
ECG2 - Mathématiques appliquées Lycée Clemenceau - Reims

A rendre le Mercredi 11 Décembre

Correction - DM 8

Exercice 1
1. A a deux colonnes (1 et 2) égales donc n’est pas inversible. On peut aussi dire que les lignes 1

et 2 sont égales.

2. On cherche les valeurs de λ pour lesquelles A − λI n’est pas inversible, cherchons une réduite
triangulaire :

A− λI =

1− λ 1 1
1 1− λ 1
1 1 3− λ


⇔

 1 1 3− λ
1 1− λ 1

1− λ 1 1

L1 ↔ L3

⇔

1 1 3− λ
0 −λ λ− 2
0 λ 1− (1− λ)(3− λ)

 L2 ← L2 − L1

L3 ← L3 − (1− λ)L1

⇔ Tλ =

1 1 3− λ
0 −λ λ− 2
0 0 P (λ)

L3 ← L3 + L2

avec

P (λ) = 1− (1−λ)(3−λ)+λ−2 = λ−1− (1−λ)(3−λ) = (λ−1) [1 + (3− λ)] = (λ−1)(4−λ).

Les valeurs de λ pour lesquelles A− λI n’est pas inversible sont les valeurs qui annulent l’un au
moins des coefficients diagonaux de cette réduite triangulaire, soit les solutions de :

−λ = 0⇔ λ = 0 et P (λ) = 0⇔ λ = 1 ou λ = 4.

Donc Sp(A) = {0; 1; 4}.

3. On cherche E0(A) = {X ∈M3,1(R) | (A− 0I)X = 0} :

AX = 0 ⇔ T0X = 0

⇔


x+ y + 3z = 0

−2z = 0
−4z = 0

⇔
{

x = −y
z = 0

⇔ X =

−yy
0

 = y

−11
0


On en déduit que :

E0(A) =

y

−11
0

 | y ∈ R

 = V ect

−11
0

 = V ect

 1
−1
0

 .

Donc X1 =

 1
−1
0

 est générateur de E0(A) et libre car non nul donc c’est une base de E0(A).
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ECG2 - Mathématiques appliquées Lycée Clemenceau - Reims

On cherche E1(A) = {X ∈M3,1(R); (A− I)X = 0} :

(A− I)X = 0 ⇔ T1X = 0

⇔


x+ y + 2z = 0
−y − z = 0

0 = 0

⇔


x = −z
y = −z
0 = 0

⇔ X =

−z−z
z

 = z

−1−1
1


On en déduit que :

E1(A) =

z

−1−1
1

 | z ∈ R

 = V ect

−1−1
1

 = V ect

 1
1
−1

 .

Donc X2 =

 1
1
−1

 est générateur de E1(A) et libre car non nul donc c’est une base de E1(A).

On cherche E4(A) = {X ∈M3,1(R); (A− 4I)X = 0} :

(A− 4I)X = 0 ⇔ T4X = 0

⇔


x+ y − z = 0
−4y + 2z = 0

0 = 0

⇔
{

x = 1
2z

y = 1
2z

⇔ X =

1
2z
1
2z
z

 = z

1
2
1
2
1


On en déduit que :

E4(A) =

z

1
2
1
2
1

 | z ∈ R

 = V ect

1
2
1
2
1

 = V ect

1
1
2

 .

Donc X3 =

1
1
2

 est générateur de E4(A) et libre car non nul donc c’est une base de E4(A).

4. Par concaténation de familles libres associées aux sous-espaces propres E0(A), E1(A) et E4(A)
(valeurs propres deux à deux distinctes), la famille B est libre. Comme card(B) = 3 =
dim(M3,1(R)), c’est donc une base de M3,1(R).

