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A rendre le Mardi 7 Janvier

Correction - DM 10

Exercice 1 (EDHEC 2004)
1. Pour tout t ∈ [0; 1], 1 + t+ tn ≥ 1 > 0 ce qui assure la continuité de t → 1

1 + t+ tn
sur [0; 1].

L’intégrale est donc bien définie car elle n’est pas généralisée.

2. Par primitivations directes,

u0 =

∫ 1

0

1

2 + t
dt =

[
ln |2 + t|

]1
0
= ln(3)− ln(2)

u1 =

∫ 1

0

1

1 + 2t
dt =

[
1

2
ln |1 + 2t|

]1
0

=
1

2
ln(3).

3. (a) Soit t ∈ [0, 1]. Par décroissance de l’inverse sur R∗
+, :

tn ≥ tn+1 ⇒ 1 + t+ tn ≥ 1 + t+ tn+1 > 0 ⇒ 1

1 + t+ tn
≤ 1

1 + t+ tn+1
.

Par croissance de l’intégrale avec des bornes rangées dans l’ordre croissant,∫ 1

0

1

1 + t+ tn
dt ≤

∫ 1

0

1

1 + t+ tn+1
dt ⇒ un ≤ un+1.

La suite (un) est croissante.

(b) Soit t ≥ 0. Par décroissance de l’inverse sur R∗
+,

tn ≥ 0 ⇒ 1 + t+ tn ≥ 1 + t > 0 ⇒ 1

1 + t+ tn
≤ 1

1 + t
.

On en déduit en intégrant cette inégalité avec des bornes dans l’ordre croissant que

un ≤
∫ 1

0

1

1 + t
dt =

[
ln |1 + t|

]1
0
= ln(2).

(c) (un) est croissante et majorée donc, par le théorème des suites monotones, (un) converge.

4. (a) On se rappelle qu’on a rencontré que ln(2) =
∫ 1
0

1
1+t dt. Donc on peut écrire par linéarité

de l’intégrale :

ln(2)− un =

∫ 1

0

1

1 + t
dt−

∫ 1

0

1

1 + t+ tn
dt =

∫ 1

0

1 + t+ tn − 1− t

(1 + t) (1 + t+ tn)
dt

=

∫ 1

0

tn

(1 + t) (1 + t+ tn)
dt.

(b) Pour tout n ∈ N, pour tout t ≥ 0, on a :

1 + t+ tn ≥ 1 et 1 + t ≥ 1

donc par produit d’inégalités avec des termes tous positifs :

(1 + t+ tn)× (1 + t) ≥ 1

puis en passant à l’inverse décroissante sur R∗
+ et en multipliant par tn ≥ 0 :

1

(1 + t+ tn)× (1 + t)
≤ 1 et

tn

(1 + t) (1 + t+ tn)
≤ tn

qu’on intègre sur [0, 1] avec des bornes dans l’ordre croissant :

ln(2)− un ≤
∫ 1

0
tn dt =

[
tn+1

n+ 1

]1
0

=
1

n+ 1
.
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(c) La question 3.(b) donne ln(2)− un ≥ 0 donc on obtient l’encadrement

0 ≤ ln(2)− un ≤ 1

n+ 1

qui donne par encadrement, avec lim
n→+∞

1

n+ 1
= 0 :

lim
n→+∞

(ln(2)− un) = 0 donc lim
n→+∞

un = ln(2).

5. (a) t → 1

1 + t+ tn
est continue sur [1,+∞[ car 1 + t+ tn ≥ 1 > 0 sur cet intervalle.

L’intégrale est donc généralisée en +∞ et la fonction intégrée est positive.

Comme n ≥ 2,
1

1 + t+ tn
=

1

tn
(
1 + 1

tn−1 + 1
tn

) ∼
t→+∞

1

tn

car n ≥ 2 et n− 1 ≥ 1 donc lim
t→+∞

1

tn
= lim

t→+∞

1

tn−1
= 0.

Or l’intégrale

∫ +∞

1

1

tn
dt est une intégrale de Riemann en +∞, convergente car n ≥ 2 > 1,

et est également l’intégrale d’une fonction positive.

