ECG2 - Mathématiques appliquées Lycée Clemenceau - Reims

—— Correction - DS 11 (A)
Devoir surveillé du Samedi 22 Mars

Exercice 1 (ECRICOME 2023 - Sujet zéro)
1. Le domaine de définition de f est R, centré en 0, et pour tout x € R,

f(=2) = (—2)’ = 3(~2) = —(2° - 32) = — f(x).
Donc f est impaire sur R.

9 3 3 —
2. D’une part, f(z) etie donc xgrfoo f(z) = +o0.
D’autre part, f est définie, continue et dérivable sur R (car c’est une fonction polynomiale) et
pour tout = € R,
fl(z) =32% =3 =3(x—1)(z+ 1).

On en déduit le tableau de variation :

z 0 1 400
f'(@) - 0 +
0 +00
-2

3. La fonction f est de classe € sur R car polynomiale, et pour tout = € R, f”(x) = 6z. Donc f”
est positive sur [0, +o00], négative sur | — 0o, 0] et s’annule et change de signe en 0.

Donc f est convexe sur [0, +oc[, concave sur | — 00,0] et le point d’abscisse 0 est un point
d’inflexion de %

4. T a pour équation y = f/(0)(z — 0) + f(0), c’est-a-dire y = —3x.
Pour tout z € R, f(x) — (—3x) = 23 est du signe de 2. Donc € est en-dessous de T' sur | — oo, 0]

et au-dessus de T sur [0, 400].

5. En regroupant les informations obtenues aux questions précédentes, on obtient la figure suivante :

—_—
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6.

(a)

Soit @ un réel tel que |a| < 2, c’est-a-dire —2 < a < 2.

e D’apres la question 2, la fonction f est continue et strictement croissante sur [1, 4o00].
Donc f réalise une bijection de [1, +oo[ vers f([1, +o00[) = [~2, +00[ (d’apres le théoréme
de la bijection).

Or —a € [-2,400[. Donc —a admet un unique antécédent o par f dans [1,+ool.
Autrement dit, ’équation f(z) = —a posséde une unique solution « dans [1, +0o0[.

e D’apres la question 2, la fonction f est continue et strictement décroissante sur [0, 1[.
D’apres la question 1, f est impaire sur R. Donc la fonction f est continue et strictement
décroissante sur | —1, 1[. Donc f réalise une bijection de | —1, 1[ vers f(]—1,1[) =] -2, 2|
(d’apres le théoreme de la bijection).

Or —a €]—2,2[. Donc —a admet un unique antécédent § par f dans|—1,1[. Autrement
dit, I’équation f(x) = —a possede une unique solution § dans | — 1, 1].

e D’apres la question 2, la fonction f est continue et strictement décroissante sur [1, 4+00].

D’apres la question 1, f est impaire sur R. Donc la fonction f est continue et strictement

décroissante sur | — oo, —1]. Donc f réalise une bijection de | — oo, —1] vers f(] —
00, —1]) =] — 00, 2] (d’apres le théoreme de la bijection).

Or —a €] — 00,2]. Donc —a admet un unique antécédent v par f dans | — oo, —1].
Autrement dit, ’équation f(z) = —a posséde une unique solution vy dans | — oo, —1].

Finalement, I’équation 23 — 3z — a = 0 possede exactement trois solutions réelles distinctes
a, B et .
Supposons que |a| > 2, c’est-a-dire @ > 2 ou a < —2. On distingue deux cas.

e Si —a > 2, alors —a ¢ f(] —o0,1]) et —a € f(]1,+00[), donc d’apres la question

précédente, ’équation f(x) = —a admet une unique solution réelle, qui appartient &
|1, +ool.

e Si —a < 2, alors —a ¢ f([—1,400]) et —a € f(] — o0, —1[), donc d’apres la question
précédente, ’équation f(x) = —a admet une unique solution réelle, qui appartient &
| — o0, —1].

Dans tous les cas, ’équation 2> — 32 — a = 0 posséde une unique solution réelle.

) On montre que A3 — 34, + alz = 0.