5. On a trouvé une famille B de vecteurs propres qui forment une base de M3,1(R) donc A est

diagonalisable et plus précisément, si on pose P =

 1 1 1
−1 1 1
0 −1 2

 alors A = PDP−1.
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Pour déterminer P−1 , on résout cette question avec la méthode du pivot : 1 1 1 | 1 0 0
−1 1 1 | 0 1 0
0 −1 2 | 0 0 1

 ⇔

1 1 1 | 1 0 0
0 2 2 | 1 1 0
0 −1 2 | 0 0 1

L2 ← L2 + L1

⇔

1 1 1 | 1 0 0
0 2 2 | 1 1 0
0 0 6 | 1 1 2

L3 ← 2L3 + L2

Cette réduite triangulaire n’a aucun 0 sur la diagonale donc P est inversible.

⇔

6 6 0 | 5 −1 −2
0 6 0 | 2 2 −2
0 0 6 | 1 1 2

 L1 ← 6L1 − L3

L2 ← 3L2 − L3

⇔

6 0 0 | 3 −3 0
0 6 0 | 2 2 −2
0 0 6 | 1 1 2

L1 ← L1 − L2

⇔

1 0 0 | 1/2 −1/2 0
0 1 0 | 1/3 1/3 −1/3
0 0 1 | 1/6 1/6 1/3

 L1 ← 1/6L1

L2 ← 1/6L2

L3 ← 1/6L3

Donc

P−1 =

1/2 −1/2 0
1/3 1/3 −1/3
1/6 1/6 1/3

 =
1

6

3 −3 0
2 2 −2
1 1 2

 .

6. (a) Voici les instructions Python :

1 A = np.ones((3,3))

2 A[2,2] = 3

3 Vp, SP = al.eig(A)

4 print("Vp = ", Vp)

5 print("SP = ", SP)

(b) La matrice D confirme bien que les valeurs propres de A sont 0, 1 et 4.

De plus les trois vecteurs colonnes obtenus sont bien des vecteurs propres associés aux
valeurs propres correspondantes de D car ils sont respectivement colinéaires à : 1

−1
0

,

 1
1
−1

 et

1
1
2

.

On a bien une base de M3,1(R) constituée de vecteurs propres de A.

7. Montrons par récurrence que pour tout n ∈ N, An = PDnP−1 :

Ini. Pour n = 0, on a : A0 = I et PD0P−1 = PIP−1 = PP−1 = I.

Donc la propriété est vraie au rang n = 0.

Héré. Soit n ∈ N tel que An = PDnP−1. Alors :

An+1 = AnA = PDnP−1PDP−1 = PDnIDP−1 = PDnDP−1 = PDn+1P−1.

La propriété est vraie au rang n+ 1.

Ccl. Pour tout n ∈ N, An = PDnP−1.

8. On en déduit alors que :
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P−1(An)P = P−1(PDnP−1)P = IDnI = Dn donc Dn = P−1AnP .

9. On montre que E est un sous-espaces vectoriel de M3(R) :

• La matrice nulle vérifie A0 = 0A = 0, donc 0 ∈ E et E ̸= ∅.
• Soient M1,M2 ∈ E donc tels que AM1 = M1A et AM2 = M2A. Alors :

A(M1 +M2) = AM1 +AM2 = M1A+M2A = (M1 +M2)A

et (M1 +M2) ∈ E, qui est donc stable par somme.

• Soit M ∈ E donc tel que AM = MA et λ ∈ R. Alors :

A(λM) = λAM = λMA = (λM)A

et (λM) ∈ E, qui est donc stable par produit par un scalaire.

Finalement, ces trois propriétés permettent d’affirmer que E est bien un sous-espace vectoriel
de M3(R).

