ECG2 - Mathématiques appliquées Lycée Clemenceau - Reims

Correction - DM 8
T A rendre le Mercredi 11 Décembre

Exercice 1

1. A a deux colonnes (1 et 2) égales donc n’est pas inversible. On peut aussi dire que les lignes 1
et 2 sont égales.

2. On cherche les valeurs de A\ pour lesquelles A — Al n’est pas inversible, cherchons une réduite

triangulaire :
1—-A 1 1
A—-M = 1 1-A 1
1 1 3—-A
1 1 3—A
- 1 1—A 1 L1+ Lj
1—-A 1 1
1 1 3-A Lo+ Lo— 1,4
< |0 A A2 Ly Ly—(1-A\L
0 A 1-(1-XN3-x/ B 7 !
1 1 3-A
S Th=10 =X AN—=2]| L3« L3+ Lo
0 0 PN
avec

PAN=1-(1-XM)B=X)+A=2=2-1-(1-N)B=-)=A-1D[1+B=-N]=A=-1)4=N).

Les valeurs de A pour lesquelles A — AI n’est pas inversible sont les valeurs qui annulent 'un au
moins des coefficients diagonaux de cette réduite triangulaire, soit les solutions de :

A=02A=0 et PAN)=0&A=1 ou A=4
Donc Sp(A) = {0;1;4}.
3. On cherche Ey(A) ={X € #31(R) | (A—0)X =0} :

AX =0 & ToX =0

T+y+32=0
< —22z=0
—4z =0
x=—y
< { z=0
—y -1
S X=|ly |=yl1
0 0
On en déduit que :
—1 —1 1
Eg(A)=<y|l 1 | |yeR ) =Vect 1 = Vect -1
0 0 0
1
Donc X; = | —1 | est générateur de Ey(A) et libre car non nul donc c’est une base de Ep(A).

0
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On cherche E1(A) ={X € #3:(R); (A—-1)X =0} :

(A-DX=0 & T1X=0

r+y+2z2=0
& —y—z=0
0=0
r=—z
& y=—2
0=0
-z -1
& X=|—-z]=2z|-1
z 1
On en déduit que :
—1 —1 1
Eif(A)=<z|-1]|zeR)=Vect| [ -1 = Vect 1
1 1 -1
1
Donc Xy = | 1 | est générateur de F;(A) et libre car non nul donc c’est une base de E1(A).
-1

On cherche Eq(A) ={X € #5:1(R); (A—41)X =0} :

(A-—4DX =0 & TuX=0

r+y—2z=0
& —Ady+22=0
0=0
1
N { Tr = ?Z
Y= 3%
1 1
2% 2
& X = %z =z %
z 1
On en déduit que :
> > !
Eyf(A)=Sz|5]||2€R} =Vect 3 = Vect 1
1 1 2
1
Donc X3 = | 1| est générateur de E4(A) et libre car non nul donc c’est une base de Ey4(A).
2

4. Par concaténation de familles libres associées aux sous-espaces propres Ey(A), E1(A) et E4(A)
(valeurs propres deux & deux distinctes), la famille # est libre. Comme card(#) = 3 =
dim(A43,1(R)), c’est donc une base de .#31(R).

5. On a trouvé une famille % de vecteurs propres qui forment une base de .#51(R) donc A est

1 1 1
diagonalisable et plus précisément, si on pose P= | -1 1 1| alors A= PDP~L
0o -1 2
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Pour déterminer P~! | on résout cette question avec la méthode du pivot :

1] 100 1 1 |
11010 < 2 2 |
2 1001 -1 2 |

1
-1
0 -1

1
1

O =
O = O

0
0) Lo+ Lo+ 14
1

Lg — 2L3 + Lo

SO = OO =

SN =

1] 10
2 |11
6 | 11

Cette réduite triangulaire n’a aucun 0 sur la diagonale donc P est inversible.

N OO

6 6 0 | 5 -1 =2 Ly« 6L, — L
< |06 0| 2 2 =2 I 30— I
006 |1 1 2 2 2T
6 00 | 3 =3 0
54 0 6 0 | 2 2 —2| L1+ L1 — Ly
006 | 1 1 2
100 ] 1/2 =1/2 0 Ly + 1/6L,
< (0 1 0 | 1/3 1/3 —=1/3| Lo+ 1/6Ls
0011 1/6 1/6 1/3 L3 <+ 1/6L3

Donc
1/2 —-1/2 0 3 —
Pt=11/3 1/3 —-1/3|==(2 2 -2
1/6 1/6 1/3 1

6. (a) Voici les instructions Python :

1 [A = np.ones((3,3))

2 |A[2,2] = 3

3 |Vp, SP = al.eig(A)
4 |print("Vp = ", Vp)
5 |print("SP = ", SP)

(b) La matrice D confirme bien que les valeurs propres de A sont 0, 1 et 4.

