
ECG2 - Mathématiques appliquées Lycée Clemenceau - Reims

Graphes aléatoires d’Erdös-Renyi
Distance en variation et couplage

Correction - AP 9

Exercice 1 (Graphes aléatoires d’Erdös-Renyi - ESSEC 2022 sujet 0)
1. Le nombre maximal d’arêtes correspond au nombre total de paires de sommets soit :(

n

2

)
=
n(n− 1)

2
.

2. Un exemple de fonction qui convient :

1 def listAdj(S,p):

2 L=[[] for k in range(len(S))]

3 for i in range(len(S)-1):

4 for j in range(i+1,len(S)):

5 if rd.random()<p:

6 L[i].append(S[j])

7 L[j].append(S[i])

8 return(L)

3. On a :

Dk =

k−1∑
i=1

Ti,k +

n∑
i=k+1

Tk,i.

Donc Dk est la somme de (n− 1) variables de Bernoulli indépendantes de paramètre p d’où Dk

suit la loi binomiale de paramètres n− 1 et p.

4. (a) Comme Xk vaut 1 si le sommet est isolé, 0 sinon,

n∑
k=1

Xk est égal au nombre de sommets

isolés dans le graphe, c’est-à-dire Zn.

Par indépendance des Ti,k ↪→ B(p),

E(Xk) = P (Xk = 1) = P (Dk = 0) = P

⋂
i 6=k

(Ti,k = 0)

 = (1− p)n−1

Par linéarité de l’espérance, E(Zn) = n(1− p)n−1.

(b) On a :

Z2
n =

(
n∑
k=1

Xk

)2

=
∑

1≤i,j≤n
XiXj =

∑
1≤i=j≤n

XiXj +
∑

1≤i<j≤n
XiXj +

∑
1≤j<i≤n

XiXj .

Or X2
i = Xi (car Xi est une variable de Bernoulli) et

∑
1≤j<i≤n

XiXj =
∑

1≤i<j≤n
XiXj . Donc :

Z2
n =

n∑
k=1

Xk + 2
∑

1≤i<j≤n
XiXj .
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(c) On a pour i < j, (Xi = 1)∩ (Xj = 1) est réalisé si et seulement si les événements (Tk,i = 0)
pour k < i, (Ti,k = 0) pour k > i, (Tk,j = 0) pour k < j et k 6= i, (Tj,k = 0) pour k > j
sont réalisés.

Or ces événements sont au nombre de (n − 1) + (n − 2) = 2n − 3, indépendants et de
probabilité p. D’où P ((Xi = 1) ∩ (Xj = 1)) = (1− p)2n−3.

Par linéarité de l’espérance avec la question 4.(b) :

E(Z2
n) = n(1− p)n−1 + 2

∑
1≤i<j≤n

E(XiXj).

Or E(XiXj) = P (XiXj = 1) = P ((Xi = 1) ∩ (Xj = 1)) = (1− p)2n−3.

Comme il y a
n(n− 1)

2
couples (i, j) tels que 1 ≤ i < j ≤ n, alors on a bien :

E(Z2
n) = n(1− p)n−1 + n(n− 1)(1− p)2n−3.

5. (a) Voici la fonction demandée :

1 def Z(lst):

2 c = 0

3 for k in range(len(lst)):

4 if len(lst[k]) == 0:

5 c = c+1

6 return c

(b) Ce scripte utilise la loi faible des grands nombres qui permet d’affirmer que la fréquence
empirique de réalisation d’un événement (ici (Zn = 0)), lors d’une répétition d’un grand
nombre d’expériences identiques liées à la réalisation de cet événement et indépendantes,
est proche de sa probabilité. On peut conjecturer que, lorsque n est grand, P (Zn = 0) est
proche de 1 pour c > 1 et de 0 pour c < 1.

6. (a) On remarque que (1− pn)n−1 ∼ (1− pn)n car 1− pn −→
n→+∞

1. De plus,

(1− pn)n = exp

(
n ln

(
1− c ln(n)

n

))
.

Comme
ln(n)

n
−→

n→+∞
0 par croissance comparée,

n ln

(
1− c ln(n)

n

)
= n

(
−c ln(n)

n
− c2 ln(n)2

n2
+ o

(
ln(n)2

n2

))
= −c ln(n) + o(1).