10. On écrit F sous forme d’un sous-espace vectoriel engendré :

F =

a

 3 −3 0
−3 3 0
0 0 0

+ b

 2 2 −2
2 2 −2
−2 −2 2

+ c

1 1 2
1 1 2
2 2 4

 | (a, b, c) ∈ R3


= V ect

 3 −3 0
−3 3 0
0 0 0

 ,

 2 2 −2
2 2 −2
−2 −2 2

 ,

1 1 2
1 1 2
2 2 4

 = V ect(B,C,D)

Donc F est le sous-espace vectoriel engendré par les matrices B,C,D ∈M3(R) : c’est donc bien
un sous-espace vectoriel de M3(R).
La famille (B,C,D) est génératrice de F , montrons qu’elle est libre.

On résout l’équation aB + bC + cD = 0⇔ a = b = c = 0 (faire le calcul).

La famille (B,C,D) est donc une base de F .

11. Soit M ∈ F . Il existe donc a, b et c tels que :

M =

 3a+ 2b+ c −3a+ 2b+ c −2b+ 2c
−3a+ 2b+ c 3a+ 2b+ c −2b+ 2c
−2b+ 2c −2b+ 2c 2b+ 4c


Pour vérifier si M est dans E, on calcule AM et MA :

AM =

1 1 1
1 1 1
1 1 3

 3a+ 2b+ c −3a+ 2b+ c −2b+ 2c
−3a+ 2b+ c 3a+ 2b+ c −2b+ 2c
−2b+ 2c −2b+ 2c 2b+ 4c


=

 2b+ 4c 2b+ 4c −2b+ 8c
2b+ 4c 2b+ 4c −2b+ 8c
−2b+ 8c −2b+ 8c 6b+ 16c


et

MA =

 3a+ 2b+ c −3a+ 2b+ c −2b+ 2c
−3a+ 2b+ c 3a+ 2b+ c −2b+ 2c
−2b+ 2c −2b+ 2c 2b+ 4c

1 1 1
1 1 1
1 1 3


=

 2b+ 4c 2b+ 4c −2b+ 8c
2b+ 4c 2b+ 4c −2b+ 8c
−2b+ 8c −2b+ 8c 2b+ 16c


Donc M vérifie bien AM = MA, donc M ∈ E. On en déduit finalement que tous les éléments
de F sont aussi dans E, donc F ⊂ E.
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12. (a) On remarque que N = P−1MP ⇔ M = PNP−1, puis avec P et P−1 inversibles qui
permettent de raisonner par équivalence :

M ∈ E ⇔ AM = MA⇔ PDP−1PNP−1 = PNP−1PDP−1

⇔ P (DN)P−1 = P (ND)P−1 ⇔ P−1[PDNP−1]P = P−1[PNDP−1]P

⇔ DN = ND.

(b) Soit N =

a b c
d e f
g h i

 une matrice quelconque de M3(R), on résout :

DN = ND ⇔

 0 0 0
d e f
4g 4h 4i

 =

0 b 4c
0 e 4f
0 h 4i

⇔


0 = 0 b = 0 4c = 0
d = 0 0 = 0 3f = 0
4g = 0 3h = 0 0 = 0

⇔


a = a b = 0 c = 0
d = 0 e = e f = 0
g = 0 h = 0 i = i

⇔ N =

a 0 0
0 e 0
0 0 i

 .

(c) On en déduit qu’une matrice M de E vérifie :

M ∈ E ⇔ DN = ND ⇔ N = P−1MP =

a 0 0
0 e 0
0 0 i


⇔ M = PNP−1 = P

a 0 0
0 e 0
0 0 i

P−1.

On calcule ce produit et on obtient :

M =
1

6

 3a+ 2e+ i −3a+ 2e+ i −2e+ 2i
−3a+ 2e+ i 3a+ 2e+ i −2e+ 2i
−2e+ 2i −2e+ 2i 2e+ 4i



= a

 3 −3 0
−3 3 0
0 0 0

+ e

 2 2 −2
2 2 −2
−2 −2 2

+ i

1 1 2
1 1 2
2 2 4


= aB + eC + iD.

On obtient finalement : E = V ect(B,C,D) = F .