De plus les trois vecteurs colonnes obtenus sont bien des vecteurs propres associés aux
valeurs propres correspondantes de D car ils sont respectivement colinéaires a :

1 1 1
1|, [ 1 |et |1
0 —1 2

On a bien une base de .#3 1 (R) constituée de vecteurs propres de A.

7. Montrons par récurrence que pour tout n € N, A = PD"P~1 .

Ini. Pour n=0,ona: A°=7et PD°P~! = PIP~' = PP =1.
Donc la propriété est vraie au rang n = 0.
Héré. Soit n € N tel que A” = PD"P~!. Alors :

A"l = A"A = pD P 'PDP ' = PD"IDP~!' = PD"DP~! = pp"tip—T,

La propriété est vraie au rang n + 1.
Ccl. Pour tout n € N, A" = PD"P~1,

8. On en déduit alors que :
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9.

10.

11.

P~YA")P = P~Y(PD"P~')P = ID"I = D" donc D" = P~'A"P.
On montre que FE est un sous-espaces vectoriel de .Z5(R) :

e La matrice nulle vérifie A0 = 0A =0, donc 0 € F et E # 0.
e Soient My, Ms € E donc tels que AM; = M1 A et AMy = MsA. Alors :

A(My + M) = AMy + AMy = M1 A+ MyA = (M + My)A

et (M1 + Ms) € E, qui est donc stable par somme.
e Soit M € E donc tel que AM = MA et A € R. Alors :

AAM) = NAM = A\MA = (AM)A
et (AM) € E, qui est donc stable par produit par un scalaire.

Finalement, ces trois propriétés permettent d’affirmer que F est bien un sous-espace vectoriel

de %3(1&)

On écrit F' sous forme d’un sous-espace vectoriel engendré :

3 =30 2 2 =2 11 2
F = {al-3 3 0|4+b| 2 2 —2|+c|1 1 2|]|(abec)eR?
0 0 0 -2 -2 2 2 2 4
3 -3 0 2 2 =2 11 2
= Vect -3 3 0,2 2 -2|,|1 1 2 = Vect(B,C,D)
0 0 0 -2 -2 2 2 2 4

Donc F est le sous-espace vectoriel engendré par les matrices B, C, D € .#3(R) : c’est donc bien
un sous-espace vectoriel de .#3(R).

La famille (B, C, D) est génératrice de F', montrons qu’elle est libre.
On résout ’équation aB + bC' + ¢D = 0 < a = b = ¢ = 0 (faire le calcul).
La famille (B, C, D) est donc une base de F'.

Soit M € F. 1l existe donc a, b et c tels que :

3a+2b+c —-3a+2b+c —2b+2c
M=|-3a+2b+¢c 3a+2b+c —-2b+2¢c
—2b+ 2¢ —2b+ 2¢ 2b + 4c

Pour vérifier si M est dans E, on calcule AM et MA :
111 3a+2b+c —3a+2b+c —2b+2c

AM = 1 11 —3a+2b+c 3a+2b+c —-2b+2c
1 1 3 —2b+ 2¢ —2b+ 2¢ 2b + 4c

2b + 4¢ 2b+4¢ —2b+ &c

= 2b 4+ 4c¢ 2b+4c¢ —2b+ 8¢

—2b+ 8¢ —2b+8c 6b+ 16¢

et

3a+2b+c¢c —-3a+2b+c¢c —2b+2c 1 11
MA = —3a+2b+c 3a+2b+c —2b+2c 1 11
—2b+ 2¢ —2b+ 2¢ 2b + 4c 1 1 3

2b+4c  2b+4c —2b+ 8¢
= 2b + 4c 2b+4¢ —2b+ 8¢
—2b+8 —2b+8c 2b+ 16¢

Donc M vérifie bien AM = M A, donc M € E. On en déduit finalement que tous les éléments
de F sont aussi dans F, donc F C E.
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12. (a) On remarque que N = P7'MP < M = PNP~! puis avec P et P~! inversibles qui
permettent de raisonner par équivalence :

