
ECG2 - Mathématiques appliquées Lycée Clemenceau - Reims

Devoir surveillé du Samedi 22 Mars

Correction - DS 11 (A)

Exercice 1 (ECRICOME 2023 - Sujet zéro)
1. Le domaine de définition de f est R, centré en 0, et pour tout x ∈ R,

f(−x) = (−x)3 − 3(−x) = −(x3 − 3x) = −f(x).

Donc f est impaire sur R.

2. D’une part, f(x) ∼
x→+∞

x3 donc lim
x→+∞

f(x) = +∞.

D’autre part, f est définie, continue et dérivable sur R (car c’est une fonction polynomiale) et
pour tout x ∈ R,

f ′(x) = 3x2 − 3 = 3(x− 1)(x+ 1).

On en déduit le tableau de variation :

x

f ′(x)

f(x)

0 1 +∞

− 0 +

00

−2−2

+∞+∞

3. La fonction f est de classe C 2 sur R car polynomiale, et pour tout x ∈ R, f ′′(x) = 6x. Donc f ′′

est positive sur [0,+∞[, négative sur ]−∞, 0] et s’annule et change de signe en 0.

Donc f est convexe sur [0,+∞[, concave sur ] − ∞, 0] et le point d’abscisse 0 est un point
d’inflexion de C .

4. T a pour équation y = f ′(0)(x− 0) + f(0), c’est-à-dire y = −3x.
Pour tout x ∈ R, f(x)− (−3x) = x3 est du signe de x. Donc C est en-dessous de T sur ]−∞, 0]
et au-dessus de T sur [0,+∞[.

5. En regroupant les informations obtenues aux questions précédentes, on obtient la figure suivante :
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6. (a) Soit a un réel tel que |a| < 2, c’est-à-dire −2 < a < 2.

• D’après la question 2, la fonction f est continue et strictement croissante sur [1,+∞[.
Donc f réalise une bijection de [1,+∞[ vers f([1,+∞[) = [−2,+∞[ (d’après le théorème
de la bijection).
Or −a ∈ [−2,+∞[. Donc −a admet un unique antécédent α par f dans [1,+∞[.
Autrement dit, l’équation f(x) = −a possède une unique solution α dans [1,+∞[.

• D’après la question 2, la fonction f est continue et strictement décroissante sur [0, 1[.
D’après la question 1, f est impaire sur R. Donc la fonction f est continue et strictement
décroissante sur ]−1, 1[. Donc f réalise une bijection de ]−1, 1[ vers f(]−1, 1[) =]−2, 2[
(d’après le théorème de la bijection).
Or −a ∈]−2, 2[. Donc −a admet un unique antécédent β par f dans ]−1, 1[. Autrement
dit, l’équation f(x) = −a possède une unique solution β dans ]− 1, 1[.

• D’après la question 2, la fonction f est continue et strictement décroissante sur [1,+∞[.
D’après la question 1, f est impaire sur R. Donc la fonction f est continue et strictement
décroissante sur ] − ∞,−1]. Donc f réalise une bijection de ] − ∞,−1] vers f(] −
∞,−1]) =]−∞, 2] (d’après le théorème de la bijection).
Or −a ∈] − ∞, 2]. Donc −a admet un unique antécédent γ par f dans ] − ∞,−1].
Autrement dit, l’équation f(x) = −a possède une unique solution γ dans ]−∞,−1].

Finalement, l’équation x3− 3x− a = 0 possède exactement trois solutions réelles distinctes
α, β et γ.

(b) Supposons que |a| > 2, c’est-à-dire a > 2 ou a < −2. On distingue deux cas.

• Si −a > 2, alors −a /∈ f(] − ∞, 1]) et −a ∈ f(]1,+∞[), donc d’après la question
précédente, l’équation f(x) = −a admet une unique solution réelle, qui appartient à
]1,+∞[.

• Si −a < 2, alors −a /∈ f([−1,+∞[) et −a ∈ f(] −∞,−1[), donc d’après la question
précédente, l’équation f(x) = −a admet une unique solution réelle, qui appartient à
]−∞,−1[.

Dans tous les cas, l’équation x3 − 3x− a = 0 possède une unique solution réelle.