Exercice 2 (EML 2004)
1. On vérifie les critères :

• Comme A× 0 = 0 alors 0 ∈M3 (R).
• Si M et N sont deux matrices de E1 (A) et λ un réel alors : A (λM +N) = λAM +AN =
λM +N car M et N sont dans E1 (A)

Donc λM +N ∈ E1 (A).

Donc E1 (A) est bien un sous-espace vectoriel de M3 (R).
On montre de la même manière que E2 (A) est aussi un sous-espace vectoriel de M3 (R)

2. (a) Pour montrer l’inclusion on montre que si M ∈ E1 (A) alors M ∈ E2 (A) :

Si M ∈ E1 (A) alors AM = M donc A2M = A (AM) = AM et donc M ∈ E2 (A).
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(b) Si A est inversible, pour montrer l’égalité des deux ensembles, on doit montrer l’inclusion
réciproque :

Si M ∈ E2 (A) alors A2M = AM et A−1A2M = A−1AM d’où AM = M . Alors M ∈
E1 (A).

Donc E2 (A) ⊂ E1 (A) et finalement E1 (A) = E2 (A).

(c) On a déjà 0 ∈ E1 (A) car E1 (A) est un sous-espace vectoriel de M3(R), donc {0} ⊂ E1 (A).

Supposons que A− I est inversible et montrons l’inclusion réciproque. Si M ∈ E1 (A) alors
AM = M d’où AM −M = 0 et (A− I)M = 0 et comme A− I est inversible alors M = 0.
Donc E1 (A) ⊂ {0}.
Finalement, E1 (A) = {0} si A− I est inversible.

3. Soit B =

 −1 1 0
0 −1 1
0 0 2

.

Comme B est diagonale à coefficients diagonaux non nuls, B est inversible donc E1 (B) = E2 (B).

Comme B − I =

 −2 1 0
0 −2 1
0 0 1

 est également inversible alors E1 (B) = {0} = E2 (B).

4. (a) On recherche les valeurs propres λ ∈ R de C avec la méthode du pivot :

C − λI3 =

3− λ −2 −1
1 −λ −1
2 −2 −λ


⇔

 2 −2 −λ
1 −λ −1

3− λ −2 −1

L1 ↔ L3

⇔

2 −2 −λ
0 2(1− λ) λ− 2
0 2(1− λ) (λ− 2)(1− λ)

 L2 ← 2L2 − L1

L3 ← 2L3 − (3− λ)L1

⇔

2 −2 −λ
0 2(1− λ) λ− 2
0 0 −λ(λ− 2)

L3 ← L3 − L2.

Les valeurs de λ pour lesquelles C − λI3 n’est pas inversible sont les valeurs qui annulent
l’un au moins des coefficients diagonaux de cette réduite triangulaire, c’est-à-dire 0, 1, 2.
Donc Sp(C) = {0, 1, 2}.
On cherche les sous-espaces propres associés :

• Pour F0(C) :

(C − 0I3)X = 0⇔
{

2x− 2y = 0
2y − 2z = 0

⇔ x = y = z.

Donc F0(C) = V ect

1
1
1

.

• Pour F1(C) :

(C − I3)X = 0⇔


2x− 2y − z = 0

−z = 0
z = 0

⇔ x = y et z = 0.

Donc F1(C) = V ect

1
1
0

.
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• Pour F2(C) :

(C − 2I3)X = 0⇔
{

2x− 2y − 2z = 0
−2y = 0

⇔ y = 0 et x = z.

Donc F2(C) = V ect

1
0
1

.

(b) On montre que la famille

1
1
1

 ,

1
1
0

 ,

1
0
1

 est une base de M3,1(R) :

• Card

1
1
1

 ,

1
1
0

 ,

1
0
1

 = 3 = dim(M3,1(R)).