McFE & AM=MA< PDP'PNP!'=PNP'PDP!
& P(DN)P'=P(ND)P~!' < P '[PDNP'|P = P"'[PNDP'|P
& DN =ND.
(&

a b
(b) Soit N=|d e f | une matrice quelconque de .Z3(R), on résout :
g h i

0 0 O 0 b 4c 0=0 b=0 4c=0
DN=ND <& d e f|l=10 e 4f ) & d= 0=0 3f=0
4g 4h 4i 0 h 4i 49=0 3h=0 0=0
a=a b=0 ¢=0 a 0 0
& d=0 e=e f=0 <N=[0 ¢e¢ 0
g=0 h=0 1i=1 0 0 4
(c) On en déduit qu'une matrice M de E vérifie :
a 0 0
MeEE & DN=ND&N=P'MP=|0 ¢ 0
0 0 =2

& M=PNP'=p

O O R
o o O
. OO
|
—

On calcule ce produit et on obtient :

3a+2e+1 —-3a+2e+1 —2e+ 2

M = —3a+2e+1 3a+2e+i —2e+2
—2e+ 27 —2e+ 21 2e + 41
3 =30 2 2 =2 11 2
= al-3 3 O0]l+el 2 2 =-2]4+411 1 2
0 0 0 -2 =2 2 2 2 4
= aB+eC+1iD.

On obtient finalement : £ = Vect(B,C,D) = F.

Exercice 2 (EML 2004)
1. On vérifie les criteres :

e Comme A x 0 =0 alors 0 € .5 (R).

e Si M et N sont deux matrices de Eq (A) et A un réel alors : A(AM + N) = AAM + AN =
AM + N car M et N sont dans E; (A)

Donc AM + N € E; (A).
Donc Ej (A) est bien un sous-espace vectoriel de .#3 (R).
On montre de la méme maniere que Es (A) est aussi un sous-espace vectoriel de .#3 (R)

2. (a) Pour montrer 'inclusion on montre que si M € F; (A) alors M € Es (A) :
Si M € Ey (A) alors AM = M donc A2M = A(AM) = AM et donc M € Ey (A).
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(b) Si A est inversible, pour montrer ’égalité des deux ensembles, on doit montrer I'inclusion
réciproque :

Si M € Ey(A) alors A2M = AM et A'A2M = A7'AM d’'on AM = M. Alors M €
Eq (A).
Donc E3 (A) C Eq (A) et finalement Ey (A) = Ea (A).

(c) Onadéja0 € Ey (A) car E; (A) est un sous-espace vectoriel de .#5(R), donc {0} C E; (A4).
Supposons que A — I est inversible et montrons I'inclusion réciproque. Si M € E; (A) alors
AM =M d'ou AM —M =0et (A—1)M =0 et comme A — I est inversible alors M = 0.
Donc E; (A) C {0}.

Finalement, F; (A) = {0} si A — I est inversible.

-1 10
3. Soit B = 0 -1 1
0 0 2
Comme B est diagonale & coefficients diagonaux non nuls, B est inversible donc E (B) = E3 (B).
-2 10
Comme B — [ = 0 —2 1 | est également inversible alors E; (B) = {0} = E» (B).
0 01

4. (a) On recherche les valeurs propres A € R de C' avec la méthode du pivot :

3—A -2 -1
C -5 = 1 -2 -1
2 -2 =
2 -2 =
= 1 A —1| L+ L3
33— -2 -1
2 —2 —A
e |02y AT L i22<;2—LQ(:’>_—L;\)L
0 21—=X) (A=2)1-x)/) 3 !
2 —2 A
= 0 2(1—)\) A—2 L3+ L3y — Lo.
0 0 “AA-2)

Les valeurs de A pour lesquelles C — AI3 n’est pas inversible sont les valeurs qui annulent
I'un au moins des coefficients diagonaux de cette réduite triangulaire, c¢’est-a-dire 0,1, 2.

