : R′(0) = −f(0) = −µ. On obtient
bien finalement :

R′(x) + µR(x) = 0.

iii. R est solution de l’équation différentielle homogène y′ + µy = 0. Donc R(x) = λe−µx,
avec λ un réel à déterminer.
Or R(0) = P (X > 0) = P (X ≥ 0) = 1 car X est une variable à densité positive. Donc
λ = 1 et on obtient pour tout x ≥ 0 :

R(x) = e−µx ⇔ FX(x) = 1−R(x) = 1− e−µx.

On reconnâıt la loi exponentielle de paramètre µ = f(0).

3. (a) On sait que (Y ≤ t) = (X1 ≤ t) ∩ (X2 ≤ t) donc par indépendance de X1 et X2, pour tout
t ∈ R, on a

FY (t) = P (Y ≤ t) = P [(X1 ≤ t) ∩ (X2 ≤ t)] = P (X1 ≤ t)P (X2 ≤ t) = FX1(t)FX2(t)

=

{
0 si t < 0(

1− e−µ1t
)
×
(
1− e−µ2t

)
si t ≥ 0

Cette fonction est continue sur R comme produit de FX1 et FX2 qui le sont car X1 et X2

sont à densité, et de classe C1 sur [0; +∞[ et ]−∞; 0[ donc Y est une variable à densité, et
en dérivant FY sauf en 0 où on donne une valeur arbitraire, une densité de Y est :

g(t) =

{
0 si t < 0

µ1e
−µ1t + µ2e

−µ2t − (µ1 + µ2)e−(µ1+µ2)t si t ≥ 0

(b) On sait que (Z > t) = (X1 > t) ∩ (X2 > t) donc par indépendance de X1 et X2, pour tout
t ∈ R on a

FZ(t) = P (Z ≤ t) = 1− P (Z > t) = 1− P [(X1 > t) ∩ (X2 > t)]

= 1− P (X1 > t)P (X2 > t) = 1− [1− FX1(t)]× [1− FX2(t)]

=

{
0 si t < 0

1− e−(µ1+µ2)t si t ≥ 0

On voit alors que Z suit la loi exponentielle de paramètre µ1 + µ2.

4. On fait apparâıtre FT puis RT (comme T à densité) :

P (t ≤ T ≤ t+ h) = FT (t+ h)− FT (t) = 1−RT (t+ h)− (1−RT (t)) = RT (t)−RT (t+ h).
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5. Pour tout réel t positif ou nul,

lim
h→0+

P (t ≤ T ≤ t+ h)

h
= lim

h→0,h>0

RT (t)−RT (t+ h)

h
= − lim

h→0,h>0

RT (t+ h)−RT (t)

h

= −R′T (t) = fT (t)

car RT (t) = 1− FT (t) est dérivable au point t, de dérivée −fT (t).

6. (a) La question a déjà été traitée précédemment : fT est continue strictement positive sur
R∗+, donc RT (t) = 1− FT (t) est de classe C1 sur R∗+ et sa dérivée est −fT (t), strictement
négative.

De plus par propriétés d’une fonction de répartition on sait que lim
t→+∞

RT (t) = 0, limite qui

n’est jamais atteinte car RT est strictement décroissante. D’où :

∀t > 0, RT (t) > 0 = lim
t→+∞

R(t).

Enfin en t = 0, comme T est positive on a :

RT (0) = 1− FT (0) = 1− P (T ≤ 0) = 1− 0 = 1 > 0.

(b) La fonction t → ln
(

1
RT (t)

)
= − ln(RT (t)) est définie et dérivable sur R+ par composition

de fonctions dérivables car RT est dérivable, à valeurs dans R∗+ et ln est dérivable sur R∗+.
Sa dérivée est :

d

dt
(− ln(RT (t))) = −

R′T (t)

RT (t)
= −−fT (t)

RT (t)
= λ(t).