• On montre que

1
1
1

 ,

1
1
0

 ,

1
0
1

 est libre :

a

1
1
1

+ b

1
1
0

+ c

1
0
1

 = 0 ⇔


a+ b+ c = 0

a+ b = 0
a+ c = 0

⇔


a+ b+ c = 0

−c = 0 (L2 ← L2 − L1)
−b = 0 (L3 ← L3 − L1)

⇔ a = b = c = 0

Donc

1
1
1

 ,

1
1
0

 ,

1
0
1

 est une base de M3,1(R) et C est diagonalisable.

Donc avec D =

 0 0 0
0 1 0
0 0 2

 et P =

 1 1 1
1 1 0
1 0 1

, on a C = P DP−1 (les conditions

d’ordre des terme de D et de première ligne de P étant bien respectées).

(c) Soit M ∈M3 (R) . On note N = P−1M ∈M3 (R) .
On a alors :

M ∈ E1 (C) ⇔ CM = M ⇔ CPN = PN ⇔ P−1CP = N

⇔ DN = N ⇔ N ∈ E1 (D) .

(d) Soit N ∈M3 (R) , dont les coefficients sont :

 x y z
a b c
u v w

. Alors :

N ∈ E1 (D) ⇔

 0 0 0
0 1 0
0 0 2

 x y z
a b c
u v w

 =

 x y z
a b c
u v w


⇔


0 = x
0 = y
0 = z

et


a = a
b = b
c = c

et


2u = u
2v = v
2w = w

⇔ N =

 0 0 0
a b c
0 0 0


7
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Donc N ∈ E1 (D) si et seulement s’il existe trois réels a, b, c tels que N =

 0 0 0
a b c
0 0 0

.

(e) Avec les deux questions précédentes, on en déduit que M ∈ E1 (C) si et seulement s’il existe
trois réels a, b, c tels que

M = P

 0 0 0
a b c
0 0 0

 =

 a b c
a b c
0 0 0


= a

 1 0 0
1 0 0
0 0 0

+ b

 0 1 0
0 1 0
0 0 0

+ c

 0 0 1
0 0 1
0 0 0


Donc une famille génératrice de E1 (C) et libre (à démontrer mais c’est très simple) est 1 0 0

1 0 0
0 0 0

 ,

 0 1 0
0 1 0
0 0 0

 ,

 0 0 1
0 0 1
0 0 0


qui est donc une base de E1 (C) qui a finalement une dimension de 3.

(f) Comme D donc C n’est pas inversible on ne peut pas utiliser les résultats de la question 2.

Par contre, on peut refaire le même raisonnement que précédemment :

M ∈ E2 (C)⇔ C2M = CM ⇔ PD2P−1N = PDP−1M ⇔ D2N = DN ⇔ N ∈ E2 (D)

Avec les mêmes coefficients que précédemment (comme D est diagonale) :

N ∈ E2 (D) ⇔

 0 0 0
0 1 0
0 0 4

 x y z
a b c
u v w

 =

 0 0 0
0 1 0
0 0 2

 x y z
a b c
u v w


⇔


0 = 0
0 = 0
0 = 0

et


a = a
b = b
c = c

et


4u = 2u
4v = 2v
4w = 2w

⇔ N =

 x y z
a b c
0 0 0


Donc les matrices de E2 (C) sont celles qui s’écrivent

M =

 1 1 1
1 1 0
1 0 1

 x y z
a b c
0 0 0

 =

 x+ a y + b z + c
x+ a y + b z + c
x y z


et une famille génératrice et libre (à démontrer) de E2 (C) est : 1 0 0

1 0 0
1 0 0

 ,

 0 1 0
0 1 0
0 1 0

 ,

 0 0 1
0 0 1
0 0 1

 ,

 1 0 0
1 0 0
0 0 0

 ,

 0 1 0
0 1 0
0 0 0

 ,

 0 0 1
0 0 1
0 0 0


donc une base de E2 (C). La dimension de E2 (C) est donc 6.