Donc Sp(C) = {0, 1,2}.
On cherche les sous-espaces propres associés :

e Pour Fy(C) :

_ 20 -2y = 0 o
(C—OIg)X—()(:){ o2 — 0 Sr=y=2z.
1
Donc Fy(C) = Vect 1
1
e Pour Fi(C) :
20 —2y—2 = 0
(C-I)X =0« —z = 0 Szr=yetz=0.

z = 0

1

Donc Fy(C) = Vect 1
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e Pour F»(C) :

“9y = 0 Sy=0etz =2

(b) On montre que la famille

1 1 1
e Card 11,11],(0 =3 =dim(A31(R))
1 0 1
1 1 1
e On montre que 11,111]1,10 est libre
1 0 1
1 1 1 a+b+c = 0
all]+b|1|+c|0] =0 & a+b = 0
1 0 1 at+c = 0
a+b+c = 0
= —Cc = 0(L2<—L2—L1)
—-b = 0(L3<—L3—L1)
& a=b=c=0
1 1 1
Donc 1],11],1]0 est une base de .#31(R) et C est diagonalisable.
1 0 1
0 00 111
Doncavec D= 0 1 0 | et P = 1 10 |,onaC =PDP! (les conditions
0 0 2 1 01

d’ordre des terme de D et de premiere ligne de P étant bien respectées).
(c) Soit M € .#5(R) . On note N = P~'M € .#; (R).

On a alors :
McE (C) & CM=M&CPN=PN&P!'CP=N
& DN=N&Nek (D).
Ty =z
(d) Soit N € .5 (R), dont les coefficients sont : a b ¢ |. Alors
U v ow
0 0 0 T Yy =z T Yy z
NeFE (D) & 010 a b c|=1a b c
0 0 2 U v ow vow
O==x a=a 2u=1u
& 0=y et b= et 20 =
0=z c 2w =w
0 0O
< N = a b c
0 0O
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0 00
Donc N € Ep (D) si et seulement s’il existe trois réels a, b, ctelsque N = a b ¢
0 00

(e) Avec les deux questions précédentes, on en déduit que M € F; (C) si et seulement s’il existe
trois réels a, b, c tels que

0 00 a b c
M = Pl a b c|=]|a b c
000 0 00
1 00 010 0 0 1
= a|l 1 0 0 )+d 01 0 |+c| O 0 1
0 0O 0 00 0 0O

Donc une famille génératrice de E; (C) et libre (& démontrer mais c’est tres simple) est
1 00 010 0 01
tool,lot1ol],[o0oo01
0 00 0 00 0 00

qui est donc une base de E; (C) qui a finalement une dimension de 3.

(f) Comme D donc C n’est pas inversible on ne peut pas utiliser les résultats de la question 2.

Par contre, on peut refaire le méme raisonnement que précédemment :
M € By (C) < C*M =CM < PD*P'N = PDP™'M < D?*N = DN < N € Ey (D)

Avec les mémes coefficients que précédemment (comme D est diagonale) :

0 0O T Yy 2 0 00 xT Yy 2
N e FEy(D) < 010 a b ¢c]=(010 a b ¢
0 0 4 U v w 0 0 2 u v ow
0=0 a=a 4u = 2u
= 0=0 et b="b et 4v = 2v
0=0 c=c 4w = 2w
x Yy z
< N = a b c
0 0O

1 11 Ty z r+a y+b z+c
M=]|1120 a b c|=|2x+a y+b z+4+c
1 01 0 0 0 x Y z

et une famille génératrice et libre (& démontrer) de Es (C) est :
1 00 010 0 01 1 00 010 0 01
tool,lotro]l,loo1]., {1 o0o0]),[lo1o0o].,l001
1 00 010 0 01 0 00 0 00 0 00

donc une base de Es (C'). La dimension de E; (C) est donc 6.

Comme Fj (C) et Es (C), n’ont pas la méme dimension, ils ne peuvent pas étre égaux.
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Exercice 3 (ECRICOME 2003)
1. ch et sh sont définies sur R qui est bien centré en 0. De plus pour tout z € R, on a

ch(—z) = % =ch(x) et sh(—z)= S —sh(x)

donc ch est paire et sh est impaire.

2. sh est dérivable sur R comme somme et composée de fonctions dérivables, et pour tout x € R,

er —(—e ") ef4e "

/ J— JE— J—
sh'(z) = 5 = 5 = ch(z) >0
car e* > 0 et e > 0. On obtient donc :
x —00 0 —+00
sh!(x) + +
+00
sh(x) /0/
—00
sh(x) — 0 +
En effet 0 0
e —e 1-1
sh(0) 2 2

lim e* =+oco0et lim e *

= 0 donc par somme
r—r-+00 Tr—-+00

lim sh(x) =400
T—+00
et par imparité de sh,
lim sh(x) = —ooc.
T—>r—00

3. On factorise les sommes par leur termes prépondérants :

ex(l _ efo)

h =
shia) = U2
et lim (1 —e2*) =1 donc
T—+00
61‘
) g

Enfin on en déduit (par croissances comparées pour la seconde limite) que

lim sh(z) =400 et lim sh(z) = lim — =+o0

T—+00 r—+oo I z—+o00 20

donc la courbe de sh admet une branche parabolique verticale au voisinage de +oo.