7. (a) On montre que A3
a − 3Aa + aI3 = 0.

(b) Comme −a+ 3λ = λ3, on a :

AaX =

 λ
λ2

−a+ 3λ

 =

 λ
λ2

λ3

 = λX.

(c) Soit λ ∈ R. On montre l’équivalence par double implication :

⇒ Supposons que λ est valeur propre de Aa. D’après la question 7.(a), X3 − 3X + a est
un polynôme annulateur de Aa. Donc λ3 − 3λ + a = 0 (car les valeurs propres sont
parmi les racines des polynômes annulateurs).

⇐ Supposons que λ3 − 3λ + a = 0. Alors d’après la question précédente, en posant

X =

 1
λ
λ2

, on a X ̸= 0 et AaX = λX, donc λ est valeur propre de Aa (et X est un

vecteur propre associé).

8. (a) D’après la question 7.(c), λ est valeur propre de A2 ⇔ λ3 − 3λ+ 2 = 0.

On remarque que 1 est une racine évidente du polynôme x3 − 3x + 2. On factorise (par
identification ou par division euclidienne) :

x3 − 3x+ 2 = (x− 1)(x2 + x− 2) = (x− 1)2(x+ 2).

Donc Sp(A2) = {−2, 1}. On détermine les sous-espaces propres associés. Après calculs, on
obtient :
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• E−2(A2) = V ect

 1
−2
4

 et

 1
−2
4

 est une base de E−2(A2) car libre (un vecteur

non nul) et génératrice.

• E1(A2) = V ect

1
1
1

 et

1
1
1

 est une base de E1(A2) car libre (un vecteur non

nul) et génératrice.

(b) Par concaténation des bases des sous-espaces propres E−2(A2) et E1(A2) (valeurs propres

distinctes),

 1
−2
4

 ,

1
1
1

 est une famille libre de M3,1(R). Ce n’est pas une base de

M3,1(R) car elle est de cardinale 2 et dim(M3,1(R)) = 3. On ne peut donc pas trouver de
base de vecteurs propres de A2 et cette matrice n’est donc pas diagonalisable.

9. D’après la question 6.(b), l’équation λ3 − 3λ + a = 0 possède une unique solution α réelle.
Autrement dit, d’après la question 7.(c), Aa possède une unique valeur propre α. Montrons par
l’absurde que Aa n’est pas diagonalisable.

On suppose Aa diagonalisable. Alors, puisque Sp(Aa) = {α}, il existe une matrice inversible P
d’ordre 3 telle que :

A = P

α 0 0
0 α 0
0 0 α

P−1 = PαI3P
−1 = αPI3P

−1 = αI3.

Ceci est absurde donc Aa n’est pas diagonalisable.

10. (a) D’après la question 6.(a), la matrice Aa carrée d’ordre 3 possède 3 valeurs propres distinctes
α, β, γ.

D’après la question 7.(b),

 1
α
α2

 est un vecteur propre associé à α,

 1
β
β2

 est un vecteur

propre associé à β et

 1
γ
γ2

 est un vecteur propre associé à γ.

Par concaténation de familles libres (un vecteur non nul à chaque fois) des sous-espaces

propres Eα(A2), Eβ(A2) et Eγ(A2) (valeurs propres distinctes),

 1
α
α2

 ,

 1
β
β2

 ,

 1
γ
γ2


est une famille libre de M3,1(R). Comme le cardinal de cette famille libre est égale à la
dimension de M3,1(R), c’est une base de M3,1(R) constituée de vecteurs propres de Aa.
Donc Aa est diagonalisable.

(b) Les colonnes de P forme une base (de vecteurs propres de Aa) de M3,1(R). Elles sont donc
linéairement indépendantes et P est inversible.

On sait de plus d’après le cours que Aa = PDP−1.

11. (a) y est solution de (E0) si et seulement si y′ est solution de z′′ − 3z = 0.

L’équation caractéristique de cette équation, r2 − 3 = 0, a deux solutions r1 = −
√
3 et

r2 =
√
3.