Comme —a 4+ 3\ = )3, on a:

A A
A X = A2 =\ ] =)\X.
—a + 3\ A3

Soit A € R. On montre I’équivalence par double implication :

= Supposons que A est valeur propre de A,. D’apres la question 7.(a), X3 —3X + a est
un polynéme annulateur de A,. Donc A3 — 3\ +a = 0 (car les valeurs propres sont
parmi les racines des polynoémes annulateurs).

< Supposons que A3 — 3\ +a = 0. Alors d’aprés la question précédente, en posant
1

X=|X]|,onaX#0et A, X = AX, donc \ est valeur propre de A, (et X est un
)\2
vecteur propre associé).
D’apres la question 7.(c), A est valeur propre de Ay < A3 — 3\ +2 = 0.

On remarque que 1 est une racine évidente du polynéme z® — 3z + 2. On factorise (par
identification ou par division euclidienne) :

2} —3r+2=(r-1)2*+2-2)=(z—1)*(z+2).

Donc Sp(Az) = {—2,1}. On détermine les sous-espaces propres associés. Apres calculs, on
obtient :
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1 1
o F 5(Ay) =Vect -2 et -2 est une base de E_9(As) car libre (un vecteur
4 4
non nul) et génératrice.
1 1
o Fi(Ay) =Vect 1 et 1 est une base de E;(A3) car libre (un vecteur non
1 1

nul) et génératrice.

(b) Par concaténation des bases des sous-espaces propres E_s(A2) et E1(Az) (valeurs propres

1 1
distinctes), 21,11 est une famille libre de .#31(R). Ce n’est pas une base de
4 1

A3, (R) car elle est de cardinale 2 et dim(.#31(R)) = 3. On ne peut donc pas trouver de
base de vecteurs propres de A, et cette matrice n’est donc pas diagonalisable.

9. D’apres la question 6.(b), 1’équation A3 — 3\ + a = 0 posséde une unique solution a réelle.
Autrement dit, d’apres la question 7.(c), A, posséde une unique valeur propre a. Montrons par
I’absurde que A, n’est pas diagonalisable.

On suppose A, diagonalisable. Alors, puisque Sp(A4,) = {a}, il existe une matrice inversible P
d’ordre 3 telle que :

a 0 0
A=P|0 a 0| P ' =PalP ' =aPLP ! =als.
0 0 «

Ceci est absurde donc A, n’est pas diagonalisable.

10. (a) D’apres la question 6.(a), la matrice A, carrée d’ordre 3 possede 3 valeurs propres distinctes

a, B,7.
1 1
D’apres la question 7.(b), | « | est un vecteur propre associé a o, | 8 | est un vecteur
a2 52
1
propre associé a B et | v | est un vecteur propre associé a .
2
Par concaténation de familles libres (un vecteur non nul a chaque fois) des sous-espaces
1 1 1
propres Eq(A2), Eg(A2) et E,(Az) (valeurs propres distinctes), al, B8]~

2 2 2
a B g
est une famille libre de .#51(R). Comme le cardinal de cette famille libre est égale a la
dimension de .#31(R), c’est une base de .#3;(R) constituée de vecteurs propres de A,.
Donc A, est diagonalisable.

(b) Les colonnes de P forme une base (de vecteurs propres de A,) de .#31(R). Elles sont donc
linéairement indépendantes et P est inversible.

On sait de plus d’apres le cours que A, = PDP~.

11. (a) y est solution de (&p) si et seulement si y' est solution de z”" — 3z = 0.
L’équation caractéristique de cette équation, r?> — 3 = 0, a deux solutions r; = —v/3 et

7“2:\/5.

Ainsi, y est solution de (&p) s’il existe deux réels A et p tels que :

Ve eR, o (z)= Ae V3 4 ue\/g”".
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b) Les solution de (&) sont donc les primitives des fonctions de la forme obtenue a la question
b q
précédentes, c’est-a-dire les fonctions définies par une expression de la forme :

A Ve M VB
Ve e R, T)=———=e VT —eVT 4,
== V3

A
ol A, u,v sont des réels. Or _ﬁ et % décrivent l’ensemble des réels lorsque A et p

décrivent I’ensemble des réels. Ainsi, les solution de (&) sont les fonctions vérifiant une
relation de la forme :
Ve e R, y(z)= Ae V3T 4 ue\/gz + v,

ol A\, i, v sont des réels.

