
ECG2 - Mathématiques appliquées Lycée Clemenceau - Reims

Devoir surveillé du Mardi 4 Mars

Correction - DS 10

Exercice 1
1. On peut utiliser le code suivant :

1 def exponentielle(lambda):

2 u = rd.random()

3 return(-(1/lambda)*np.log(1-u))

2. (a) On résout : p = 1 − e−λ ⇔ λ = − ln(1 − p). Avec le résultat admis, et en se souvenant
que np.floor est la fonction partie entière sur Python, on propose la fonction suivante :

1 def geom(p):

2 lambda = - np.log(1-p)

3 x = exponentielle(lambda)

4 return(np.floor(x)+1)

(b) On procède ainsi :

1 x = np.zeros(10000) #vecteur de taille 10000 avec que des 0

2 for k in range(10000):

3 x[k] = geom(0.2) #remplace la k-ème composante par une

simulation

(c) La commande np.mean(x) calcule la moyenne des composantes du vecteur x. Par la loi

faible des grands nombres, elle devrait être proche de l’espérance
1

p
=

1

0.2
= 5. C’est bien

ce qu’on obtient ici.

De même, np.mean((x-m)**2) calcule la variance des composantes du vecteur x. Par
(un corollaire de) la loi faible des grands nombres, elle devrait être proche de la variance

théorique
q

p2
=

0.8

0.04
= 20. C’est bien là aussi ce qu’on observe.

(d) Le premier graphique permet de réprésenter l’histogramme associé à la série définie par
le vecteur x (créé à la question 2.(b)), c’est-à-dire le vecteur de 10000 réalisation de la
variable aléatoire Y , pour les classes définie par le vecteur c, c’est-à-dire les 11 classes
[0.5, 1.5], [1.5, 2.5], . . . , [10.5, 11.5], respectivement centrées en 1, 2, . . . , 11. Cet histogramme
permet de visualiser la loi de Y .

Le deuxième graphique permet de visualiser la loi d’une variable aléatoire géométrique de
paramètre 0.2 (en faisant 10000 simulations de cette loi et en affichant l’histogramme des
fréquences qui sont alors proches des probabilités théoriques avec la loi faible des grands
nombres).

On constate que ces deux graphiques sont quasi identiques, signe que les lois sont très
proches, voire les mêmes. Ceci confirme bien que la variable Y ainsi définie dans l’énoncé,
suit bien une loi géométrique.
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Exercice 2
1. Sachant (X = k), Y compte le nombre de succès au cours de k épreuves de Bernoulli indépendantes

de même paramètre p = 0, 05. Donc Y suit une loi binomiale de paramètres k et 0, 05.

2. On utilise la question précédente pour compléter la fonction :

1 def simulY():

2 x = rd.poisson(20)

3 y = rd.binomial(x, 0.05)

4 return(y)

3. Avec une boucle for.

1 def SimulY(N):

2 M = np.zeros(N)

3 for k in range(N):

4 M[k] = simulY()

5 return(M)

4. Voici la fonction loipoisson :

1 def loipoisson(lb)

2 V = np.zeros(11)

3 V[0] = np.exp(-lb)

4 for k in range(1,11):

5 V[k] = V[k-1]*lb/k

6 return(V)

5. La variable U est un vecteur ligne contenant un échantillon de 100000 simulations de la variable
aléatoire Y .

La variable c est un vecteur ligne contenant les classes pour le tracé de l’histogramme (de −0.5
à 0.5 pour la modalité 0, de 0.5 à 1.5 pour la modalité 1, ..., de 8.5 à 9.5 pour la modalité 9).

La variable n est un vecteur ligne contenant les entiers de 0 à 9.

Enfin, la variable V est un vecteur ligne contenant les 10 premières probabilités théoriques d’une
loi de Poisson de paramètre 1.

Ce programme permet de tracer deux diagrammes en bâtons :

• Le graphe de gauche représente le diagramme en bâtons des fréquences de l’échantillon con-
tenant les 100000 simulations de Y . Le bâton d’abscisse i indique en ordonnée la fréquence
d’apparition de i dans l’échantillon généré.