Ainsi, y est solution de (E0) s’il existe deux réels λ et µ tels que :

∀x ∈ R, y′(x) = λe−
√
3x + µe

√
3x.
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(b) Les solution de (E0) sont donc les primitives des fonctions de la forme obtenue à la question
précédentes, c’est-à-dire les fonctions définies par une expression de la forme :

∀x ∈ R, y(x) = − λ√
3
e−

√
3x +

µ√
3
e
√
3x + ν,

où λ, µ, ν sont des réels. Or − λ√
3

et
µ√
3

décrivent l’ensemble des réels lorsque λ et µ

décrivent l’ensemble des réels. Ainsi, les solution de (E0) sont les fonctions vérifiant une
relation de la forme :

∀x ∈ R, y(x) = λe−
√
3x + µe

√
3x + ν,

où λ, µ, ν sont des réels.

12. Soit a un réel.

Y ′ = AaY ⇔

 y′

y′′

y′′′

 =

 y′

y′′

−ay + 3y′

⇔ y′′′ = −ay + 3y′ ⇔ y est solution de (Ea).

13. (a) Comme Aa = PDP−1 (question 10.(b)), on a donc avec la question précédente :

y est solution de (Ea) ⇔ Y ′ = AaY

⇔ Y ′ = PDP−1Y

⇔ P−1Y ′ = DP−1Y

⇔ (P−1Y )′ = D(P−1Y ) (par linéarité de la dérivation)

⇔ Z ′ = DZ.

(b) D’après la question précédente, en notant Z =

z1
z2
z3

,

y est solution de (Ea) ⇔ Z ′ = DZ

⇔


z′1 = αz1
z′2 = βz2
z′3 = γz3

⇔ ∃λ1, λ2, λ3 ∈ R, ∀x ∈ R,


z1(x) = λ1e

αx

z2(x) = λ2e
βx

z3(x) = λ3e
γx

Or Y = PZ =

 z1 + z2 + z3
αz1 + βz2 + γz3

α2z1 + β2z2 + γ2z3

 donc y est solution de (Ea) si et seulement s’il existe

des réels λ1, λ2, λ3 tels que

∀x ∈ R,

 y(x)
y′(x)
y′′(x)

 =

 λ1e
αx + λ2e

βx + λ3e
γx

λ1αe
αx + λ2βe

βx + λ3γe
γx

λ1α
2eαx + λ2β

2eβx + λ3γ
2eγx


Ainsi, y est solution de (Ea) si et seulement s’il existe des réels λ1, λ2, λ3 tels que, pour
tout x ∈ R, y(x) = λ1e

αx + λ2e
βx + λ3e

γx.

(c) Dans le cas a = 0, les valeurs propres de A0 sont les solutions de l’équation x3 − 3x = 0,
c’est-à-dire α = −

√
3, β =

√
3 et γ = 0. D’après la question précédente, les solutions de

(E0) sont donc les fonctions définies par l’expression de la forme :

∀x ∈ R, y(x) = λ1e
−
√
3x + λ2e

√
3x + λ3.

On retrouve bien le résultat de la question 11.(b).
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Exercice 2 (ECRICOME 2017)
1. En 0+ :  ln(x) −→

x→0+
−∞

x2a −→
x→0+

0 (car 2a > 0
donc φ(x) −→

x→0+
−∞.

En +∞, il s’agit d’une forme indéterminée ”+∞ + (−∞)”, que l’on peut lever en utilisant les
résultats de croissances comparées : comme 2a > 0,

φ(x) = x2a
(
ln(x)

x2a
− a

)
−→

x→+∞
−∞.

2. La fonction φ est dérivable et pour tout x > 0 :

φ′(x) =
1

x
− 2a2x2a−1 =

1− 2a2x2a

x

Le signe de φ′(x) est celui du numérateur 1 − 2a2x2a qui s’annule en x0 =

(
1

2a2

) 1
2a
. On en

déduit le tableau de variations de φ :

x

φ′(x)

φ

0 x0 +∞

+ 0 −

−∞−∞

φ(x0)φ(x0)

−∞−∞

L’énoncé ne précise pas si une expression de φ(x0) en fonction de a est attendue, mais elle nous
servira pour la question suivante :

φ(x0) = φ

( 1

2a2

) 1
2a

 =
1

2a
ln

(
1

2a2

)
− a

1

2a2
= − 1

2a

(
ln(2a2) + 1

)
.