12. Soit a un réel.

/ /

Yy Yy
Y =AY < |y | = y” & y" = —ay + 3y’ < y est solution de (&,).
y" —ay + 3y

13. (a) Comme A, = PDP~! (question 10.(b)), on a donc avec la question précédente :

y est solution de (&,) & Y' =AY
Y'=PDPY

=
& PY'=DpPlY
& (PYY)Y =D(P'Y) (par linéarité de la dérivation)
& Z'=DZ.
21
(b) D’apres la question précédente, en notant Z = | z3 |,
z3
y est solution de (&,) & Z' =DZ
2] = az
&= zh = Bzo
2y =23

z1(x) = A\e™”
< dA, A, A3 €R, Vo € R, 22(1‘) = )\QQﬁx
z3(x) = Aze?®

21+ 22 + 23
OrY=PZ= az) + Bza + vz3 donc y est solution de (&) si et seulement s’il existe
oz + 220 + vPz3
des réels A1, Ao, A3 tels que

y(x) A1 + XpeP® 4 \ze?®
Vr e R, y(x) | = A e™® 4+ Ao e 4+ Agyer®
y//(x) )\la2€ax + )\252661 4 )\3”)/2671

Ainsi, y est solution de (&) si et seulement s’il existe des réels A1, Ao, A3 tels que, pour
tout € R, y(x) = A1 + \e* + \3e?*.

_ . 9z . 3 _
=0, - - Y
(c) Dans le cas a = 0, les valeurs propres de Ay sont les solutions de 1’équation x 3x =0
clest-a-dire o« = —v/3, f = V/3 et v = 0. D’apres la question précédente, les solutions de
(&o) sont donc les fonctions définies par I’expression de la forme :

Vo € R, y(:v) = )\167\/596 + )\26\/336 + )\3.

On retrouve bien le résultat de la question 11.(b).
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Exercice 2 (ECRICOME 2017)
1. En 0% :

In(z) — -0

z—07F d
onc xr) — —o0.
2 — 0 (car2a>0 a ):c—>0+
z—0t

En +oo, il s’agit d’une forme indéterminée ”+oo + (—00)”, que 'on peut lever en utilisant les
résultats de croissances comparées : comme 2a > 0,

ap(x)::c%(h;gi)—a) — —oo.

2. La fonction ¢ est dérivable et pour tout > 0 :

o (x) = 1 2a2p20"1 — ﬂ
x x
1
. . . 12
Le signe de ¢/(x) est celui du numérateur 1 — 2a?2?* qui s’annule en o = 22 ) - On en
a
déduit le tableau de variations de ¢ :
x 0 Zo +00
¢'(x) + 0 -

¢(z0)
- _w//// \\\\_

L’énoncé ne précise pas si une expression de ¢(zg) en fonction de a est attendue, mais elle nous
servira pour la question suivante :

1
1 \2a 1 1 1 1
= — = —In(-=]—-a-—5=—— (In(2d?) +1).
wlwo) = ¢ <2a2> 2a n(2a2> 4942 2a(n( @) +1)

3. Déterminons le signe de ¢(xo), maximum de ¢ atteint en xg, en fonction de a :

o(rg) >0 < 2—(1n(2a )+1)>0
< In(2a )+1<0
In(2a )

20 < et (croissanee de exp)

r e

(croissance de z +— /2 sur R (et a > 0))

(3
Q
A\

D’ou le tableau de signe :

¢(z0) +

Par conséquent :
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oSia<L‘
V2e'