4. Pour tout z € R, sh/(z) = ch(z) > 0 donc sh est strictement croissante sur R, et continue par
continuité de I’exponentielle.

Elle réalise donc une bijection de R dans li)r_n sh(z); ll)I_’I_l sh(z)| =] — oo; +oo[=R.

5. ch est comme somme et composée de fonctions dérivables et pour tout z € R,

ch(z) = % = sh(x).

dont on a déterminé le signe précédemment. Cela donne :
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x —00 0 +00
ch’(x) - 0 +
+00 +00
ch(x) \ /
1

En effet

lim e* =4ooet lim e * =0 donc
T—+00 T—>+00

lim ch(z) = +o0
T—>+00
et par parité de ch
lim ch(z) = +o0.
T——00
6. Vo € R,
e$ + 6—1’ _ 6$ +€—J?

ch(x) — sh(z) = =e >0

donc on en déduit que

7. -6
8. f est défini sur R qui est bien centré en 0. De plus pour tout = # 0,

—T —T ZT

- sh(—x) - —sh(x) - sh(x) = /(@)

f(=x)

et

La fonction f est donc paire.
9. On écrit les développements limités a I'ordre 2 en 0 de e* et €% :
2

T __ .’L‘i 2
e =142+ > —|—o(ac)

10
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10.

11.

12.

puis en remplagant z par —x :
2
x
e r=1—a+=—+o0(2?).
+ 5 +o(2%)
On soustrait :
e —e T=2x+o0 (3:2)

et enfin :

sh(z)=x+o0 (m2) .

On en déduit que pour tout x # 0 et au voisinage de 0,

x x 1 1
/(@) z+o(z?) z(1+o(x)) 14o(z) =2—0 1 1(0)
donc f est continue en 0.
D’autre part, toujours pour z # 0 et au voisinage de 0,
1
J@) = f0) _Tm =l o) o)
x—0 x z(1+o(x)) 14 o(x)z—0

donc f est dérivable en 0 et f/(0) = 0.

[ est dérivable sur R’ et sur R* comme quotient de fonctions dérivables, avec sh(x) # 0 sur ces
intervalles. De plus Vx € R*,
I xsh(z) —x xch(x) sh(x)— zch(z)

(sh(x))* (sh(z))”

h est dérivable sur R, comme somme et produit de fonctions dérivables sur Ry, et pour tout
S R+,

f'(@)

h'(z) = sh'(z) — ch(z) — zch'(x) = ch(x) — ch(x) — xsh(z) = —zsh(x)

donc
R'(z) <0 sur]0;4+o00[ et A'(0)=0.

Enfin h(0) = 0 et h est strictement décroissante sur Ry donc h(x) < 0 sur RY.

T 0 —+00
h'(z) 0 —
0
h(x) \
h(z) 0 —

13. Comme (sh(z))* > 0 et h(z) < 0 sur ]0;+oo[, on a f'(z) < 0 sur ]0; +o00[ et f/(0) = 0. Cela

donne :

T 0 400
f'(x) 0 -
1

11
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14.

car f(0) =1 et

T 2x
—+oo 5 e Tr——+00

par croissances comparées.

On construit donc une courbe décroissante sur R, partant de 1 en 0 avec une tangente hori-
zontale et arrivant sur une asymptote horizontale y = 0 en +o0.

La courbe sur R_ est obtenue par symétrie par rapport a 'axe (Oy) car f est paire.

f est strictement décroissante et continue sur [0, 8; 1] donc par le théoréme de bijection monotone,
F([0,8:1]) = [f(1); £(0,8)] < [0,8; 1]

car f(1) > 0,8 et f(0,8) < 1.

Montrons alors par récurrence sur n > 0 que pour tout n € N, u, € [0, 8;1] :

Ini. Pour n =0, on a
up =1¢€10,8;1]

donc la propriété est vraie au rang n = 0.

Héré. Soit n € N. Supposons que u, € [0,8;1]. Alors :

15.

16.

Un+1 = f(un) € f ([07 8, 1]) C [Oa 87 ]-] donc Un+1 € [Oa 87 1]
et la propriété est vraie au rang n + 1.