3. Déterminons le signe de φ(x0), maximum de φ atteint en x0, en fonction de a :

φ(x0) > 0 ⇔ − 1

2a

(
ln(2a2) + 1

)
> 0

⇔ ln(2a2) + 1 < 0

⇔ ln(2a2) < −1
⇔ 2a2 < e−1 (croissance de exp)

⇔ a2 <
1

2e

⇔ a <

√
1

2e
(croissance de x 7→

√
x sur R+ (et a > 0))

D’où le tableau de signe :

a

φ(x0)

0
1√
2e

+∞

+ 0 −

Par conséquent :
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• Si a <
1√
2e

:

La fonction φ est continue et strictement croissante sur ]0, x0[, donc réalise une bijection
de ]0, x0[ dans ] lim0 φ,φ(x0)[=]−∞, φ(x0)[ ; ce dernier intervalle contenant 0, il existe un
unique réel z1 ∈]0, x0[ tel que φ(z1) = 0.

De même, φ réalise une bijection (décroissante) de ]x0,+∞[ dans ]−∞, φ(x0)[ qui contient
0, donc il existe un unique réel z2 ∈]x0,+∞[ tel que φ(z2) = 0.

• Si a =
1√
2e

, alors φ(x0) = 0 et, d’après le tableau de variation déterminé en question 2.,

φ(x) < 0 pour x ̸= x0. Donc l’équation φ(x) = 0 admet une unique solution : x0.

• Si a >
1√
2e

, étant donné les variations de φ, cette fonction est strictement négative et

l’équation φ(x) = 0 n’admet aucune solution.

4. Les fonctions (x, y) 7→ x, (x, y) 7→ y et (x, y) 7→ xy sont de classe C2. Par composition avec ln et
t 7→ ta qui sont C2, puis par produit et somme, la fonction f est de classe C2 sur U .

5. Pour tout (x, y) ∈ U :

∂1(f)(x, y) =
1

x
ln(y)− axa−1ya ; ∂2(f)(x, y) =

1

y
ln(x)− axaya−1.

6. Les points critiques de f sont les points (x, y) de U annulant le gradient de f :

∇(f)(x, y) =
(
0
0

)
⇔

{
∂1(f)(x, y) = 0
∂2(f)(x, y) = 0

⇔


1

x
ln(y)− axa−1ya = 0

1

y
ln(x)− axaya−1 = 0

⇔
{ 1

x(ln(y)− axaya) = 0
1
y (ln(x)− axaya) = 0

⇔
{

ln(y) = axaya

ln(x) = axaya
(1/x et 1/y sont non nuls)

⇔
{

ln(y) = axaya

ln(x) = ln(y)
(L2 ← L2 − L1)

⇔
{

ln(x) = axaxa

x = y
(ln est bijective sur R∗

+ ; report dans L1)

⇔
{

φ(x) = 0
x = y

7. Les solutions de l’équation φ(x) = 0 sont données par la question 3. On obtient donc avec la
question 6 :

• Si a <
1√
2e

: f admet deux points critiques : (z1, z1) et (z2, z2).

• Si a =
1√
2e

: f admet un unique point critique : (x0, x0).

• Si a >
1√
2e

: f n’admet pas de point critique.

8. Pour tout (x, y) ∈ U : 
∂2
1,1(f)(x, y) = −1

x2 ln(y)− a(a− 1)xa−2ya

∂2
1,2(f)(x, y) = 1

xy − a2(xy)a−1

∂2
2,1(f)(x, y) = 1

xy − a2(xy)a−1

∂2
2,2(f)(x, y) = −1

y2
ln(x)− a(a− 1)xaya−2
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9. Comme z1 vérifie φ(z1) = ln(z1)− az1
2a = 0, on a :

∂2
1,1(f)(z1, z1) =

−1
z12

ln(z1)︸ ︷︷ ︸
=az12a

−a(a− 1)z1
a−2z1

a = −az12a−2 − a(a− 1)z1
2a−2 = −a2z12a−2.