La fonction ¢ est continue et strictement croissante sur |0, zo[, donc réalise une bijection
de 0, zo[ dans |limg ¢, ¢(z0)[=] — 00, ¢(x0)[ ; ce dernier intervalle contenant 0, il existe un
unique réel z; €]0, o[ tel que ¢(z1) = 0.
De méme, ¢ réalise une bijection (décroissante) de |z, +oo[ dans | — 0o, ¢(xo)[ qui contient
0, donc il existe un unique réel zs €]z, +00[ tel que p(z2) = 0.
1
e Sia= \/7, alors p(zg) = 0 et, d’apres le tableau de variation déterminé en question 2.,
e
¢(x) < 0 pour z # xp. Donc I'équation ¢(x) = 0 admet une unique solution : x.
1
e Sia > \/7, étant donné les variations de ¢, cette fonction est strictement négative et
e

Péquation ¢(z) = 0 n’admet aucune solution.

4. Les fonctions (x,) — =, (z,y) — y et (z,y) — 2y sont de classe C2. Par composition avec In et
t — t% qui sont C2, puis par produit et somme, la fonction f est de classe C? sur U.

5. Pour tout (x,y) € U :
n(f)(z,y) = %hl(y) —az® 5 a(f)(w,y) = ;ln(fﬂ) — ax®y*.

6. Les points critiques de f sont les points (x,y) de U annulant le gradient de f :

O (f)(z,y) =0
\% ,Y) =
nen=(o) = { oo
1
“In(y) — ax® ty* =0
e § 1
—In(x) — ax®y*t =0
Yy
- %(hl(y) — az"y") =0
;(n(z) —az?y®) =0
& In(y) = azy" (1/x et 1/y sont non nuls)
In(z) = az®y®
In(y) = aaty®
@ { i iy aehon
& { Ln(_x)y: are (In est bijective sur R’ ; report dans L)
& { olz
=y
7. Les solutions de I’équation p(x) = 0 sont données par la question 3. On obtient donc avec la
question 6 :
1
e Sia< ——: f admet deux points critiques : (z1,21) et (22, 22).
NG f p q (21,21) et (z2,22)
1
e Sia=——": f admet un unique point critique : (zg, xg).
NeT f que p que : (xo, 7o)
1
e Sia>——": f n’admet pas de point critique.

S

8. Pour tout (z,y) € U :

O, (f)(z,y) = = In(y) —ala —1)z* 2y
02Ny = - ()
95, (f)xy) = 3, —a*(zy)*!
33 5(f)(z,y) “ In(z) — a(a — 1)a"y* >

(@)
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9.

10.

11.

12.

Comme z; vérifie ¢(z1) = In(21) — az1?* =0, on a :

-1
8%71(f)(z1, z1) = —5 In(21) —a(a — 12197 22% = —az 272 — ala — 1)212972 = —a?2 2072,
217 N—~—~\—~

=az;2®

Les expressions de 8%71( fx,y) et 8%72( f)(x,y) étant identiques en échangeant = et y, le méme
calcul donne :

035(f)(21,21) = —a®2 > 2.
Enfin : . 1
a—1 _
0 2(f)(z1,21) = 031 (f)(21,21) = ? —a (212) = P —a 212a 2
On a: ) )
27,202 — - 27,202 ) — - 9a27,202
MX1 = 1 zZ1 — Zi
25202 25,202 1 942,202
2’12 ! 212
1 2. 2a—2
donc M X = — — 24"z @ X;.
21
De méme,
1 1
— 272072 — - 27,202 1 —
_ Z1 _ Z1
MX2=11 2, 2a—2 2, 2a—2 < 1 > B 1
— — a 21 —a~z1 -
2:12 2:12
1
donc MX2 = —72X2.
z1
4 1 2, 2a—2 1
Par conséquent, les nombres A\ = — = 2a°z1 et Ao = —— sont valeurs propres de la
21 Z1

matrice M (et X1, X2 sont des vecteurs propres associés respectivement a ces deux valeurs).