(c) On en déduit que G(t) = − ln(RT (t)) est une primitive sur R+ de λ, qui s’annule lorsque :

RT (t) = 1⇔ FT (t) = 0⇔ t = 0.

D’où on en déduit l’écriture :

− ln(RT (t)) =

∫ t

0
λ(x)dx⇒ ln(RT (t)) = −

∫ t

0
λ(x) dx⇒ RT (t) = e−

∫ t
0 λ(x)dx.

7. (a) On dérive v, et on a vu précédemment que R′Z(t) = −fZ(t) = −g(t) :

v′(t) = 1×RZ(t) + t×R′Z(t) = RZ(t)− tg(t)⇐⇒ tg(t) = RZ(t)− v′(t).

(b) On écrit RZ à l’aide d’une intégrale ce qui donne :

v(t) = tRZ(t) = tP (Z > t) = t

∫ +∞

t
g(u)du =

∫ +∞

t
tg(u)du ≤

∫ +∞

t
ug(u)du

car pour tout x ∈ [t; +∞[, t ≤ u donc tg(u) ≤ ug(u) et on intègre sur des bornes croissantes.

D’où on obtient

0 ≤ v(t) ≤
∫ +∞

t
ug(u)du

(cette intégrale converge bien car Z admet une espérance).

Or par relation de Chasles,∫ +∞

t
ug(u)du =

∫ +∞

0
ug(u)du−

∫ t

0
ug(u)du.

De plus on sait que lim
t→+∞

∫ t
0 ug(u) du =

∫ +∞
0 ug(u)du donc

lim
t→+∞

∫ +∞

t
ug(u)du = 0

et par théorème d’encadrement,
lim

t→+∞
v(t) = 0.
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(c) Comme Z est à valeurs positives, l’intégrale de −∞ à 0 est nulle donc :

E(Z) =

∫ +∞

0
tg(t)dt =

∫ +∞

0
(RZ(t)− v′(t))dt.

Étudions cette intégrale, en passant par l’intégrale partielle pour primitiver et faire ap-
parâıtre v(t) :∫ x

0
(RZ(t)− v′(t))dt =

∫ x

0
RZ(t)dt−

∫ x

0
v′(t)dt =

∫ x

0
RZ(t)dt− [v(t)]x0

=

∫ x

0
RZ(t)dt− v(x) + v(0) =

∫ x

0
RZ(t)dt− v(x).

car v(0) = 0×RZ(0) = 0. D’où∫ x

0
RZ(t)dt =

∫ x

0
tg(t)dt+ v(x).

De plus on sait que
∫ x

0 tg(t)dt converge en +∞ vers E(Z) et v(x) converge vers 0.

D’où
∫ +∞

0 RZ(t)dt converge et vaut E(Z), ce qui donne bien :

E(Z) =

∫ +∞

0
RZ(t)dt.

8. (a) Pour tout réel x positif, comme (T > x+ t) ⊂ (T > t),

RTt(x) = P[T>t](T > t+ x) =
P ([T > t] ∩ [T > t+ x])

P (T > t)
=
P (T > x+ t)

P (T > t)
=
RT (t+ x)

RT (t)

(b) Il faut prouver que Tt admet une espérance pour utiliser le résultat ci-dessus.

Puisque Tt est trivialement positive, et FTt = 1−RTt , on obtient :

FTt(x) =

{
0 si x < 0

1− RT (t+x)
RT (t) si x ≥ 0

Cette fonction est de classe C1 donc continue sur R sauf peut-être en 0, de plus elle est
continue sur R car par continuité de RT :

FTt(0) = lim
x→0+

1− RT (t+ x)

RT (t)
= 1− RT (t)

RT (t)
= 0 , lim

x→0−
0 = 0.