Les expressions de ∂2
1,1(f)(x, y) et ∂

2
2,2(f)(x, y) étant identiques en échangeant x et y, le même

calcul donne :
∂2
2,2(f)(z1, z1) = −a2z12a−2.

Enfin :

∂2
1,2(f)(z1, z1) = ∂2

2,1(f)(z1, z1) =
1

z12
− a2

(
z1

2
)a−1

=
1

z12
− a2z1

2a−2

10. On a :

MX1 =

 −a2z12a−2 1

z12
− a2z1

2a−2

1

z12
− a2z1

2a−2 −a2z12a−2

(1
1

)
=

 1

z12
− 2a2z1

2a−2

1

z12
− 2a2z1

2a−2


donc MX1 =

(
1

z12
− 2a2z1

2a−2

)
X1.

De même,

MX2 =

 −a2z12a−2 1

z12
− a2z1

2a−2

1

z12
− a2z1

2a−2 −a2z12a−2

(−1
1

)
=

 1

z12

− 1

z12


donc MX2 = −

1

z12
X2.

Par conséquent, les nombres λ1 =
1

z12
− 2a2z1

2a−2 et λ2 = − 1

z12
sont valeurs propres de la

matrice M (et X1, X2 sont des vecteurs propres associés respectivement à ces deux valeurs).

Puisque (X1, X2) est une base de M2,1(R) (famille libre car deux vecteurs non colinéaires et de
cardinale égal à la dimension), il ne peut y avoir d’autre valeur propre. Donc :

Sp(M) =

{
1

z12
− 2a2z1

2a−2,− 1

z12

}
.

11. Avec les notations précédentes, clairement : λ2 < 0.

On peut utiliser la question 2 pour déterminer le signe de λ1 en remarquant que :

λ1 =
1

z12
− 2a2z1

2a−2 =
1− 2a2z1

2a

z12
=

1

z1
φ′(z1)

Comme z1 ∈]0, x0[, intervalle sur lequel φ′ est strictement positive, on en déduit que λ1 > 0.

Par conséquent, la matrice hessienne de f au point critique (z1, z1) admet deux valeurs propres
non nulles et de signes opposés, donc f ne présente pas en ce point d’extremum local (il s’agit
d’un point col).

12. En (z2, z2), les calculs sont similaires et on obtient :

Sp
(
∇2(f)(z2, z2)

)
=

{
1

z22
− 2a2z2

2a−2︸ ︷︷ ︸
=λ′

1

,− 1

z22︸ ︷︷ ︸
=λ′

2

}
.

Comme en question 11 :

λ′
1 =

1

z2
φ′(z2).

Mais ici, comme z2 est dans ]x0,+∞[, intervalle sur lequel φ′ est strictement négative, on en
déduit que λ′

1 < 0.

Par conséquent, la matrice hessienne de f au point critique (z2, z2) admet deux valeurs propres
strictement négatives, donc f présente en ce point un maximum local.
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Exercice 3 (ECRICOME 2002)
1. (a) On effectue n épreuves de Bernoulli identiques et indépendantes de paramètre 1

2 et X
compte le nombre de succès donc X suit la loi binomiale de paramètres n et 1

2 , ce qui
donne :

X(Ω) = [[0;n]] , ∀k ∈ [[0;n]], P (X = k) =

(
n

k

)(
1

2

)n

et X admet une espérance et une variance qui valent :

E(X) =
n

2
et V (X) = n× 1

2
× 1

2
=

n

4
.

(b) i. Voici le programme complété :

1 n = input('Entrer le nombre n de tirages : ')
2 s = rd.binomial(n, 1/2, 1000)

ii. On ajoute l’instruction print(np.mean(s)) .

2. Pour avoir (Y = k) il faut que les (k − 1) premiers tirages aient donné une boule noire et le
k-ième une boule blanche donc

(Y = k) = N1 ∩ · · · ∩Nk−1 ∩Bk

et par indépendance des tirages :

P (Y = k) =

(
1

2

)k−1

× 1

2
=

1

2k
.