Puisque (X1, X2) est une base de .#1(R) (famille libre car deux vecteurs non colinéaires et de
cardinale égal a la dimension), il ne peut y avoir d’autre valeur propre. Donc :

1 1
Sp(M) =4 — —2a%2%%72 —— }.
(1) = { g - 2aa 2
Avec les notations précédentes, clairement : Ao < 0.
On peut utiliser la question 2 pour déterminer le signe de A; en remarquant que :

1 1—2a?x2* 1
M=——-2a?n202=""2" — ~J(z
! 212 ! 2’12 z1 ¥ ( 1)
Comme 21 €]0, 2, intervalle sur lequel ¢’ est strictement positive, on en déduit que A; > 0.
Par conséquent, la matrice hessienne de f au point critique (21, z1) admet deux valeurs propres
non nulles et de signes opposés, donc f ne présente pas en ce point d’extremum local (il s’agit
d’un point col).

En (22, 22), les calculs sont similaires et on obtient :

v 1 1
2 _ 2. 2a-2
Sp(V(1)e2,) = { 5 = 25~
~~ N~
Comme en question 11 : N Ry
1

/ /
= —¢'(29).
1 2290( 2)
Mais ici, comme 25 est dans |zg, +o0o[, intervalle sur lequel ¢’ est strictement négative, on en
déduit que \| < 0.

Par conséquent, la matrice hessienne de f au point critique (22, z2) admet deux valeurs propres
strictement négatives, donc f présente en ce point un maximum local.
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Exercice 3 (ECRICOME 2002)
1. (a) On effectue n épreuves de Bernoulli identiques et indépendantes de parameétre % et X
compte le nombre de succes donc X suit la loi binomiale de parametres n et %, ce qui
donne :

X(Q) =[0;n] , VEkel0;n], p(X:k):(Z> <;>n

et X admet une espérance et une variance qui valent :

n 1 1 n
E(X)=—- t V(X)=nXx_-x_-=—.
(X)=5 e (X)=nxgxg5=7
(b) i. Voici le programme complété :
1 [n = input('Entrer le nombre n de tirages : ')
2 |s = rd.binomial(n, 1/2, 1000)

ii. On ajoute l'instruction print (np.mean(s)) .

2. Pour avoir (Y = k) il faut que les (k — 1) premiers tirages aient donné une boule noire et le
k-ieme une boule blanche donc

(Y=k)=NiN---NNi_1NByg

et par indépendance des tirages :

NNt 1 1

Pour avoir Y = 0 il faut n’avoir tiré que des boules noires donc
Y=0=NNn---NN,

et par indépendance des tirages :

3. On reconnait la somme des termes d’une suite géométrique, et on prend bien garde a séparer la
valeur £ =0 :

n n k 1\n
1 1 1 1-(3) 1 11
P(Y =k) = = —=x X =1 =1
kz_o (¥ =k) §<2> T Ty T on o

4. Montrons la formule par récurrence sur n > 1 :

Ini. On a .
Zka:k =z
k=1
et
g2 1+ D2+ w(®-22+1) (z-1)2
(1) T @z e "

donc la propriété est vraie au rang n = 1.
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Héré . L k_ nz"t?—(nt1)z" 4o .
éré. Soit n > 1. Supposons que ) kx" = T—2)? . Alors :
k=1
n+1 n
Z kab = Z kx® + (n 4 1)z" !
k=1 k=1
_ona"?— (n+D2" 4z (n+ )21 - 2z + 2?)
a (1—=)? (1—a)?
B nz"? — (n+ D" 42+ (n+ 12" —2(n + )" 2 4 (n + 1)2"*3
a (1—x)?
1
= = x (z4+2" T [—(n+ 1)+ (n+1)]+2" n—2n—2] + (n+ 1)2""3)
B (n+ 1)x(n+1)+2 —((n+1)+ 1>x(n+l)+1 +
- (1) '

et la propriété est vraie au rang n + 1.