Donc :
(1− pn)n = exp(−c ln(n) + o(1)) = n−c × eo(1)︸︷︷︸

−→
n→+∞

1

∼ n−c.

(b) Si c > 1, E(Zn) ∼ n1−c −→
n→+∞

0.

D’après Markov, P (Zn ≥ 1) ≤ E(Zn) donc par encadrement P (Zn ≥ 1) −→
n→+∞

0.

Donc P (Zn = 0) = 1− P (Zn ≥ 1) −→
n→+∞

1.

(c) Appliquons l’inégalité de Bienaymé-Tchébichev à Zn pour ε = E(Zn) :

P (|Zn − E(Zn)| ≥ E(Zn)) ≤ V (Zn)

E(Zn)2
.
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ECG2 - Mathématiques appliquées Lycée Clemenceau - Reims

Or si (Zn = 0) est réalisé, alors (|Zn − E(Zn)| ≥ E(Zn)) aussi. Par croissance de P , on a
donc :

P (Zn = 0) ≤ P (|Zn − E(Zn)| ≥ E(Zn)) ≤ V (Zn)

E(Zn)2
.

Avec K-H puis les questions 4.(a) et 4.(c), on a :

V (Zn)

E(Zn)2
=

E(Z2
n)− E(Zn)2

E(Zn)2
=

E(Z2
n)

E(Zn)2
− 1

=
n(1− pn)n−1 + n(n− 1)(1− pn)2n−3

n2(1− pn)2n−2
− 1

=
1

n(1− pn)n−1
+

n− 1

n(1− pn)
− 1.

Or
n− 1

n(1− pn)
∼ n

n× 1
= 1 −→

n→+∞
1 et

1

n(1− pn)n−1
∼ 1

n× n−c
=

1

n1−c −→n→+∞
0 si c < 1.

Par encadrement, P (Zn = 0) −→
n→+∞

0

(d) On a confirmation de la conjecture.

Exercice 2 (Distance en variation et couplage - ESSEC II 2006)
1. Lorsque K = {0; 1}, on a D (P ,Q) =

1

2
(|p0 − q0|+ |p1 − q1|). Comme p0 + p1 = 1, on a donc

p0 = 1− p1 et de même q0 = 1− q1.

Donc D (P,Q) = 1
2 (|q1 − p1|+ |p1 − q1|) = |p1 − q1| (car |−x| = |x| pour tout x réel).

2. Supposons que K =N. Pour tout k ∈ K, on a :

0 ≤ |pk − qk| ≤ |pk|+ |qk| = pk + qk (d’après l’inégalité triangulaire).

Comme les séries de terme général pk et qk convergent, celle de terme général pk + qk également.

Et par comparaison de série à termes positifs, la série de terme général |pk − qk| converge.

3. Pour tout A ∈ A, on a 0 ≤ P (A) ≤ 1 et 0 ≤ Q (A) ≤ 1.

Donc −1 ≤ P (A)−Q (A) ≤ 1 et donc |P (A)−Q (A)| ≤ 1.

On a bien |P (A)−Q (A)| ∈ [0, 1].

4. Pour tout A ∈ A, P (A) =
∑
k∈A

pk et
∑
k∈A

pk = 1−
∑
k∈Ā

pk (et de même pour Q).

Donc P (A)−Q (A) =
∑
k∈A

(pk − qk) d’une part.

Et P (A)−Q (A) = 1−
∑
k∈Ā

pk − 1 +
∑
k∈Ā

qk =
∑
k∈Ā

(qk − pk) = −
∑
k∈Ā

(pk − qk) d’autre part.

Donc :

2 |P (A)−Q (A)| = |P (A)−Q (A)|+ |P (A)−Q (A)| =

∣∣∣∣∣∑
k∈A

(pk − qk)

∣∣∣∣∣+

∣∣∣∣∣∣
∑
k∈Ā

(pk − qk)

∣∣∣∣∣∣ .
5. On a : D (P,Q) =

1

2

∑
k∈K
|pk − qk| et K = A ∪ Ā (union disjointe).

Donc D (P,Q) =
1

2

(∑
k∈A
|pk − qk|+

∑
k∈Ā
|pk − qk|

)
.

Avec l’inégalité triangulaire,
∑
k∈A
|pk − qk| ≥

∣∣∣∣ ∑
k∈A

(pk − qk)
∣∣∣∣ et

∑
k∈Ā
|pk − qk| ≥

∣∣∣∣∣ ∑
k∈Ā

(pk − qk)

∣∣∣∣∣.
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Alors, en utilisant la question précédente,

2D (P,Q) =
∑
k∈A
|pk − qk|+

∑
k∈Ā

|pk − qk| ≥

∣∣∣∣∣∑
k∈A

(pk − qk)

∣∣∣∣∣+

∣∣∣∣∣∣
∑
k∈Ā

(pk − qk)

∣∣∣∣∣∣ = 2 |P (A)−Q (A)| .

6. Soit A = {k ∈ K | qk ≥ pk}. Pour tout k ∈ A, |pk − qk| = − (pk − qk).
Et pour k ∈ Ā, |pk − qk| = pk − qk (car dans Ā, qk ≥ pk est faux).

Donc :

D (P,Q) =
1

2

∑
k∈A
|pk − qk|+

∑
k∈Ā

|pk − qk|

 =
1

2

−∑
k∈A

(pk − qk) +
∑
k∈Ā

(pk − qk)


=

1

2

∣∣∣∣∣∑
k∈A

(pk − qk)

∣∣∣∣∣+

∣∣∣∣∣∣
∑
k∈Ā

(pk − qk)

∣∣∣∣∣∣
 = |P (A)−Q (A)|

car
∑
k∈A

pk − qk ≤ 0 et
∑
k∈Ā

pk − qk ≥ 0.

7. On réutilise la question précédente :

Avec A = {k ∈ K | qk ≥ pk}, on a : D (P,Q) = |P (A)−Q (A)|.
Or pour k ∈ A, min(pk, qk) = pk et pour k ∈ Ā, min(pk, qk) = qk.

Donc 1−
∑
k∈K

min(pk, qk) = 1−
∑
k∈A

pk −
∑
k∈Ā

qk

Comme 1−
∑
k∈A

pk = P
(
Ā
)

et
∑
k∈Ā

qk = Q
(
Ā
)
, on obtient :

1−
∑
k∈K

min(pk, qk) = P
(
Ā
)
−Q

(
Ā
)

= (1− P (A))− (1−Q(A)) = Q (A)− P (A) .

Et comme ici Q (A)− P (A) =
∑
k∈A

(qk − pk) ≥ 0, on a :

Q (A)− P (A) = |P (A)−Q (A)| = D(P,Q).

Finalement, on a :

D (P,Q) = 1−
∑
k∈K

min(pk, qk).

8. L’événement (X = Y ) est plus facile à décomposer que (X 6= Y ), on s’intéresse à l’événement
contraire : P (X 6= Y ) = 1−P (X = Y ).

On décompose (X = Y ) =
⋃
k∈K

((X = k) ∩ (Y = k)) (union disjointe).

Donc P (X = Y ) =
∑
k∈K

P ((X = k) ∩ (Y = k)).

Or :

• P ((X = k) ∩ (Y = k)) ≤ P (X = k) = pk car ((X = k) ∩ (Y = k)) ⊂ (X = k).

• P ((X = k) ∩ (Y = k)) ≤ P (Y = k) = qk car ((X = k) ∩ (Y = k)) ⊂ (Y = k).

Donc P ((X = k) ∩ (Y = k)) est inférieur au plus petit des deux :

P ((X = k) ∩ (Y = k)) ≤ min(pk, qk)

Finalement, en utilisant la question précédente :

P (X 6= Y ) = 1−P (X = Y ) = 1−
∑
k∈K

P ((X = k) ∩ (Y = k)) ≥ 1−
∑
k∈K

min(pk, qk) = D (P,Q) .
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9. Comme Y1, · · · , Yn sont des variables aléatoires indépendantes et de même loi de Poisson de

paramètre λ/n, on sait (c’est du cours !) que
n∑
i=1

Yi suit une loi de Poisson de paramètre la

somme des paramètres, c’est-à-dire λ.

10. f est définie, continue et dérivable sur R et f ′ (x) = ex − (1− x) ex = xex.

Sur [0, 1], f ′ ≥ 0 donc f est croissante. Comme f(0) = 0 et f(1) = 1, on a donc pour tout
x ∈ [0, 1], f (x) ∈ [0, 1].