Pour avoir Y = 0 il faut n’avoir tiré que des boules noires donc

(Y = 0) = N1 ∩ · · · ∩Nn

et par indépendance des tirages :

P (Y = 0) =

(
1

2

)n

=
1

2n
.

3. On reconnâıt la somme des termes d’une suite géométrique, et on prend bien garde à séparer la
valeur k = 0 :

n∑
k=0

P (Y = k) =

n∑
k=1

(
1

2

)k

+
1

2n
=

1

2
×

1−
(
1
2

)n
1− 1

2

+
1

2n
= 1− 1

2n
+

1

2n
= 1.

4. Montrons la formule par récurrence sur n ≥ 1 :

Ini. On a
1∑

k=1

kxk = x

et
x1+2 − (1 + 1)x1+1 + x

(1− x)2
=

x
(
x2 − 2x+ 1

)
(x− 1)2

= x
(x− 1)2

(x− 1)2
= x.

donc la propriété est vraie au rang n = 1.

8
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Héré. Soit n ≥ 1. Supposons que
n∑

k=1

kxk = nxn+2−(n+1)xn+1+x
(1−x)2

. Alors :

n+1∑
k=1

kxk =

n∑
k=1

kxk + (n+ 1)xn+1

=
nxn+2 − (n+ 1)xn+1 + x

(1− x)2
+

(n+ 1)xn+1(1− 2x+ x2)

(1− x)2

=
nxn+2 − (n+ 1)xn+1 + x+ (n+ 1)xn+1 − 2(n+ 1)xn+2 + (n+ 1)xn+3

(1− x)2

=
1

(1− x)2
×
(
x+ xn+1 [−(n+ 1) + (n+ 1)] + xn+2 [n− 2n− 2] + (n+ 1)xn+3

)
=

(n+ 1)x(n+1)+2 − ((n+ 1) + 1)x(n+1)+1 + x

(1− x)2
.

et la propriété est vraie au rang n+ 1.

Ccl. Par le principe de récurrence, pour tout n ≥ 1,

n∑
k=1

kxk =
nxn+2 − (n+ 1)xn+1 + x

(1− x)2
.

5. Y est finie donc admet une espérance, qu’on calcule à l’aide de la formule précédente :

E(Y ) =
n∑

k=1

k

(
1

2

)k

+ 0×
(
1

2

)n

=
n

2n+2 − n+1
2n+1 + 1

2(
1
2

)2 = 4

(
n

2n+2
− n+ 1

2n+1
+

1

2

)
=

n

2n
− 2n+ 2

2n
+ 2 = 2− n+ 2

2n
.

6. Zp est le nombre de boules blanches qui ont été tirées lors des p premiers tirages.

7. X1(Ω) = {0; 1} et
(X1 = 0) = N1 et (X1 = 1) = B1

donc

P (X1 = 0) = P (X1 = 1) =
1

2

X1 suit la loi de Bernoulli de paramètre 1
2 donc admet une espérance qui vaut :

E(X1) =
1

2
.

8. On a tout d’abord :
X1(Ω) = X2(Ω) = {0; 1}

puis :

P ((X1 = 1) ∩ (X2 = 1)) = P (X1 = 1)P(X1=1)(X2 = 1) =
1

2
× 1 + c

2 + c
=

1 + c

4 + 2c

car si X1 = 1, on a tiré une boule blanche donc on a une boule noire et (1 + c) boule blanche
pour le 2e tirage.

De même

P ((X1 = 1) ∩ (X2 = 0)) = P (X1 = 1)P(X1=1)(X2 = 0) =
1

2
× 1

2 + c
=

1

4 + 2c
.

P ((X1 = 0) ∩ (X2 = 1)) = P (X1 = 0)P(X1=0)(X2 = 1) =
1

2
× 1

2 + c
=

1

4 + 2c
.

9
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P ((X1 = 0) ∩ (X2 = 0)) = P (X1 = 0)P(X1=0)(X2 = 0) =
1

2
× 1 + c

2 + c
=

1 + c

4 + 2c
.

D’où comme ((X1 = 1), (X1 = 0)) est un SCE et par probabilité totales :

P (X2 = 1) = P ((X1 = 0) ∩ (X2 = 1))+P ((X1 = 1) ∩ (X2 = 1)) =
1 + 1 + 2c

4 + 2c
=

2 + 2c

2(2 + 2c)
=

1

2
.