Ccl. Par le principe de récurrence, pour tout n > 1,

ikwk B nm"+2 _ (n + 1)mn+1 e
a (1—2)? '
k=1

5. Y est finie donc admet une espérance, qu’on calcule & ’aide de la formule précédente :

n k n n n+1 1
1 1 T2 — garl T 3 n n+1 1
E(Y) = E ]C<2> +0X<2> = 1 =4 2n+2—w+§

(3)°

6. Z, est le nombre de boules blanches qui ont été tirées lors des p premiers tirages.

7. X1(Q) = {O; 1} et
(Xl = 0) =N et (Xl = 1) =B

donc

8. On a tout d’abord :

puis :

1 1+c¢ 14+¢
P((X1:1)ﬁ(X2:1)):P(Xlzl)P(Xlzl)(X2:1):§>< 2+C: 112

car si X7 = 1, on a tiré une boule blanche donc on a une boule noire et (1 + ¢) boule blanche
pour le 2e tirage.

De In.éllle
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1 I+c  1+c
2 24c 442
D’ott comme ((X; =1),(X; =0)) est un SCE et par probabilité totales :

P((X1=0)N(X2=0)) = P(X1=0)Px,—0)(X2=0) =

P(Xo=1)= P((X1 =0) N (Xa = D)+P (X1 = 1) A (X5 = 1)) = ~ Zi;zc _ 2(2212200) _ %

Enfin (X2 =0) = (X2 =1) donc

et X5 suit la loi de Bernoulli de parametre % donc admet une espérance qui vaut :

B(X) =+

9. Z3(2) = {0;1;2} et en décomposant selon les valeurs du couple (X7, X») :

B 2
4420
1+c¢
P(Zy=2) = P(Xi=1)Nn(Xy=1)) =
(Z2=2) = P(Xi=1)N(Xz=1) =15

10. Z, () ={0;1;2;...;p}.

11. (a) Si Z, = k, on a tiré k boules blanches donc rajouté kc boules blanches : il y en a donc
1+ kc.

Apres p tirages le total de boules est de 2 + pc (on en rajoute ¢ a chaque tirage). D’ou

1+ kc
Py 1 (X =1)= .
(zp=k)(Xpt1=1) = 5 e
(b) Comme [(Z, =0),(Z, =1),...,(Z, =p)] est un systéme complet d’évenements, on a par

incompatibilité puis avec la formule des probas composées :

P(Xp1=1) = P(U( Zp = k)N ( p+1—1> ZP Zp = k)N (Xpy1 =1))
k=0

k=0 -
p p
1+ ke
= ZP (Zp = k) X Pz, (Xpr1 =1) = 3 P(Zp = k)5
=0 k=0 p
1 p
2+ pc <k§0 (Zp =) kzzo (Zp ))
1 1+ cE(Zp)
= 1+cE(Zy) = —F——.
5o < (1 eB(Z) = =5 C

(c) Montrons par récurrence sur 1 < p < n que X, est une variable aléatoire de Bernoulli de
parametre % :

Ini. On a déja vu que X; et X2 suivent la loi de Bernoulli de parametre %

10
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Héré. Soit 1 < p < n — 1. Supposons que Xi, Xa,---, X, suivent la loi de Bernoulli de
parametre %
Alors par linéarité de I'espérance

p
B(Z) =Y B(x) =2
i=1
D’autre part on a Xp;1(Q) = {0;1} et :
145 e 9 1 1
P(Xpt1=1)= R R =_.
24pc  24pc 2 24pc 2

D’ou ]
P(Xp+1:0):1_P(Xp+1:1):§

et X, 41 est une variable aléatoire de Bernoulli de parametre %
Ccl. Pour tout p € {1;2;...;n}, X, est une variable aléatoire de Bernoulli de parametre %
Remarque : le jeu étant parfaitement symétrique, il est normal qu’il y ait autant de chance
de tirer une boule blanche ou une boule noire au p-ieme tirage pour tout p : ce résultat est

donc naturel et on aurait pu 'obtenir directement en inversant le role des boules blanches
et des boules noires pour montrer que P(X, = 1) = P(X, = 0) puis que chacune vaut %

12. Voici le programme demandé :

1 [c = input('entrer la valeur de c')
2 |X = np.zeros(10)

3

4 |n =1

5 |b=1

6 [for i in range(10):

7 if rd.random() < b/(b+n)
8 X[i] =1

9 n=n

10 b = b+c

11 else:

12 X[i] =0

13 n = ntc

14 b=>»

15 | print (X)

11