Comme E1 (C) et E2 (C) , n’ont pas la même dimension, ils ne peuvent pas être égaux.
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Exercice 3 (ECRICOME 2003)
1. ch et sh sont définies sur R qui est bien centré en 0. De plus pour tout x ∈ R, on a

ch(−x) = e−x + ex

2
= ch(x) et sh(−x) = e−x − ex

2
= −sh(x)

donc ch est paire et sh est impaire.

2. sh est dérivable sur R comme somme et composée de fonctions dérivables, et pour tout x ∈ R,

sh′(x) =
ex − (−e−x)

2
=

ex + e−x

2
= ch(x) > 0

car ex > 0 et e−x > 0. On obtient donc :

x

sh′(x)

sh(x)

sh(x)

−∞ 0 +∞

+ +

−∞

+∞
0

− 0 +

En effet

sh(0) =
e0 − e0

2
=

1− 1

2
= 0

lim
x→+∞

ex = +∞ et lim
x→+∞

e−x = 0 donc par somme

lim
x→+∞

sh(x) = +∞

et par imparité de sh,
lim

x→−∞
sh(x) = −∞.

3. On factorise les sommes par leur termes prépondérants :

sh(x) =
ex(1− e−2x)

2

et lim
x→+∞

(1− e−2x) = 1 donc

sh(x) ∼
+∞

ex

2

Enfin on en déduit (par croissances comparées pour la seconde limite) que

lim
x→+∞

sh(x) = +∞ et lim
x→+∞

sh(x)

x
= lim

x→+∞

ex

2x
= +∞

donc la courbe de sh admet une branche parabolique verticale au voisinage de +∞.

4. Pour tout x ∈ R, sh′(x) = ch(x) > 0 donc sh est strictement croissante sur R, et continue par
continuité de l’exponentielle.

Elle réalise donc une bijection de R dans

]
lim

x→−∞
sh(x); lim

x→+∞
sh(x)

[
=]−∞; +∞[= R.

5. ch est comme somme et composée de fonctions dérivables et pour tout x ∈ R,

ch′(x) =
ex − e−x

2
= sh(x).

dont on a déterminé le signe précédemment. Cela donne :

9
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x

ch′(x)

ch(x)

−∞ 0 +∞

− 0 +

+∞

11

+∞

En effet

ch(0) =
e0 + e0

2
=

1 + 1

2
= 1,

lim
x→+∞

ex = +∞ et lim
x→+∞

e−x = 0 donc

lim
x→+∞

ch(x) = +∞

et par parité de ch
lim

x→−∞
ch(x) = +∞.

6. ∀x ∈ R,

ch(x)− sh(x) =
ex + e−x − ex + e−x

2
= e−x > 0

donc on en déduit que
ch(x) > sh(x)

7.

8. f est défini sur R qui est bien centré en 0. De plus pour tout x ̸= 0,

f(−x) = −x
sh(−x)

=
−x
−sh(x)

=
x

sh(x)
= f(x)

et
f(−0) = f(0)

La fonction f est donc paire.

9. On écrit les développements limités à l’ordre 2 en 0 de ex et e−x :

ex = 1 + x+
x2

2
+ o

(
x2

)

10
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puis en remplaçant x par −x :

e−x = 1− x+
x2

2
+ o

(
x2

)
.

On soustrait :
ex − e−x = 2x+ o

(
x2

)
et enfin :

sh(x) = x+ o
(
x2

)
.

10. On en déduit que pour tout x ̸= 0 et au voisinage de 0,

f(x) =
x

x+ o(x2)
=

x

x (1 + o(x))
=

1

1 + o(x)
−−−→
x→0

1

1
= 1 = f(0)

donc f est continue en 0.

D’autre part, toujours pour x ̸= 0 et au voisinage de 0,

f(x)− f(0)

x− 0
=

1
1+o(x) − 1

x
=

−o(x)
x(1 + o(x))

=
−o(1)

1 + o(x)
→
x→0

0

donc f est dérivable en 0 et f ′(0) = 0.