11. Par définition, les seules valeurs de Xi étant 0 et 1, Xi suit une loi de Bernoulli.

Reste à déterminer le paramètre P (Xi = 1). On passe par P(Xi = 0) donné par l’énoncé :

P (Xi = 0) = P (Ui = 0 ∩ Yi = 0)
indép.

= P (Ui = 0) P (Yi = 0) = (1− f (λ/n)) e−λ/n

=

[
1−

(
1−

(
1− λ

n

)
eλ/n

)]
e−λ/n = 1− λ

n
.

Donc P (Xi = 1) = 1−P (Xi = 0) =
λ

n
et Xi suit une loi de Bernoulli de paramètre λ/n.

Par indépendance des Xi,
n∑
i=1

Xi suit une loi de binomiale de paramètres (n, λ/n) (toujours

d’après le cours !).

12. Comme les valeurs de Xi sont 0 et 1,

P (Xi = Yi) = P (((Xi = 0) ∩ (Yi = 0)) ∪ ((Xi = 1) ∩ (Yi = 1)))

= P((Xi = 0) ∩ (Yi = 0)) + P((Xi = 1) ∩ (Yi = 1)) (par incomp.)

= P (Xi = 0) + P(Yi = 1) (car (Xi = 0) ⊂ (Yi = 0) et (Yi = 1) ⊂ (Xi = 1))

= P(Xi = 0) + P(Yi = 1) = 1− λ

n
+
λ

n
e−λ/n

Donc P (Xi 6= Yi) =
λ

n
− λ

n
e−λ/n =

λ

n

(
1− e−λ/n

)
.

Reste à montrer que 1 − e−x ≤ x pour tout x ≥ 0. Soit g (x) = x − 1 + e−x définie, continue
et dérivable sur R et g′ (x) = 1 − e−x ≥ 0 pour x ≥ 0. Donc g est croissante sur R+ et comme
g (0) = 0, g ≥ 0 sur R+.

Donc 1− e−λ/n ≤ λ

n
et P (Xi 6= Yi) ≤

λ2

n2
.

13. Si
n∑
i=1

Xi 6=
n∑
i=1

Yi, alors il existe au moins un i ∈ [[1, n]] tel que Xi 6= Yi.

Donc

(
n∑
i=1

Xi 6=
n∑
i=1

Yi

)
⊂
(

n⋃
i=1

(Xi 6= Yi)

)
et P

(
n∑
i=1

Xi 6=
n∑
i=1

Yi

)
≤ P

(
n⋃
i=1

(Xi 6= Yi)

)
.

14.
n⋃
i=1

(Xi 6= Yi) n’est pas une réunion d’événements incompatibles.

Mais, comme P (A ∪B) = P (A) + P (B) − P (A ∩B) ≤ P (A) + P (B) pour tous événements
A et B et en généralisant cette formule par récurrence, on obtient :

P

(
n⋃
i=1

(Xi 6= Yi)

)
≤

n∑
i=1

P (Xi 6= Yi)

et donc
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P

(
n∑
i=1

Xi 6=
n∑
i=

Yi

)
≤

n∑
i=1

P (Xi 6= Yi) ≤
n∑
i=1

λ2

n2
=
λ2

n
.

Ici, la distance entre deux lois est celle entre les probablités définies par ces lois :

• P définie par P ({k}) = P (X = k) pour tout k ∈ N où X ↪→ B (n, λ/n),

• Q définie par Q ({k}) = P (Y = k) pour tout k ∈ N où Y ↪→ P(λ).

Soient X =
n∑
i=1

Xi ↪→ B (n, λ/n) et Y =
n∑
i=1

Yi ↪→ P (λ)

On a, avec la question 8 de la partie 1 et le calcul précédent, que D (P,Q) ≤ P (X 6= Y ) ≤ λ2

n
.

Finalement, D (B (n, λ/n) ,P (λ)) ≤ λ2

n
.

15. Quand n tend vers l’infini, cette distance entre les deux lois tend vers 0.

Cette distance étant la somme des écarts entre les probabilités données par les deux lois, l’erreur
que l’on fera en employant P(λ) au lieu de B(n, λ/n) tendra vers 0.
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