On en déduit que Tt est à densité, et une densité de Tt est donnée par :

fTt(x) =

{
0 si x < 0

fT (t+x)
RT (t) si x ≥ 0

Enfin comme l’intégrale sur R− est nulle, sous réserve de convergence absolue et avec le
changement de variable v = x+ t et la linéarité de l’intégrale on a :

E(Tt) =

∫ +∞

0
x
fT (t+ x)

RT (t)
dx =

1

RT (t)

∫ +∞

t
(v − t)fT (v)dv

=
1

RT (t)

∫ +∞

t
vfT (v)dv − t

RT (t)

∫ +∞

t
fT (v)dv

Or la première intégrale converge absolument car T admet une espérance, et la seconde car
T est à densité : on en déduit que Tt admet bien une espérance.
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La question 7.(c) donne alors :

E(Tt) =

∫ +∞

0
RTt(u)du =

1

RT (t)

∫ +∞

0
RT (t+ u)du

et avec le changement de variable affine v = t+ u on obtient finalement :

E(Tt) =
1

RT (t)

∫ +∞

t
RT (v)dv.

9. (a) Si T ↪→ E(µ), alors pour tout t ≥ 0 :

RT (t) = P (T > t) = e−µt et λ(t) =
µe−µt

e−µt
= µ.

(b) On remarque que T = min(T1, T2) donc avec la fin de la partie I on sait que T suit la loi
exponentielle de paramètre µ1 + µ2.

On en déduit avec la question précédente que : pour tout t ≥ 0,

RT (t) = P (T > t) = e−(µ1+µ2)t et λ(t) = µ1 + µ2.

(c) On remarque que T = max(T1, T2) donc d’après la partie I, pour t ≥ 0 :

FT (t) = 1− eµ1t − eµ2t + e−(µ1+µ2)t donc RT (t) = 1− FT (t) = eµ1t + eµ2t − e−(µ1+µ2)t.

10. (a) ϕn,β est positive et continue sur R+ et sur ] −∞; 0[, donc positive sur R et continue sauf
peut-être en 0.

De plus on a ϕn,β(t) = βn−1

(n−1)! × βt
n−1e−βt.

On calcule
∫ +∞

0 ϕn,β(t)dt; on reconnâıt l’intégrale définissant l’espérance de Xn−1 où X suit
une loi exponentielle de paramètre β, donc on sait que cette intégrale converge absolument
et : ∫ +∞

0
ϕn,β(t)dt =

βn−1

(n− 1)!
× (n− 1)!

βn−1
= 1.

De plus l’intégrale de −∞ à 0 de ϕn,β converge et vaut 0 car c’est l’intégrale de la fonction
nulle.

On obtient finalement que
∫ +∞
−∞ ϕn,β(t)dt converge et

∫ +∞
−∞ ϕn,β(t)dt = 1 donc ϕn,β est une

densité de probabilité.

(b) On a par définition :

RT (t) = P (T > t) =

∫ +∞

t
ϕn,β(u)du = 1−

∫ t

0
ϕn,β(u)du.

On montre alors le résultat par récurrence sur n ≥ 1 :

Ini. Pour n = 1, ϕ1,β(t) = βe−βt donc on reconnâıt la loi exponentielle de paramètre β, et
on a vu :

RT (t) = e−βt

Or on calcule facilement :

e−βt
0∑

k=0

(βt)k

k!
= e−βt

donc la propriété est vraie au rang n = 1.

7
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Héré. Soit n ≥ 1. Supposons que la propriété soit vraie pour ϕn,β, on a alors :∫ t

0
ϕn,β(u) du = 1− e−βt

n−1∑
k=0

(βt)k

k!
.

Calculons RT pour ϕn+1,β:

RT (t) = 1− βn

n!

∫ t

0
un × βe−βudu.

On pose
v = un et w = −e−βu

qui sont de classe C1 sur [0; t] avec :

v′ = nun−1 et w′ = βe−βu

Par intégration par parties, on obtient :

RT (t) = 1− βn

n!

([
−une−βu

]t
0

+ n

∫ t

0
un−1e−βudu

)
= 1 +

βn

n!
× tne−βt − 0−

∫ t

0

β

(n− 1)!
(βu)n−1e−βudu

= 1 + e−βt
(βt)n

n!
−

[
1− e−βt

n−1∑
k=0

(βt)k

k!

]

= 1− 1 + e−βt

[
n−1∑
k=0

(βt)k

k!
+

(βt)n

n!

]

= e−βt
n∑
k=0

(βt)k

k!

Ccl. Pour tout n ≥ 1, si T suit la loi d’Erlang de paramètres n et β, on a :

RT (t) = e−βt
n−1∑
k=0

(βt)k

k!
.

11. (a) La fonction ψβ,η est positive et continue sur [0; +∞[ et sur ]−∞; 0[, donc positive sur R et
continue sauf peut-être en 0.

Son intégrale de −∞ à 0 converge et vaut 0 car c’est l’intégrale de la fonction nulle.

Pour x ≥ 0, on considère∫ x

0
ψβ,η(t) dt =

[
−e−

(
t
η

)β]x
0

= 1− e−
(
x
η

)β
−−−−→
x→+∞

1

donc l’intégrale de 0 à +∞ et par suite l’intégrale de −∞ à +∞ convergent et valent toutes
deux 1.

La fonction ψβ,η est donc une densité de probabilité.

(b) On a vu qu’on sait primitiver ψβ,η, on peut donc calculer, avec t ≥ 0 :

RT (t) = 1− P (T ≤ t) = 1−
∫ 0

−∞
0 dx−

∫ t

0
ψβ,η(x) dx = 1−

(
1− e−

(
t
η

)β)
= e
−
(
t
η

)β
.

On en déduit que pour tout t ≥ 0,

λ(t) =
ψβ,η(t)

RT (t)
=
β

η

(
t

η

)β−1

.

8
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(c) β
η et 1

η sont des constantes strictement positives, la limite dépend de la constante β− 1 qui
peut être nulle :

• Si β = 1⇐⇒ β − 1 = 0, alors

λ(t) =
1

η
−−−−→
t→+∞

1

η
.

(On retrouve à nouveau le cas de la loi exponentielle, car pour β = 1, la loi de Weibull
est une loi exponentielle de paramètre 1

η ).

• Si β > 1⇐⇒ β − 1 > 0, alors

λ(t) =
β

η

(
t

η

)β−1

−−−−→
t→+∞

+∞.

12. (a) Le théorème de transfert donne la formule immédiatement, à condition de prouver la con-
vergence absolue de la série.

Or pour tout s ∈ [0; 1], et pour tout k ≥ 0, on a :

0 ≤ s ≤ 1⇒ 0 ≤ sk ≤ 1⇒ 0 ≤ P (Nu = k)sk ≤ P (Nu = k)

et la série de terme général P (Nu = k) converge absolument (c’est la somme des proba-
bilités sur un système complet d’évènement, la série vaut même 1) donc par théorème de
comparaison des séries à termes positifs, la série cherchée converge absolument.

On en déduit finalement que Gu(s) existe pour tout s ∈ [0; 1] et :

Gu(s) =

+∞∑
k=0

P (Nu = k)sk.

(b) Par définition de G et en faisant apparâıtre astucieusement les hypothèses données par
l’énoncé :

Gu+v(s) = E
(
sNu+v

)
= E

(
sNu+(Nu+v−Nu)

)
= E

(
sNus(Nu+v−Nu)

)
.

Or les variables Nu et (Nu+v −Nu) sont indépendantes d’après l’énoncé, donc par lemme
des coalitions sNu et sNu+v−Nu le sont aussi donc :

Gu+v(s) = E
(
sNu
)
E
(
s(Nu+v−Nu)

)
= Gu(s)E

(
s(Nu+v−Nu)

)
.

L’énoncé dit aussi que Nu+v −Nu suit la même loi que N(u+v)−u = Nv donc

E
(
s(Nu+v−Nu)

)
= E(sNv) = Gv(s)

et enfin
Gu+v(s) = Gu(s)Gv(s).

13. (a) On fait apparâıtre un terme strictement positif dans la somme (le premier) :

G1(s) = E(sN1) =
+∞∑
k=0

P (N1 = k)sk = P (N1 = 0) +
+∞∑
k=1

P (N1 = k)sk.

Or
+∞∑
k=1

P (N1 = k)sk ≥ 0 donc G1(s) ≥ P (N1 = 0) > 0 d’après l’énoncé.

9
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(b) Une récurrence immédiate donne

G n∑
i=1

ui
(s) =

n∏
i=1

Gui(s)

donc en posant u1 = · · · = uk = 1,

Gk(s) =
k∏
i=1

G1(s) = G1(s)k = ek lnG1(s) = e−kθ(s).

(c) De même en utilisant la propriété énoncée au début de la question b,

G1(s) = G q∑
i=1

1
q

(s) =
(
G 1
q
(s)
)q
.

D’où
G 1
q
(s) = G1(s)

1
q = e

− 1
q
θ(s)

.

(d) On fait la même opération sur

Gp(s) = G q∑
i=1

p
q

(s) =
(
G p

q
(s)
)q

donc

ψ(r) = (ψ(p))
1
q =

(
e−pθ(s)

) 1
q

= e
− p
q
θ(s)

= e−rθ(s).

(e) Question très difficile, qui utilise la densité de Q dans R. Celle-ci dit que pour tout réel u,
il existe deux suites un et vn de rationnels adjacentes ayant pour limite u. On a donc pour
tout n,

un ≤ u ≤ vn.

De plus l’énoncé dit que la fonction u→ Nu est croissante.

D’où pour tous u ≤ v on a, avec s ≤ 1 donc ln(s) ≤ 0 :

Nu ≤ Nv ⇒ ln(s)Nu ≥ ln(s)Nv ⇒ eln(s)Nu ≥ eln(s)Nv ⇒ sNu ≤ sNv ⇒ E(sNu) ≥ E(sNv).

Enfin on en déduit que

u ≤ v ⇒ Gu(s) ≥ Gv(s)⇒ ψ(u) ≥ ψ(v)

et la fonction ψ est décroissante, ce qui permet d’écrire :

un ≤ u ≤ vn ⇒ ψ(un) ≥ ψ(u) ≥ ψ(vn)

Comme un et vn sont des rationnels on a pour tout n,

ψ(un) = e−unθ(s) et ψ(vn) = e−vnθ(s)

Comme le réel s est fixé, la fonction u→ e−uθ(s) est continue et on obtient :

lim
n→+∞

e−unθ(s) = lim
n→+∞

e−vnθ(s) = e−uθ(s) donc lim
n→+∞

ψ(un) = lim
n→+∞

ψ(vn) = e−uθ(s).

Par encadrement on en déduit que

ψ(u) = e−uθ(s) et enfin Gu(s) = e−uθ(s).

10
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(f) On utilise l’équivalent usuel de l’exponentielle, avec h→ 0⇒ −hθ(s)→ 0 (avec s fixé) :

Gh(s)− 1

h
=
e−hθ(s) − 1

h
∼
0

−hθ(s)
h

= −θ(s) −−−−−−→
h→0,h>0

−θ(s).

14. On part du côté droit, plus compliqué, et on simplifie :

P (Nh = 1)(s− 1) +
+∞∑
k=2

P (Nh = k)(sk − 1) =
+∞∑
k=1

P (Nh = k)sk −
+∞∑
k=1

P (Nh = k)

=
[
Gh(s)− P (Nh = 0)× s0

]
− [1− P (Nh = 0)]

= Gh(s)− 1− P (Nh = 0) + P (Nh = 0)

= Gh(s)− 1.

15. Comme on ne peut pas échanger la limite et la somme infinie, on procède par encadrement :

0 ≤ s ≤ 1⇒ ∀k ≥ 2, 0 ≤ sk ≤ 1⇒ ∀k ≥ 2, −1 ≤ sk − 1 ≤ 0

puis on somme les inégalités pour k allant de 2 à +∞ et on divise par h > 0 :

0 ≤ s ≤ 1 ⇒ −

+∞∑
k=2

P (Nh = k)

h
≤

+∞∑
k=2

P (Nh = k)(sk − 1)

h
≤ 0

⇒ −P (Nh > 1)

h
≤

+∞∑
k=2

P (Nh = k)(sk − 1)

h
≤ 0

et l’énoncé dit que le terme de gauche de l’encadrement tend vers 0 lorsque h tend vers 0+ donc
par encadrement :

lim
h→0,h>0

+∞∑
k=2

P (Nh = k)(sk − 1)

h
= 0.

16. (a) D’après la question 14,

Gh(s)− 1

h
=

P (Nh = 1)(s− 1) +
+∞∑
k=2

P (Nh = k)(sk − 1)

h

=
P (Nh = 1)(s− 1)

h
+

+∞∑
k=2

P (Nh = k)(sk − 1)

h
.

On en déduit avec la question 15 que :

P (Nh = 1)(s− 1)

h
=
Gh(s)− 1

h
−

+∞∑
k=2

P (Nh = k)(sk − 1)

h
−−−−−−→
h→0,h>0

−θ(s)− 0 = −θ(s).

D’où on tire que si s− 1 6= 0⇔ s 6= 1,

P (Nh = 1)

h
−−−−−−→
h→0,h>0

− θ(s)

s− 1
=

θ(s)

1− s

et cette limite, notée α, est positive puisque c’est la limite d’un quotient de facteurs positifs
et vérifie bien pour s ∈ [0; 1[ :

θ(s) = α(1− s).
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Si s = 1, il faut prouver que θ(1) = 0 pour généraliser la relation. Or

G1(1) =

+∞∑
k=0

P (N1 = k)1k =

+∞∑
k=0

P (N1 = k) = 1

donc
θ(1) = − ln(G1(1)) = − ln(1) = 0.

On obtient bien qu’il existe α ≥ 0 tel que α = lim
h→0,h>0

P (Nh=1)
h et que pour pour tout

s ∈ [0, 1], θ(s) = α(1− s).
(b) On calcule :

Gu(0) = P (Nu = 0)× 00 +
+∞∑
k=1

P (Nu = k)× 0k = P (Nu = 0)

et l’énoncé donne
∀u > 0, 0 < P (Nu = 0) < 1.

On en déduit que

0 < G1(0) < 1⇒ ln(G1(0)) < 0⇒ θ(0) = − ln(G1(0)) > 0.

Enfin on remarque qu’en posant s = 0, on a :

θ(0) = α(1− 0) = α > 0.

17. (a) On a θ(s) = α(1− s) donc :

Gu(s) = e−uθ(s) = e−uα(1−s) = e−αueαsu.

Or la série exponentielle prise en x = αsu donne :

+∞∑
k=0

(αsu)k

k!
= eαsu

donc pour tout s ∈ [0; 1] ,

Gu(s) = e−αu
+∞∑
k=0

(αsu)k

k!
=

+∞∑
k=0

[
e−αu

(αu)k

k!

]
sk.

(b) On a obtenu : pour tout s ∈ [0; 1], en posant X qui suit la loi de Poisson de paramètre
(αu) : on a Nu(Ω) = X(Ω) = N et :

+∞∑
k=0

P (Nu = k)sk =
+∞∑
k=0

P (X = k)sk.

Cela n’assure pas forcément que les termes de la série sont égaux deux à deux. L’idée pour
l’obtenir est de poser s = 0, qui donne les termes s = 0 égaux.

Puis on retire ces termes, on divise par s (pour s > 0) et on prend la limite lorsque s tend
vers 0 (d’une somme infinie, donc par encadrement), qui donne l’égalité pour s = 0.

Enfin on prend s = 0 et les termes 1 sont égaux, puis on réitère.... ce qui se traite rigoureuse-
ment par récurrence.

Montrons par récurrence sur k que pour tout i ∈ N, P (Nu = i) = e−αu (αu)i

i! .

Ini. On prend la relation précédente pour s = 0. Tous les termes pour k ≥ 1 s’annulent en
on obtient P (Nu = 0) = P (X = 0).
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Héré. On suppose que pour tout k ≤ i (récurrence forte), P (Nu = k) = P (X = k).
On obtient alors en retirant les termes égaux que pour tout s ∈ [0; 1]:

+∞∑
k=i+1

P (Nu = k)sk =

+∞∑
k=i+1

P (X = k)sk

Pour tout s > 0 (pour pouvoir diviser) on en déduit que :

+∞∑
k=i+1

P (Nu = k)sk−i−1 =

+∞∑
k=i+1

P (X = k)sk−i−1

et on sépare le premier terme de chaque somme et on isole la probabilité cherchée :

P (Nu = i+ 1) = P (X = i+ 1) + s

(
+∞∑
k=i+2

P (X = k)sk−i−2 −
+∞∑
k=i+2

P (X = k)sk−i−2

)

Or, sur le modèle de la question 1a, on peut encadrer les séries : pour Y une variable
aléatoire à valeurs dans N (donc cela s’applique à X et Nu) on a ;

0 ≤ P (Y = k)sk−i−2 ≤ P (Y = k)

donc

0 ≤
+∞∑
k=i+2

P (Y = k)sk−i−2 ≤
+∞∑
k=i+2

P (Y = k) ≤ 1.

Donc on obtient que :

−1 ≤

(
+∞∑
k=i+2

P (X = k)sk−i−2 −
+∞∑
k=i+2

P (X = k)sk−i−2

)
≤ 1

puis

−s ≤ s

(
+∞∑
k=i+2

P (X = k)sk−i−2 −
+∞∑
k=i+2

P (X = k)sk−i−2

)
≤ s

et par encadrement, le terme central tend vers 0 lorsque s tend vers 0, ce qui donne
finalement :

P (Nu = i+ 1) = P (X = i+ 1)

et la propriété est vraie au rang i+ 1.

Ccl. Pour tout k ∈ N,
P (Nu = k) = P (X = k)

et Nu suit la même loi que X, donc la loi de Poisson de paramètre (αu).

18. (T > t) = (Nt = 0) donc pour tout t on a :

P (T > t) = P (Nt = 0) = e−αt donc P (T ≤ t) = 1− e−αt.

D’autre part P (T ≤ t) = 0 si t ≤ 0 car il ne peut pas y avoir de panne avant l’instant de mise
en marche.

On reconnâıt bien la fonction de répartition d’une loi exponentielle de paramètre α.

19. (a) Nt+h est le nombre de panne à l’instant t+ h et Nt le nombre de pannes à l’instant t donc
Nt+h−Nt représente bien le nombre de pannes survenues dans l’intervalle de temps ]t; t+h].

(b) Question pas difficile mais fastidieuse.

L’énoncé dit que Ñh = Nt+h − Nt suit la même loi que Nh, et on obtient, une par une,
toutes les propriétés du processus de Poisson à l’aide de celles vérifiées par Nh.
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(c) On applique la question 7 à la famille (Ñh)h≥0 et on obtient le résultat.

(d) Question mal posée : le taux de défaillance du système après t n’a jamais été défini, et sur
ce système, les pannes sont réparées, contrairement au cas où on avait défini le taux de
défaillance du système.

Il faut comprendre que la taux de défaillance après t est le taux de défaillance de la variable
Tt définie à la question II5.

Or T puis Tt suivent des lois exponentielles de paramètre α (remarquer que Tt = T̃ ), donc
le taux de défaillance est constant égal à α (question II6a).
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