11. f est dérivable sur R∗
+ et sur R∗

− comme quotient de fonctions dérivables, avec sh(x) ̸= 0 sur ces
intervalles. De plus ∀x ∈ R∗,

f ′(x) =
1× sh(x)− x× ch(x)

(sh(x))2
=

sh(x)− xch(x)

(sh(x))2
.

12. h est dérivable sur R+ comme somme et produit de fonctions dérivables sur R+, et pour tout
x ∈ R+,

h′(x) = sh′(x)− ch(x)− xch′(x) = ch(x)− ch(x)− xsh(x) = −xsh(x)

donc
h′(x) < 0 sur ]0;+∞[ et h′(0) = 0.

Enfin h(0) = 0 et h est strictement décroissante sur R+ donc h(x) < 0 sur R∗
+.

x

h′(x)

h(x)

h(x)

0 +∞

0 −

00

−∞

0 −

13. Comme (sh(x))2 > 0 et h(x) < 0 sur ]0;+∞[, on a f ′(x) < 0 sur ]0;+∞[ et f ′(0) = 0. Cela
donne :

x

f ′(x)

f(x)

0 +∞

0 −

11

0
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car f(0) = 1 et

f(x) ∼
+∞

x
ex

2

∼ 2x

ex
−−−−→
x→+∞

0.

par croissances comparées.

On construit donc une courbe décroissante sur R+, partant de 1 en 0 avec une tangente hori-
zontale et arrivant sur une asymptote horizontale y = 0 en +∞.

La courbe sur R− est obtenue par symétrie par rapport à l’axe (Oy) car f est paire.

14. f est strictement décroissante et continue sur [0, 8; 1] donc par le théorème de bijection monotone,

f ([0, 8; 1]) = [f(1); f(0, 8)] ⊂ [0, 8; 1]

car f(1) > 0, 8 et f(0, 8) < 1.

Montrons alors par récurrence sur n ≥ 0 que pour tout n ∈ N, un ∈ [0, 8; 1] :

Ini. Pour n = 0, on a
u0 = 1 ∈ [0, 8; 1]

donc la propriété est vraie au rang n = 0.

Héré. Soit n ∈ N. Supposons que un ∈ [0, 8; 1]. Alors :

un+1 = f(un) ∈ f ([0, 8; 1]) ⊂ [0, 8; 1] donc un+1 ∈ [0, 8; 1]

et la propriété est vraie au rang n+ 1.

Ccl. Pour tout n ∈ N, un ∈ [0, 8; 1].

15. Tout d’abord on a f(0) = 1 ̸= 0 donc 0 n’est pas solution.

Pour x ̸= 0 on résout :

f(x) = x⇐⇒ x

sh(x)
= x⇐⇒ 1

sh(x)
= 1⇐⇒ sh(x) = 1.

Or par 1.4 la fonction sh est bijective de R dans R, et 1 ∈ R donc l’équation sh(x) = 1 admet
une unique solution α sur R, et l’équation f(x) = x admet α pour unique solution.

16. La fonction sh est strictement croissante; les valeurs données par l’énoncé permettent d’écrire :

sh(0, 8) < 1 = sh(α) < sh(1) donc 0, 8 < α < 1.

De plus pour tout x ∈ [0, 8; 1],

f ′(x) =
h(x)

(sh(x))2
.

Par décroissance de h, pour x ∈ [0, 8; 1] on a

h(1) ≤ h(x) ≤ h(0, 8) donc − h(0, 8) ≤ −h(x) ≤ −h(1)

et par croissance de sh on a
0 < sh(0, 8) ≤ sh(x) ≤ sh(1)

qui donne avec la croissance de la fonction carré et la décroissance de la fonction inverse sur R+

:

0 < (sh(0, 8))2 ≤ (sh(x))2 ≤ (sh(1))2 puis
1

sh2(1)
≤ 1

sh2(x)
≤ 1

sh2(0, 8)
.