Par théorème de comparaison des intégrales de fonctions positives, l’intégrale définissant
vn est convergente et vn est bien définie.

(b) Pour tout t ≥ 1, on a par décroissance de la fonction inverse sur R∗
+ :

1 + t+ tn ≥ tn > 0 donc 0 ≤ 1

1 + t+ tn
≤ 1

tn

et en intégrant avec des bornes dans l’ordre croissant (toutes les intégrales sont bien con-
vergentes) :

0 ≤ vn ≤
∫ +∞

1

1

tn
dt.

et on calcule cette dernière intégrale en revenant à l’intégrale partielle : pour x ≥ 1,∫ x

1

1

tn
dt =

[
t−n+1

−n+ 1

]x
1

=
1

(1− n)xn−1
+

1

n− 1
−−−−→
x→+∞

1

n− 1

donc ∫ +∞

1

1

tn
=

1

n− 1
et enfin 0 ≤ vn ≤ 1

n− 1
.

(c) Par théorème de comparaison, comme lim
n→+∞

1

n− 1
= 0, (vn) converge vers 0.

On en déduit que

lim
n→+∞

∫ +∞

0

1

1 + t+ tn
dt = lim

n→+∞
(un + vn) = ln(2) + 0 = ln(2).

Exercice 2 (EDHEC 2003)
1. (a) On passe par l’intégrale partielle : pour tout y ≥ n, on a :∫ y

n
f(x)dx = −

∫ y

n
− 1

x2
e1/xdx = −

[
e1/x

]y
n
= −e1/y + e1/n −−−−→

y→+∞
e1/n − 1

car
1

y
−−−−→
y→+∞

0 donc e1/y −−−−→
y→+∞

1 (par continuité de exp). On en déduit que l’intégrale

In converge, et

In =

∫ +∞

n
f(x) dx = e1/n − 1.
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(b) Comme u =
1

n
−−−−−→
n→+∞

0, on a eu − 1 ∼
u→0

u donc In = e1/n − 1 ∼ 1
n .

2. On procède par théorème de comparaison et on cherche un équivalent simple de un :

un = f(n) =
e1/n

n2
∼
+∞

1

n2

car e
1
n

e−−−−−→
n→+∞

0
= 1 (par continuité de exp).

Or les deux séries sont à termes positifs et la série de terme général 1
n2 converge (série de Riemann

avec α > 1), donc le théorème de comparaison assure que la série de terme général un = f(n)
converge.

3. (a) Ce type d’inégalité, très classique, repose sur la monotonie de f :

f est de classe C∞ sur ]0;+∞[ comme quotient et composée de fonctions de classe C∞,
avec x2 ̸= 0 sur cet intervalle. De plus, pour tout x > 0,

f ′(x) =
− 1

x2 e
1/x × x2 − 2xe1/x

x4
=

e1/x

x4
(−1− 2x) < 0 sur ]0;+∞[

donc f est strictement décroissante sur ]0;+∞[.

On en déduit que pour tout k > 0 et pour tout x ∈ [k; k + 1],

f(k + 1) ≤ f(x) ≤ f(k)

et en intégrant cette inégalité sur [k; k + 1] (les bornes sont dans l’ordre croissant) on
obtient : ∫ k+1

k
f(k + 1) dx ≤

∫ k+1

k
f(x) dx ≤

∫ k+1

k
f(k) dx

qui donne enfin :

f(k + 1) ≤
∫ k+1

k
f(x) dx ≤ f(k)

car ∫ k+1

k
dx = (k + 1)− k = 1.

(b) On somme ces inégalités pour k allant de n à p où p est un entier quelconque supérieur à
n+ 1 :

p∑
k=n

uk+1 ≤
p∑

k=n

∫ k+1

k
f(x) dx ≤

p∑
k=n

uk.

Cela donne après un changement d’indice dans la première somme et par relation de Chasles
pour les intégrales :

p∑
k=n+1

uk ≤
∫ p+1

n
f(x) dx ≤ un +

p∑
k=n+1

uk.