• Le graphe de droite représente le diagramme en bâtons des 10 premières probabilités
théoriques d’une loi de Poisson de paramètre 1. Le bâton d’abscisse i ∈ [[0, 9]] indique

en ordonnée la probabilité
e−1

i!
.

6. Par comparaison des deux diagrammes obtenus, on constate que les fréquences empiriques de
notre échantillon correspondant approximativement aux probabilités théoriques. D’après la loi
forte des grands nombres, on peut donc supposer que Y suit une loi de Poisson de paramètre 1.

C’est effectivement le cas : nous avons démontré dans l’exercice 15 du TD 9 que Y suit une loi
de Poisson de paramètre λp = 20× 0.05 = 1.
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Exercice 3
1. (a) Sur X(Ω) =]λ; +∞[, F (x) = 1− λk

xk
donc F est dérivable et F ′(x) =

kλk

xk+1
> 0.

F est ainsi continue et strictement croissante sur ]λ; +∞[. Elle réalise donc une bijection
de ]λ; +∞[ dans ]0; 1[.

Soit y ∈]0; 1[ fixé. Résolvons l’équation F (x) = y d’inconnue x ∈]λ; +∞[ :

F (x) = y ⇔ 1− λk

xk
= y ⇔ λk

xk
= 1− y ⇔ xk =

λk

1− y
⇔ x =

λ
k
√
1− y

.

Ainsi, ∀y ∈]0; 1[, F−1(y) =
λ

k
√
1− y

.

(b) On en déduit alors la fonction suivante pour simuler une loi de Pareto de paramètres λ et
k avec la méthode d’inversion :

1 def Pareto1(lbd, k):

2 U = rd.random()

3 X = lbd/(1-U)**(1/k)

4 return(X)

2. (a) Pour tout i, Xi(Ω) =]0, 1] donc (max(X1, . . . , Xk))(Ω) =]0, 1] et donc Y (Ω) = [λ,+∞[.
Donc FY (x) = 0 si x < λ.

Si x ≥ λ, on a :

FY (x) = P (Y ≤ x) = P

(
λ

x
≤ max(X1, . . . , Xk)

)
= 1− P

(
max(X1, . . . , Xk) <

λ

x

)
= 1− P

(
k⋂

i=1

(Xi <
λ

x
)

)

= 1−
k∏

i=1

P (Xi <
λ

x
) (par indépendance des Xi)

= 1−
k∏

i=1

P (Xi ≤
λ

x
) (car les Xi sont à densité)

= 1−
k∏

i=1

λ

x
(car Xi ↪→ U(]0, 1]) et λ

x
∈]0, 1])

= 1− λk

xk
.

Donc Y suit une loi de Pareto de paramètres λ et k.

(b) On en déduit le programme suivant :

1 def Pareto2(lbd, k):

2 U = rd.random(k)

3 Y = lbd/np.max(U)

4 return(Y)
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Exercice 4
1. La variable U est une matrice ligne de 100 termes telle que, pour tout 1 ≤ k ≤ 100, U(k) = k.

La variable V est une matrice ligne de 100 termes telle que, pour tout 1 ≤ k ≤ 100, V (k) =
k∑

i=1

1

i
= Hk (c’est la somme cumulée des inverses des entiers contenus dans la matrice ligne U).

Ce programme trace les 100 premiers termes de la suite des sommes partielles (Hn)n≥1 de la
série harmonique.

On constate que cette suite des sommes partielles divergent vers +∞. Ceci est conforme aux
résultats du cours puisque c’est une série de Riemann de paramètre α = 1 ≤ 1.

2. Voici la fonction seuil demandée :

1 def seuil() :

2 N=1

3 H=1

4 while H<10 :

5 N = N+1

6 H = H+1/N

7 return(N)

Après avoir exécuté la fonction, on obtient N = 12367. La série diverge donc très lentement vers
+∞.