Ccl. Pour tout n € N, u, € [0,8;1].
Tout d’abord on a f(0) =1 # 0 donc 0 n’est pas solution.
Pour x # 0 on résout :

fl@) =z =

T
=X

sh@)  ° 7 sh(z)

Or par 1.4 la fonction sh est bijective de R dans R, et 1 € R donc I’équation sh(z) = 1 admet
une unique solution a sur R, et ’équation f(z) = = admet o pour unique solution.

=1<= sh(z) =1.

La fonction sh est strictement croissante; les valeurs données par 1’énoncé permettent d’écrire :
sh(0,8) <1 =sh(a) <sh(l) donc 0,8<a<l.
De plus pour tout = € [0, 8;1],
fla)= =
Par décroissance de h, pour x € [0,8;1] on a
h(1) < h(z) < h(0,8) donc —h(0,8) < —h(z) < —h(1)
et par croissance de sh on a
0 < sh(0,8) < sh(x) < sh(1)
qui donne avec la croissance de la fonction carré et la décroissance de la fonction inverse sur R
1 < 1 < 1
sh?(1) = sh?(z) — sh2(0,8)
On multiplie alors les 2 inégalités qui ne concernent que des nombres positifs :

0 < (sh(0,8))* < (sh(z))* < (sh(1))®  puis

_h(07 8) ! _h’(l)
s = @S sy
et enfin en multipliant par —1 > 0 :
h(1) / h(0,8)
20,8 =W = Gam)

12
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17. f est dérivable sur [0, 8;1] et pour tout x € [0, 8; 1],
—0,5 < —0,47 < f'(x) < -0,13< 0,5 donc |f'(z)] <0,5.
L’inégalité des accroissements finis donne alors : pour tous z et y de [0, 8; 1],
(@) = F(y) < 0,5 x [z — y.
On applique cette inégalité a =z = u, € [0,8;1] et y = o € [0, 8;1] et on obtient :
[ (un) — F(@)] < 0,5 Jup — al

et encore :
|unt1 — ] < 0,5 X |uy, — al.

Montrons ensuite par récurrence que : Vn € N, |u, — a| < 0.2(0.5)".
Ini. Pour n =0,
0,8<a<1l donc 0<1-a<0,2 donc [1—a]<0,2

et 0,2 x (0,5)% = 0,2 donc
lup — | < 0,2 x (0,5)°
et la propriété est vraie au rang n = 0.
Héré. Soit n € N. Supposons que |u, —a| < 0,2 x 0,5™. Alors :
[Upi1 — ] 0,5 |u, —a <0,5x0,2x0,5"=0,2x0,5" ",

La propriété est vraie au rang n + 1.
Ccl. Pour tout n € N, |u, —a| <0.2 x (0,5)".

18. 10,5] < 1 donc lim 0,2 x (0,5)" = 0.
n—-+o0o
Par encadrement (une valeur absolue est toujours positive), on en déduit que

lim |u, —al =0 donc lim uw, —a=0 etenfin lim u, = a.
n—+o0o n——+o00 n—+00
19. D’apres l'inégalité de la question précédente, il suffit que l'on ait : 0,2 x (0,5)" < 0,001 pour
que lon ait : |u, —a] < 0,001 par majoration.
On résout donc :

0,001 1
0,2 x (0,5)" < 0,001 < (0,5)" = enin(05) %Y

= 70,2 200
. 1 In(555)
< (en compasant par In croissante) nln(g) < 1n(200) Sn > In( L (car In(1/2) < 0)
2
_ 3 2
on> In(200) _ In(200) _ In(2° x 5%) _ 31n(2) 4+ 21n(5) _3. 2ln(5).
—In(2) In(2) In(2) In(2) In(2)
Ainsi, comme 2;255 ; €]4,5], les entiers n supérieurs a 3 + 21283, sont les entiers supérieurs a

N =8.

20. (a) Voici le programme demandé :

1 [def £(x):

2 if x ==

3 y=1

4 else:

5 y = x/((np.exp(x)-np.exp(-x))/2)
6 return(y)
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(b) Voici le programme demandé :

1[N =8

2 |U =1

3 |for k in range(1l, N+1):
4 U = £(U)

5 | print (U)

(c) On sait d’apres la question 6. que |uy — | < 0,001 i.e. uy — 0,001 < a <uy + 0,001 <
0,8803753 < ar < 0, 8823753
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