DS 11 (A)

Devoir surveillé du Samedi 22 Mars

La calculatrice est interdite. