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Correction - AP 17

Réduction
Durée de fonctionnement d’un systeme

Exercice 1 (ESSEC I 2004)

1.

3.

4.

Il faut connaitre (et surtout comprendre) les propriétés suivantes sur les degrés des polynomes :

e deg(P + Q) < max(deg(P),deg(Q)).

Et si deg(P) # deg(Q), alors deg(P + Q) = max(deg(P), deg(Q)).
o deg(PQ) = deg(P) + deg(Q)
o deg(Po Q) =deg(P) x deg(Q).

Ici, on remarque que P(aX + 1 — a) est de la forme P o @ ou Q(X) = aX + 1 — a donc
deg (P(aX 4+ 1 —a)) =deg(P) x deg(Q) = deg(P) x 1 = deg(P).

Soient (P,Q) € Ry[X] et A € R.
faAP+Q) = AP+ Q)(aX +1—a) =AP(aX +1—a)+ Q(aX +1—a) = Ao(P) + f.(Q)

fa est donc bien linéaire.

De plus, I’équation f,(P) = 0 admet pour unique solution P = 0. En effet, deg(P) = deg(fa(P))
d’apres la question 1., donc deg(P) = deg(0) = —oo donc P = 0.

On a donc Ker(f,) = {0}, c’est-a-dire f, est un endomorphisme de Ry[X] injectif donc bijectif
(méme dimension de l’espace de départ et d’arrivé).

Donc f, est un automorphisme de Ry[X].
(a) Pour tout P € Ry[X],
foofa(P)=fo(P(aX +1—a))=PladX +1->b)+1—a)=P(abX + 1 —ab) = fu(P).

Ainsi, fy 0 fo = fab-
(b) On remarque que VP € Ry[X], fi(P) = P, c’est-a-dire f; = Id. Comme a # 0, on a avec
la question précédente :

faofl/a:flzld et fl/aofa:flzld'

Ainsi, f,1 = J1/a-
(c) Montrons par récurrence sur n € N, la propriété 7 (f,)" = fan”.

Ini. f,0 = f1 = Id d’apres la question précédente, donc on a bien : f,0 = (f,)°.
Héré. Soit n € N. Supposons que (fq)" = fan. Alors :

(fd)n+1:(fa)nofa:fa”ofa: fa”xa :fan+1.
(H.R.) (d’apres 3.(a))

Ccl. Par récurrence, pour tout n € N, (fy)" = fan.

(a) Ona fo(1) =1, fo(X) =aX+1—a, fo(X?) = (aX+1—-a)? = a’X?+2a(1—a) X +(1—a)?
et f,(X3) = (aX +1—a)®=a’X>3+3a%(1 —a)X?+3a(l —a)’X + (1 —a).
Ainsi,

1 1—-a (1-a)? (1-a)?

0 a 2a(l-a) 3a(l-—a)?

0 0 a? 3a(1 — a)

0 0 0 a?

M,
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La j + 1-ieme colonne de M, contient les coordonnées de f,(X7) dans la base canonique.

J 1 . . . .
On fo(X7) = (aX +1—a)) = Z (‘Z) a'(l—a) ' X"

1=0

(formule du binoéme)
La (i + 1)-iéme ligne de M, contient donc le coefficient (z)ai(l —a) 7t
On sait d’apres la question 3.(c) que pour tout n € N, (f,)" = fan. Donc Mean((fa)™) =
Mcan(fa”), c’est-a-dire (Ma)n = Ma”-

Montrons maintenant que pour tout n € N, (M,)" est inversible d’inverse (M,)™" = M,-n :
(Ma)n X Mafn — Man X Ma* = ManXG,*n — Ml — I
———
(d’apres 3.(a))

Ainsi, on a bien (M,)" inversible et (M,)™" = M -n.

La formule est aussi vraie pour les entiers négatifs.

La matrice M, est triangulaire donc ses valeurs propres sont ses coefficients diagonaux,
cest-a-dire Vi € [0, N], (})a’(1 — a)"~" = a.
fo(X =DF) = (aX +1—a—1F = (a(X —1))F =d"(X — 1)k

) Notons, pour tout k € [0, N], Pi(X) = (X — 1)* de sorte que f,(Py) = a*P;.

La famille F = (P, P,..., Py) est libre car c’est une famille de polynomes de degrés
échelonnés et card(F) = N + 1 = dim(Ry[X]) donc F est une base de Ry[X]. De plus,

1 0 --- 0
0 a
M}'(fa)—
: .0
0 --- 0 oV

Cette matrice est semblable a M, car elle représente le méme endomorphisme f,. Ainsi,
M, est semblable & une matrice diagonale et elle est donc diagonalisable.

Probléeme : Durée de fonctionnement d’un systéme (ESSEC II 2010)

1.

(a)

X suit la loi exponentielle de parametre u donc admet une espérance et une variance qui
valent :

Par théoreme de transfert et relation de Chasles, on s’intéresse a ’absolue convergence de :

400 0 +o0o
/ " fu(t)dt = / 0dt + p / t"e Mt
0

—00 —00

La premiere intégrale converge absolument et vaut 0 comme intégrale de la fonction nulle,
la seconde est I'intégrale d’une fonction positive, qui n’est généralisée qu’en +o0. Or :

theHt 1
— = t"t2e 50 donc t"e M=o ol
= t—+o00 t

au voisinage de +o00. De plus l'intégrale f1+°° tlzdt converge absolument (intégrale de Rie-

mann avec o = 2 > 1 donc par théoréeme de comparaison, f0+°° t"e Htdt converge absolu-
ment.
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On obtient finalement que X™ admet une espérance pour tout n et on obtient une relation
de récurrence par intégration par parties :

+oo
E(Xn—H) — / utn+16_“tdt.
0

On se place entre 0 et = et on pose :
u=t"" et v=—eM
qui sont de classe C! sur R, avec
u'=(n+1)t" et v = pe M
L’intégration par parties donne :

/ pt"HemHdt = [—t" e M (4 (n41) / e Mdt = —g" eI —— / pt" e dt.
0 0 K Jo

On fait tendre x vers +o0o et on obtient (le terme devant I'intégrale tend vers 0 par crois-
sances comparées) :

1
B = P pxm.
i
(¢) On en déduit alors que :
1 I
B(X,) = 2p(xn ) = M0 D g2y . 2 D X g o)
u 7 pr

et comme X = 1 est une variable certaine dont 'espérance vaut 1, on obtient :

n!

(d) D’ou par formule de Koenig-Huygens,

V() = BX) - [BOOP = -

11
2w o

PR

2. (a) Pour tout =z > 0,
+o00
P(X >z) = / pe Fdt = e > 0.

T

Pour tous réels positifs z et y, (X >z +y) C (X > z) donc :

Pixsa(X >z 4y) = A& >;2; (>X:; =l P[(f)’i;i ‘;yﬂ

e*,u(ery)

= = =P >y)

(b) i. f est continue strictement positive sur Ry, donc R(z) = 1 — Fx(z) est de classe C!
sur Ry et sa dérivée est —f(x), strictement négative.

De plus par propriétés d’une fonction de répartition on sait que lil}rl R(x) = 0, limite
T—>+00

qui n’est jamais atteinte car R est strictement décroissante. D’ou :

Ve >0, R(z) >0= lim R(t).

t—+00
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ii. On vient de voir que R est de classe C, on a de plus (X >z +y) C (X > z) donc :

P[(X >z+4+y)N (X > 2)]
P(X >x)

R(x+y)

W = R(y)

< R(z+vy)=R(x)R(y).

P(X>a:)(X > x+y) :P(X > y) =

=P(X >y)

On dérive cette relation par rapport a y et on obtient :
Va,y € Ry, R'(z+y) = R(z)R (y).
Enfin on pose y =0 et on a :
Vz € Ry, R'(z) = R(z)R(0).

Or on a vu que R'(z) = —f(z) et pour z =0 on a: R'(0) = —f(0) = —u. On obtient
bien finalement :
R(z) + pR(x) = 0.
iii. R est solution de I’équation différentielle homogene y' + puy = 0. Donc R(z) = Ae™H*,
avec A un réel a déterminer.
Or R(0) = P(X > 0) = P(X >0) =1 car X est une variable & densité positive. Donc
A =1 et on obtient pour tout z > 0 :

R(z)=e " o Fx(z)=1—R(z)=1—eH".
On reconnait la loi exponentielle de parametre p = f(0).

3. (a) On sait que (Y <t)=(X; <t)N (X2 <t) donc par indépendance de X; et Xo, pour tout
teR,ona

Fy(t) = P(Y <t)=P[(X1<t)N(Xy <t)] = P(X1 < t)P(Xy < t) = Fx, (t)Fx,(t)
0 sit<0
{ (1—e M) x (1—e ) sit>0

Cette fonction est continue sur R comme produit de Fx, et Fx, qui le sont car X; et Xo
sont & densité, et de classe C! sur [0; +00[ et | — o0; 0] donc Y est une variable & densité, et
en dérivant Fy sauf en 0 ou on donne une valeur arbitraire, une densité de Y est :

() 0 sit<0
T = et 4 poe P2t — (g + pg)e it sit >0

(b) On sait que (Z > t) = (X1 > t) N (X2 > t) donc par indépendance de X; et Xo, pour tout

teRon a
Fz(t) = P(Z<t)=1—-P(Z>t)=1—-P[(X;>t)N (X2 >1)]
= 1—P(X1>t)P(X2>t):1—[1—FX1(t)]X[l—FXQ(t)]
0 sit<0
- {1—6—(H1+H2>t sit>0

On voit alors que Z suit la loi exponentielle de parametre pg + po.

4. On fait apparaitre Fp puis Ry (comme T & densité) :

Pt<T<t+h)=Fp(t+h)—Fr(t)=1—Rp(t+h)—(1—Rp(t)) = Rr(t) — Rr(t+ h).
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5. Pour tout réel ¢ positif ou nul,

6.

car

(a)

fim Pt<T<t+h) — fim Ry(t) — Rr(t+h) _ lim Rp(t+ h) — Rp(t)

h—0+ h h—0,h>0 h a hﬁ%),h>0 h
= —Rp(t) = fr(t)
Ry (t) =1 — Fp(t) est dérivable au point ¢, de dérivée — fp(t).

La question a déja été traitée précédemment : fr est continue strictement positive sur

R*, donc Ryp(t) =1 — Fr(t) est de classe C! sur R et sa dérivée est — fr(t), strictement

négative.

De plus par propriétés d’une fonction de répartition on sait que . 1121 Rp(t) = 0, limite qui
—+00

n’est jamais atteinte car Rp est strictement décroissante. D’ou :
YVt >0, Rp(t) > 0= lim R(t).
t——+o00
Enfin en ¢t = 0, comme T est positive on a :

Rp(0)=1-Fp(0)=1-P(T<0)=1-0=1>0.

La fonction ¢t — In ( ) = —1In(Ryp(t)) est définie et dérivable sur Ry par composition

1
Rr(t)
de fonctions dérivables car Rt est dérivable, a valeurs dans R” et In est dérivable sur R? .
Sa dérivée est : )

CRp() . —fr(@)

d
at (—In(Rr(1))) = Rr(t) = Rr(t) = A(1).

On en déduit que G(t) = —In(Rr(t)) est une primitive sur Ry de A, qui s’annule lorsque :

RT(t):lﬁFT(t):O@tZO.

D’ol on en déduit I’écriture :
t t .
—In(Ry(t)) = / Mx)dz = In(Rp(t)) = — / Az) dz = Rp(t) = e~ Jo A@)de,
0 0
On dérive v, et on a vu précédemment que R, (t) = —fz(t) = —g(t) :
V() =1x Rz(t) +t x Ry(t) = Rz(t) — tg(t) <= tg(t) = Rz(t) — /().
On écrit Rz a ’aide d’une intégrale ce qui donne :
+oo +o0o +oo
v(t) =tRyz(t) =tP(Z >t) = t/ g(u)du = / tg(u)du < / ug(u)du
t t t

car pour tout x € [t; 00|, t < u donc tg(u) < ug(u) et on intégre sur des bornes croissantes.
D’ott on obtient

0<w(t) < /t+00 ug(u)du

(cette intégrale converge bien car Z admet une espérance).
Or par relation de Chasles,

/t+°° ug(u)du = /0+oo wg(u)du — /0 " wo(u)du.

. . t +oo
De plus on sait que tl}inoo Jo ug(u) du = [;"° ug(u)du donc

+oo
li du =
i, J, votdu =0
et par théoreme d’encadrement,
lim v(t) = 0.
t——+o00
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()

Comme Z est a valeurs positives, 'intégrale de —oo a 0 est nulle donc :

+oo +oo
E(Z):/0 tg(t)dt:/o (Rz(t) —v'(t))dt.

Etudions cette intégrale, en passant par l'intégrale partielle pour primitiver et faire ap-
paraitre v(t) :

/Ox(RZ(t)—v’(t))dt = /OIRZ(t)dt—/va’(t)dt:/OxRZ(t)dt—[v(t)]g
_ /Rz(t)dt—v(a;)+v(0)—/ Ry(t)dt — v(x).
0 0

car v(0) =0 x Rz(0) = 0. D’ou

/0 Rz(t)dt :/0 tg(t)dt + v(x).

De plus on sait que [ tg(t)dt converge en +oo vers E(Z) et v(z) converge vers 0.
D’ou f0+oo Rz(t)dt converge et vaut E(Z), ce qui donne bien :
+o0

E(Z) = ; Rz(t)dt.

Pour tout réel = positif, comme (T >z +t) C (T > t),

P(T>tin[T>t+x]) PT>x+t) Rrp(t+zx)

Ry (z) = Prsy(T >t +x) = P(T > t) ~ P(T'>t)  Rp(t)

Il faut prouver que 7; admet une espérance pour utiliser le résultat ci-dessus.
Puisque T} est trivialement positive, et Fr, =1 — Rr,, on obtient :

0 siz <0
Fr,(z) = 1-— ng(t;r;:) siz>0
7 (t -

Cette fonction est de classe C! donc continue sur R sauf peut-étre en 0, de plus elle est
continue sur R car par continuité de Ryp :

. Ry (t + x) Ry (t) .
7(0) = lim, Rr(?) Rr(t) i

On en déduit que T} est a densité, et une densité de T; est donnée par :
0 siz <0
fr,(x) = fi}“%(Tt'(;ﬂ;) siz>0

Enfin comme l'intégrale sur R_ est nulle, sous réserve de convergence absolue et avec le
changement de variable v = x + t et la linéarité de 'intégrale on a :

[ frttx), 1 +OOU_ )dw
pm) = [ e e = s [ 0= 0fr(w)

1 oo t +oo
- 70 /t ofr(w)dy - s /t fr(v)dv

Or la premiére intégrale converge absolument car 7" admet une espérance, et la seconde car
T est a densité : on en déduit que T; admet bien une espérance.
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(b)

La question 7.(c) donne alors :

+o00 +oo
B(T)) = /0 RTt(u)du:R;(t) /0 Re(t + u)du

et avec le changement de variable affine v =t + u on obtient finalement :

1

+oo
E(T) = RT(t)/t Ry (v)dv.

SiT < &(u), alors pour tout t >0 :

—ut
Rr(t)=P(T>t)=e M ot A{t)= “:_Ht

On remarque que 7' = min(71,T,) donc avec la fin de la partie I on sait que T suit la loi
exponentielle de parametre p; + po.

On en déduit avec la question précédente que : pour tout ¢ > 0,
Rp(t) = P(T > t) = e~ M2t ot X\(t) = p1 + po.
On remarque que T' = max(71,7>) donc d’apres la partie I, pour ¢ > 0 :

Fr(t) =1 — ettt —ek2t 4 e~ (mtm)t  qone Rr(t) =1 — Fp(t) = et 4 et2! — e (mtu2)t

©n.3 est positive et continue sur Ry et sur | — oo;0[, donc positive sur R et continue sauf
peut-étre en 0.

De plus on a ¢, g(t) = % x ftn e bt

On calcule f0+oo ¢n,(t)dt; on reconnait 'intégrale définissant Pespérance de X"~ ot X suit
une loi exponentielle de parametre 5, donc on sait que cette intégrale converge absolument

et :
+o00 ﬁn_l (n _ 1)!
/0 (pn’g(t)dt = (TL — 1)' X ﬁnfl =1.

De plus I'intégrale de —oo a 0 de ¢, g converge et vaut 0 car c’est I'intégrale de la fonction
nulle.

On obtient finalement que fj;o ©n,p(t)dt converge et fj;o ©n,a(t)dt =1 donc ¢, g est une
densité de probabilité.

On a par définition :

“+00 t
Ro(t) = P(T > 1) = /t g (u)du = 1 —/O s (u)du.

On montre alors le résultat par récurrence sur n > 1 :

Ini. Pour n =1, p14(t) = Be~ Pt donc on reconnait la loi exponentielle de parametre S, et

on a vu :
Rp(t) = e Pt

Or on calcule facilement :

:e_ﬁt

0
_ (Bt)k
e kzzo !

donc la propriété est vraie au rang n = 1.
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11.

Héré. Soit n > 1. Supposons que la propriété soit vraie pour ¢, g, on a alors :

(a)

t n—1 k
_ t)

" du=1-¢e") jL} :
/0 on,p(u) du e 2.

Calculons Ry pour ¢,41,:
B Bn t " Bu
Rr(t)=1- — [ u"x Be” du.
n: Jo

On pose
v=u" et w=—e P

qui sont de classe C'* sur [0;] avec :

v =nu"t et w = Be P

Par intégration par parties, on obtient :

n t t
Rr(t) = l—ﬁ— {—u"e‘ﬁu] +n/ u e Pudu
0 0

n!
IBH

n!

B ll_e_mgwﬂ
|

t
= 1+ xthe P —0— / (lg(ﬁu)”_le_ﬁudu
0 .

n:

e !Zl (B0, wt)"]

o (B0
B

Ccl. Pour tout n > 1, si T suit la loi d’Erlang de parametres n et 3, on a :

n—1 k
RT(t) = €_Bt Z (B]fl)
k=0

La fonction 1, est positive et continue sur [0; +oo[ et sur | — o0o; 0[, donc positive sur R et
continue sauf peut-étre en 0.

Son intégrale de —oo a 0 converge et vaut 0 car c’est 'intégrale de la fonction nulle.
Pour z > 0, on considere

/ox hpn(t) dt = |:_€_<7t])ﬁ:|

donc l'intégrale de 0 a +oo et par suite 'intégrale de —oo a +o00 convergent et valent toutes
deux 1.

€T
x

B
) —
0 T—+00

La fonction 13, est donc une densité de probabilité.

On a vu qu’on sait primitiver g ,, on peut donc calculer, avec ¢t > 0 :

RT(t):l—P(Tgt)zl—/O Odm—/otwﬁ,n(m) do—1- (1—6‘@)3) _ G

—00

On en déduit que pour tout t > 0,

_ wﬂm(t) B
Alt) = Re(t) n
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(c) % et % sont des constantes strictement positives, la limite dépend de la constante 8 — 1 qui
peut étre nulle :

e Sif=1<=—-1=0, alors
1

1
N t—+oo 1

J

(On retrouve & nouveau le cas de la loi exponentielle, car pour § = 1, la loi de Weibull
est une loi exponentielle de parametre %)

e Sif>1«= [3—1>0, alors

t\*!
Ay =2 <> too.
n t——+o0

12. (a) Le théoreme de transfert donne la formule immédiatement, & condition de prouver la con-
vergence absolue de la série.

Or pour tout s € [0;1], et pour tout k > 0, on a :
0<s<1=0<s"<1=0<P(N,=k)s" <P(N,=k)

et la série de terme général P(N, = k) converge absolument (c’est la somme des proba-
bilités sur un systéme complet d’éveénement, la série vaut méme 1) donc par théoreme de
comparaison des séries a termes positifs, la série cherchée converge absolument.

On en déduit finalement que G,(s) existe pour tout s € [0;1] et :
+o0o
Gu(s) =) P(N, = k)s".
k=0

(b) Par définition de G et en faisant apparaitre astucieusement les hypotheéses données par
I’énoncé :

Guivo(s) = E (SNu+v) =F <sN“+(N“+“_N“)> =F (SNuS(Nu+v—Nu)) .

Or les variables N, et (Ny4, — N,) sont indépendantes d’apres I’énoncé, donc par lemme
des coalitions sV« et sNu+v=Nu ] sont aussi donc :

Gu+v(8) = E (SNU) E <S(Nu+v—Nu)> — GU(S)E (S(Nu+v_Nu)) .
L’énoncé dit aussi que Nyiy — Ny, suit la méme loi que N(yqy)—,, = N, donc
E (S(er}—'u*Nu)) — E(SNv) — GU(S)

et enfin

Gutv(8) = Gu(5)Gu(s).

13. (a) On fait apparaitre un terme strictement positif dans la somme (le premier) :

+oo +oo
Gi(s) = E(s"") =Y P(Ny = k)s* = P(N1 =0) + Y _ P(Ny = k)s".
k=0 k=1

+00
Or > P(N1 = k)s* >0 donc G1(s) > P(N1 = 0) > 0 d’apres 1’énoncé.
k=1
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(b) Une récurrence immédiate donne

Ga (s)= HGUZ(S)
v i=1
i=1
donc en posant u; = -+ = up = 1,
k
Gi(s) = [] Gils) = Gu(s)F = eFIn () = ¢HO0),
i=1

(¢c) De méme en utilisant la propriété énoncée au début de la question b,

Gi(s)=G a4 (s)= (G

=1 i
=11
D’ou
_ RO
Gi(s) =Gi(s)s =€ a
q
(d) On fait la méme opération sur
q
Gs) =G g, (5) = (G2(9)

i=1

donc )

W(r) = (V(p)1 = (e—pws))E _ o BO) _ rh(s)

(e) Question tres difficile, qui utilise la densité de Q dans R. Celle-ci dit que pour tout réel u,
il existe deux suites u, et v, de rationnels adjacentes ayant pour limite . On a donc pour
tout n,

Up < U< Uy

De plus I’énoncé dit que la fonction u — N, est croissante.
D’ou pour tous u < v on a, avec s < 1 donc In(s) <0 :

Ny < Ny = In(s)N, > In(s)N,, = PN > n6No o N < No o p(sNe) > (M),
Enfin on en déduit que
u < v = Gy(s) > Gy(s) = Y(u) > Y(v)
et la fonction v est décroissante, ce qui permet d’écrire :
Up < u < vy = Y(ug) > P(u) > P(vy)
Comme u,, et v, sont des rationnels on a pour tout n,

blun) = ) et () = om0

Comme le réel s est fixé, la fonction u — e~ (%) est continue et on obtient :
li —unf(s) _ li —vnf(s) _ —ub(s) done li — 1 — fuﬂ(s)‘
e i ‘ re A i) = By ) =

Par encadrement on en déduit que

P(u) = e () ot enfin Gu(s) = e ud(s)

10
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(f) On utilise ’équivalent usuel de I'exponentielle, avec h — 0 = —hf(s) — 0 (avec s fixé) :

Gp(s)—1 e M) —1  —ho(s)

h h " n —0(s) h—0,h>0 —0(s)-

14. On part du coté droit, plus compliqué, et on simplifie :

+oo 00 +o00
P(Ny=1)(s—1)+ Y P(Ny=k)(s" =1) = Y P(N,=k)s* =Y P(N,=k)
k=2 k=1 k=1

= [Gu(s) — P(N}, =0) x "] = [1 — P(N}, = 0)]
Gh(s)—l—P(Nh :0)+P(Nh:0)
Gr(s) — 1.

15. Comme on ne peut pas échanger la limite et la somme infinie, on procede par encadrement :
0<s<1=Vk>2 0<sf<1=VEk>2 —-1<s"-1<0

puis on somme les inégalités pour k allant de 2 a +o0 et on divise par h > 0 :

+o0 +o00
> P(Ny=k) > P(Ny=k)(s*—1)

0<s<1 = =2 < k=2 <0
5= h = h =
55PN, = k(s — 1)
h=k)(s" —
P(N,>1) _ =
- -T2 < : <0

et I’énoncé dit que le terme de gauche de I’encadrement tend vers 0 lorsque A tend vers 0T donc
par encadrement :
—+o00o
Y. P(Np=Fk)(s" —1)
lim *=2 = 0.
h—0,h>0 h

16. (a) D’apres la question 14,

+o0
— 1\(e ek
Gals) — 1 P(N,=1)(s —1) + k;P(Nh = k)(sF - 1)

h h
+o0
_ Sk -
PO =11 Y
h h

On en déduit avec la question 15 que :
S PN = k) (sF — 1)

h="Fk)(s"—

P(Np,=1)(s—1) _ Gr(s)—1 =

h B h h—0,h>0 —0(s) = 0= —0(s).

D’ouon tirequesis—1#0< s # 1,

P(N,=1) _0(s) _ 0(s)
h h—0h>0 s—1 1—s

et cette limite, notée a, est positive puisque c’est la limite d’un quotient de facteurs positifs
et vérifie bien pour s € [0;1] :
0(s) = a(l —s).

11
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17.

Si s =1, il faut prouver que (1) = 0 pour généraliser la relation. Or

+oo +oo
=Y P(Ni=k)1"=> P(N;=k)=
k=0 k=0
donc
6(1) = —In(G1(1)) = —In(1) = 0.
On obtient bien qu’il existe @ > 0 tel que @« = lim P(N;;:l) et que pour pour tout
h—0,h>0
s€0,1], 0(s) = a(1 —s).
On calcule :
G (0) = P(N, = 0) x 0° + ZP ) x 0¥ = P(N, = 0)

et I’énoncé donne
Yu >0, 0<P(N,=0)<1.

On en déduit que
0<G1(0) <1=1In(G1(0)) < 0= 6(0) = —In(G1(0)) > 0.
Enfin on remarque qu’en posant s =0, on a :
0(0) =a(l-0)=a>0.
On a 6(s) = a(1 — s) donc :
Guls) = e~006) — gmuali=s) _ —augasu

Or la série exponentielle prise en £ = asu donne :

donc pour tout s € [0;1] ,

M

+oo k 400 k
U Z |:e—au (au) :| Sk.

k=0 k=0

On a obtenu : pour tout s € [0;1], en posant X qui suit la loi de Poisson de parametre
(au) : ona N, (2) = X(2) =Net:

ZP )s _ioP(X:k)sk.
k=0

Cela n’assure pas forcément que les termes de la série sont égaux deux a deux. L’idée pour
Iobtenir est de poser s = 0, qui donne les termes s = 0 égaux.

Puis on retire ces termes, on divise par s (pour s > 0) et on prend la limite lorsque s tend
vers 0 (d'une somme infinie, donc par encadrement), qui donne 1’égalité pour s = 0.

Enfin on prend s = 0 et les termes 1 sont égaux, puis on réitere.... ce qui se traite rigoureuse-
ment par récurrence.

—au (au)i

Montrons par récurrence sur k que pour tout i € N, P(N, =i) =e T

Ini. On prend la relation précédente pour s = 0. Tous les termes pour k > 1 s’annulent en

on obtient P(N, =0) = P(X =0).

12
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Héré. On suppose que pour tout k < ¢ (récurrence forte), P(N, = k) = P(X = k).
On obtient alors en retirant les termes égaux que pour tout s € [0;1]:

“+00 —+00
> P(Ny=k)st= > P(X=k)s
k=i+1 k=i+1

Pour tout s > 0 (pour pouvoir diviser) on en déduit que :

+oo A +oo A
Y P(N,=k)s¥ 1= Y P(X =kt
k=i+1 k=i+1

et on sépare le premier terme de chaque somme et on isole la probabilité cherchée :

+o0 +00
P(N,=i4+1)=P(X=i+1)+s ( Z P(X = k)sF—72 - Z P(X = k)skz‘2>
k=i+2 k=i+2

Or, sur le modele de la question la, on peut encadrer les séries : pour Y une variable
aléatoire a valeurs dans N (donc cela s’applique a X et N,) on a ;

0<P(Y =k)s" 2 < P(Y =k)

donc
0 3 P =psts 3 P ek <1
k=i+2 k=i+2

Donc on obtient que :

-1< < f P(X =k)sF72 — +§ P(X = k)s’”?) <1

k=i+2 k=i+2
puis
+00 ] +00 ‘
—s<s < Z P(X — k)8k7172 _ Z P(X — k)8k12> <s
k=i+2 k=i+2

et par encadrement, le terme central tend vers 0 lorsque s tend vers 0, ce qui donne
finalement :

P(N,=i+1)=P(X =i+1)

et la propriété est vraie au rang ¢ + 1.

Ccl. Pour tout k € N,
P(N,=k)=P(X =k)

et N, suit la méme loi que X, donc la loi de Poisson de parametre (au).
18. (T' > t) = (N = 0) donc pour tout t on a :
P(T>t)=P(Ny=0)=e* donc P(T<t)=1-e .

D’autre part P(T <t) =0sit <0 car il ne peut pas y avoir de panne avant I'instant de mise
en marche.
On reconnait bien la fonction de répartition d’une loi exponentielle de parametre .
19. (a) Npyp est le nombre de panne a 'instant ¢ + h et IV; le nombre de pannes a U'instant ¢t donc
Ny, — Ny représente bien le nombre de pannes survenues dans 'intervalle de temps |¢; t+h].

(b) Question pas difficile mais fastidieuse.
L’énoncé dit que N, = Nigp — Ny suit la méme loi que Np, et on obtient, une par une,
toutes les propriétés du processus de Poisson a I’aide de celles vérifiées par Ny,.

13
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(c) On applique la question 7 & la famille (N},),>0 et on obtient le résultat.

(d) Question mal posée : le taux de défaillance du systeme apres ¢ n’a jamais été défini, et sur
ce systéme, les pannes sont réparées, contrairement au cas ou on avait défini le taux de
défaillance du systeme.

Il faut comprendre que la taux de défaillance apres t est le taux de défaillance de la variable
T; définie a la question II5.

Or T puis T} suivent des lois exponentielles de paramétre o (remarquer que Ty = T'), donc
le taux de défaillance est constant égal a « (question II6a).
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