On multiplie alors les 2 inégalités qui ne concernent que des nombres positifs :

−h(0, 8)
sh2(1)

≤ −f ′(x) ≤ −h(1)
sh2(0, 8)

,

et enfin en multipliant par −1 > 0 :

h(1)

sh2(0, 8)
≤ f ′(x) ≤ h(0, 8)

sh2(1)
.
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17. f est dérivable sur [0, 8; 1] et pour tout x ∈ [0, 8; 1],

−0, 5 < −0, 47 ≤ f ′(x) ≤ −0, 13 < 0, 5 donc |f ′(x)| < 0, 5.

L’inégalité des accroissements finis donne alors : pour tous x et y de [0, 8; 1],

|f(x)− f(y)| ≤ 0, 5× |x− y|.

On applique cette inégalité à x = un ∈ [0, 8; 1] et y = α ∈ [0, 8; 1] et on obtient :

|f(un)− f(α)| ≤ 0, 5× |un − α|

et encore :
|un+1 − α| ≤ 0, 5× |un − α|.

Montrons ensuite par récurrence que : ∀n ∈ N, |un − α| ≤ 0.2 (0.5)n.

Ini. Pour n = 0,

0, 8 ≤ α ≤ 1 donc 0 ≤ 1− α ≤ 0, 2 donc |1− α| ≤ 0, 2

et 0, 2× (0, 5)0 = 0, 2 donc
|u0 − α| ≤ 0, 2× (0, 5)0

et la propriété est vraie au rang n = 0.

Héré. Soit n ∈ N. Supposons que |un − α| ≤ 0, 2× 0, 5n. Alors :

|un+1 − α| ≤ 0, 5× |un − α| ≤ 0, 5× 0, 2× 0, 5n = 0, 2× 0, 5n+1.

La propriété est vraie au rang n+ 1.

Ccl. Pour tout n ∈ N, |un − α| ≤ 0.2× (0, 5)n.

18. |0, 5| < 1 donc lim
n→+∞

0, 2× (0, 5)n = 0.

Par encadrement (une valeur absolue est toujours positive), on en déduit que

lim
n→+∞

|un − α| = 0 donc lim
n→+∞

un − α = 0 et enfin lim
n→+∞

un = α.

19. D’après l’inégalité de la question précédente, il suffit que l’on ait : 0, 2 × (0, 5)n ≤ 0, 001 pour
que l’on ait : |un − α| ≤ 0, 001 par majoration.

On résout donc :

0, 2× (0, 5)n ≤ 0, 001⇔ (0, 5)n = en ln(0,5) ≤ 0, 001

0, 2
=

1

200

⇔ (en compasant par ln croissante) n ln(
1

2
) ≤ ln(

1

200
)⇔ n ≥

ln( 1
200)

ln(12)
(car ln(1/2) < 0)

⇔ n ≥ − ln(200)

− ln(2)
=

ln(200)

ln(2)
=

ln(23 × 52)

ln(2)
=

3 ln(2) + 2 ln(5)

ln(2)
= 3 + 2

ln(5)

ln(2)
.

Ainsi, comme 2 log(5)
log(2) ∈]4, 5[, les entiers n supérieurs à 3 + 2 ln(5)

ln(2) , sont les entiers supérieurs à
N = 8.

20. (a) Voici le programme demandé :

1 def f(x):

2 if x == 0 :

3 y = 1

4 else:

5 y = x/((np.exp(x)-np.exp(-x))/2)

6 return(y)
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(b) Voici le programme demandé :

1 N = 8

2 U = 1

3 for k in range(1, N+1):

4 U = f(U)

5 print(U)

(c) On sait d’après la question 6. que |uN − α| ≤ 0, 001 i.e. uN − 0, 001 ≤ α ≤ uN + 0, 001⇔
0, 8803753 ≤ α ≤ 0, 8823753
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