On fait alors tendre p vers +∞, et comme les deux séries et l’intégrale convergent (questions
1 et 2) :

+∞∑
k=n+1

uk ≤
∫ +∞

n
f(x) dx ≤ e1/n

n2
+

+∞∑
k=n+1

uk.

Enfin on reconnâıt In :
+∞∑

k=n+1

uk ≤ In ≤ e1/n

n2
+

+∞∑
k=n+1

uk.
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(c) On pose vn =
+∞∑

k=n+1

uk et on cherche à l’encadrer. L’inégalité de gauche donne

vn ≤ In

et celle de droite donne

vn ≥ In − e1/n

n2

donc on obtient l’encadrement :

In − e1/n

n2
≤ vn ≤ In.

Pour obtenir un équivalent on va chercher à encadrer par deux quantités qui tendent vers
1, on divise donc cette inégalité par In, strictement positif :

1−

e1/n

n2

In
≤ vn

In
≤ 1.

On cherche la limite du terme de gauche :

In ∼ 1

n
donc

e1/n

n2

In
∼

e1/n

n2

1

n

=
e1/n

n
−−−−−→
n→+∞

0

par quotient de limites, car par composée e1/n −−−−−→
n→+∞

e0 = 1 (par continuité de exp).

On en déduit que

1−

e1/n

n2

In
−−−−−→
n→+∞

1

puis par théorème d’encadrement

vn
In

−−−−−→
n→+∞

1 donc vn ∼
+∞

In ∼
+∞

1

n

et enfin :

vn =

+∞∑
k=n+1

uk ∼
+∞

1

n

4. Informatique:

(a) On fait des produits et des quotients termes à termes sur des vecteurs. Le coefficient d’indice
n de la matrice np.ones(1000) étant 1, et celui de la matrice k étant n + 1, le coefficient

d’indice n de la matrice U est donc U(n) = e1/(n+1)

(n+1)2
.

(b) S fait la somme cumulée des termes de U donc S(n) =
n+1∑
k=1

e1/k

k2
.

(c) R(n) =
1000∑
k=1

e1/k

k2
−

n∑
k=1

e1/k

k2
=

1000∑
k=n+1

e1/k

k2
.

(d) On admet que R(n) ≃
+∞∑

k=n+1

e1/k

k2
.

On trace donc (une valeur approchée) des 100 premiers termes de la suite (vn) de la question
3.(c). On remarque que le comportement de cette suite cöıncide au voisinage de +∞ avec
celui de la suite

(
1
n

)
ce qui illustre l’équivalent obtenu à la question 3.(c).
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Exercice 3 (EDHEC 2012)
1. Par la formule de la somme des termes d’une suite géométrique, on a :

n∑
k=0

xk = 1× 1− xn+1

1− x

On pose alors la fonction g(x) =
n∑

k=0

xk = 1−xn+1

1−x et on dérive ses 2 expressions (dérivable en

tant que polynôme) :

• g(x) =
n∑

k=0

xk donc g′(x) =
n∑

k=0

kxk−1 ;

• g(x) = 1−xn+1

1−x donc g′(x) =
nxn+1 − (n+ 1)xn + 1

(1− x)2
.

Ainsi,
n∑

k=0

kxk−1 =
nxn+1 − (n+ 1)xn + 1

(1− x)2

2. Loi de Tn

(a) Si 1 ≤ k ≤ n− 1, (Tn = k) signifie qu’on a lancé k ≤ n− 1 fois la pièce avant de s’arrêter.

On n’a donc pas pu obtenir n faces, et on s’est arrêté sur un pile.

Enfin les lancers précédents ne peuvent pas avoir donné pile, sinon on se serait arrêté après.

D’où, si k ≥ 2,
P (Tn = k) = P (F1 ∩ · · · ∩ Fk−1 ∩ Pk) = qk−1p

par indépendance des lancers,

et si k = 1,
P (Tn = 1) = P (P1) = p = q0p

donc la formule ci-dessus est encore valable.

(b) (Tn = n) peut avoir été obtenu de deux manières : avec n fois face ou avec n− 1 fois face
et une fois pile. On a donc :

P (Tn = n) = P
(
(F1∩· · ·∩Fn)∪(F1∩· · ·∩Fn−1∩Pn)

)
= P (F1∩· · ·∩Fn)+P (F1∩· · ·∩Fn−1∩Pn)

par incompatibilité, puis :

P (Tn = n) = qn + qn−1p = qn−1(q + p) = qn−1

par indépendance des lancers.

(c) Dans la somme, il faut isoler la valeur k = n qui n’a pas la même formule que les autres :

n∑
k=1

P (Tn = k) = p

n−1∑
k=1

qk−1 + qn−1 = p
1− qn−1

1− q
+ qn−1 = 1− qn−1 + qn−1 = 1.

(d) Tn étant finie, elle a une espérance et :

E(Tn) = p

n−1∑
k=1

kqk−1 + nqn−1 = p
(n− 1)qn − nqn−1 + 1

(1− q)2
+ nqn−1

=
(n− 1)qn − nqn−1 + 1 + nqn−1(1− q)

1− q
=

1− qn

1− q
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3. Loi de Xn.

(a) Lors des lancer, on a ou bien k Face puis un Pile et on s’arrête, ou bien n face et aucun pile
et on s’arrête. Donc Xn(Ω) = {0, 1} avec (Xn = 0) = F1 ∩ · · · ∩ Fn donc par indépendance
des lancers, P (Xn = 0) = qn.

Donc Xn ↪→ B(1− qn).

(b) Xn admet donc une espérance et E(Xn) = 1− qn.

4. Loi de Yn.

(a) Pour tout k ∈ [[0, n− 1]], (Yn = k) signifie que l’on a eu k Face (donc pas n) et donc ensuite
un Pile, ce qui donne en écriture mathématique :

(Yn = k) = F1 ∩ · · · ∩ Fk ∩ Pk+1 donc par indépendance des lancers, P (Yn = k) = qkp.

(b) (Yn = n) signifie que l’on a eu n Face donc aucun pile (il ne peut y avoir plus de n lancers)
d’où : (Yn = n) = F1 ∩ · · · ∩ Fn et par indépendance, P (Yn = n) = qn.

(c) Le nombre total de lancer est le nombre total de Pile et de Face obtenus donc Tn = Xn+Yn
donc la linéarité de l’espérance donne :

E(Yn) = E(Tn)− E(Xn) =
1− qn

1− q
− (1− qn) = (1− qn)

(
1

1− q
− 1

)
= (1− qn)

1− 1 + q

1− q
= (1− qn)

q

1− q
.

5. (a) Voici la fonction complétée :

1 def simul(n,p):

2 t = 0

3 x = 0

4 y = 0

5 while (x==0) and (t<n):

6 t = t+1

7 if rd.random()>p:

8 y = y+1

9 else:

10 x = x+1

11 return [t, x, y]

(b) Les termes pk vérifient : p0 = p et ∀k ∈ [[1;n−2]], pk = (1−p)pk−1 donc suivent une relation
de suite géométrique de raison 1− p. On a donc pk = p(1− p)k pour tout k ∈ [[0;n− 2]].

Enfin, pn−1 =
(1− p)

p
pn−2 =

(1− p)

p
pqn−2 = (1− p)n−1.

Cette fonction renvoie donc la loi (théorique) de la variable Tn.

(c) Ce programme mémorise 1000 simulations de la variable Tn dans la liste T puis il calcule
les effectifs par modalité avec la fonction count et les mémorise dans une liste E. Il renvoie
donc les effectifs correspondants à chaque modalité (de 1 à n).

La fréquence de l’évènement (Tn = 5) au cours des 1000 simulations est donc

f =
effectif

effectif total
= 0, 073.

(d) Le diagramme des fréquences de Tn sur 1000 simulations est très proche de la loi théorique
de Tn . On retrouve la propriété : la fréquence d’un évènement A sur un grand nombre de
simulations converge vers la probabilité mathématique de A.
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