Enfin (X2 = 0) = (X2 = 1) donc

P (X2 = 0) =
1

2

et X2 suit la loi de Bernoulli de paramètre 1
2 donc admet une espérance qui vaut :

E(X2) =
1

2
.

9. Z2 (Ω) = {0; 1; 2} et en décomposant selon les valeurs du couple (X1, X2) :

P (Z2 = 0) = P ((X1 = 0) ∩ (X2 = 0)) =
1 + c

4 + 2c
,

P (Z2 = 1) = P

[(
(X1 = 0) ∩ (X2 = 1)

)
∪
(
(X1 = 1) ∩ (X2 = 0)

)]
= P ((X1 = 0) ∩ (X2 = 1)) + P ((X1 = 1) ∩ (X2 = 0))

=
2

4 + 2c
,

P (Z2 = 2) = P ((X1 = 1) ∩ (X2 = 1)) =
1 + c

4 + 2c
.

10. Zp (Ω) = {0; 1; 2; . . . ; p}.

11. (a) Si Zp = k, on a tiré k boules blanches donc rajouté kc boules blanches : il y en a donc
1 + kc.

Après p tirages le total de boules est de 2 + pc (on en rajoute c à chaque tirage). D’où

P(Zp=k)(Xp+1 = 1) =
1 + kc

2 + pc
.

(b) Comme [(Zp = 0), (Zp = 1), . . . , (Zp = p)] est un système complet d’évènements, on a par
incompatibilité puis avec la formule des probas composées :

P (Xp+1 = 1) = P

(
p⋃

k=0

(Zp = k) ∩ (Xp+1 = 1)

)
=

p∑
k=0

P ((Zp = k) ∩ (Xp+1 = 1))

=

p∑
k=0

P (Zp = k)× P(Zp=k)(Xp+1 = 1) =

p∑
k=0

P (Zp = k)
1 + kc

2 + pc

=
1

2 + pc

(
p∑

k=0

P (Zp = k) + c

p∑
k=0

kP (Zp = k)

)

=
1

2 + pc
× (1 + cE(Zp)) =

1 + cE(Zp)

2 + pc
.

(c) Montrons par récurrence sur 1 ≤ p ≤ n que Xp est une variable aléatoire de Bernoulli de
paramètre 1

2 :

Ini. On a déjà vu que X1 et X2 suivent la loi de Bernoulli de paramètre 1
2 .

10
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Héré. Soit 1 ≤ p ≤ n − 1. Supposons que X1, X2, · · · , Xp suivent la loi de Bernoulli de
paramètre 1

2 .
Alors par linéarité de l’espérance

E(Zp) =

p∑
i=1

E(Xi) =
p

2

D’autre part on a Xp+1(Ω) = {0; 1} et :

P (Xp+1 = 1) =
1 + pc

2

2 + pc
=

2+pc
2

2 + pc
=

2 + pc

2
× 1

2 + pc
=

1

2
.

D’où

P (Xp+1 = 0) = 1− P (Xp+1 = 1) =
1

2

et Xp+1 est une variable aléatoire de Bernoulli de paramètre 1
2 .

Ccl. Pour tout p ∈ {1; 2; . . . ;n}, Xp est une variable aléatoire de Bernoulli de paramètre 1
2 .

Remarque : le jeu étant parfaitement symétrique, il est normal qu’il y ait autant de chance
de tirer une boule blanche ou une boule noire au p-ième tirage pour tout p : ce résultat est
donc naturel et on aurait pu l’obtenir directement en inversant le rôle des boules blanches
et des boules noires pour montrer que P (Xp = 1) = P (Xp = 0) puis que chacune vaut 1

2 .

12. Voici le programme demandé :

1 c = input('entrer la valeur de c')
2 X = np.zeros(10)

3

4 n = 1

5 b = 1

6 for i in range(10):

7 if rd.random() < b/(b+n) :

8 X[i] = 1

9 n = n

10 b = b+c

11 else:

12 X[i] = 0

13 n = n+c

14 b = b

15 print(X)
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