3. La variable U est une matrice ligne de 99 termes telle que, pour tout 2 ≤ k ≤ 100, U(k− 1) = k.

La variable V est une matrice ligne de 99 termes telle que, pour tout 2 ≤ k ≤ 100, V (k − 1) =

1 +

k∑
i=2

1

i
= Hk.

La variable W est une matrice ligne de 99 termes telle que, pour tout 2 ≤ k ≤ 100, W (k − 1) =
ln(k).

La variable T est une matrice ligne de 99 termes (car on commence au deuxième terme pour ne

pas diviser par 0) telle que, pour tout 2 ≤ k ≤ 100, T (k − 1) =
Hk

ln(k)
.

Ce programme trace les 99 premiers termes de la suite

(
Hn

ln(n)

)
n≥2

.

On remarque que la suite

(
Hn

ln(n)

)
n≥2

semble converger vers 1. En d’autres termes, on a donc

Hn ∼ ln(n). Ceci avait été démontré dans l’exercice 1 de la séance d’approfondissement 4.

4. (a) Soit n ∈ N∗. Par décroissance de la fonction inverse sur R∗
+ puis en intégrant sur des bornes

croissantes, on a :

n ≤ t ≤ n+ 1 ⇒ 1

n
≥ 1

t
≥ 1

n+ 1
⇒
∫ n+1

n

1

n
dt ≥

∫ n+1

n

1

t
dt ≥

∫ n+1

n

1

n+ 1
dt.

Comme

∫ n+1

n

1

n
dt =

1

n

∫ n+1

n
1dt =

1

n
[t]n+1

n =
1

n
et de même

∫ n+1

n

1

n+ 1
dt =

1

n+ 1
, on

obtient finalement que :
1

n+ 1
≤
∫ n+1

n

1

t
dt ≤ 1

n
.
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(b) • (un)n≥1 est décroissante :

un+1 − un =

(
n+1∑
k=1

1

k
− ln(n+ 1)

)
−

(
n∑

k=1

1

k
− ln(n)

)

=
1

n+ 1
− ln(n+ 1) + ln(n) =

1

n+ 1
−
∫ n+1

n

1

t
dt ≤ 0,

d’après la question précédente.

• (vn)n≥1 est croissante :

vn+1 − vn =

(
n+1∑
k=1

1

k
− ln(n+ 2)

)
−

(
n∑

k=1

1

k
− ln(n+ 1)

)

=
1

n+ 1
− ln(n+ 2) + ln(n+ 1) =

1

n+ 1
−
∫ n+2

n+1

1

t
dt ≥ 0,

d’après la question précédente.

• On a :

vn − un =

(
n∑

k=1

1

k
− ln(n+ 1)

)
−

(
n∑

k=1

1

k
− ln(n)

)
= − ln(n+ 1) + ln(n)

= ln

(
n

n+ 1

)
= ln

(
1

1 + 1
n

)
−→

n→+∞
0

par continuité de ln en 1.

On a démontré que (un)n≥1 est décroissante, que (vn)n≥1 est croissante et que lim
n→+∞

vn −
un = 0. Donc (un)n≥1 et (vn)n≥1 sont adjacentes.

D’après le théorème des suites adjacentes, (un)n≥1 et (vn)n≥1 convergent vers une même
limite γ.

(c) Voici la fonction gamma demandée :

1 def gamma(eps) :

2 n = 1

3 H = 1

4 u = H

5 v = H-np.log(2)

6 while np.abs(u-v)>eps :

7 n = n+1

8 H = H+1/n

9 u = H-np.log(n)

10 v = H-np.log(n+1)

11 return(u,v)

Après exécution de cette fonction, on obtient en entrant dans la console gamma(0.001) que
u ≃ 0.5777156 et v ≃ 0.5767161. Donc γ ≃ 0.57. Ceci correspond bien à la valeur de la
constante d’Euler donnée dans l’exercice 1 de la séance d’approfondissement 4.
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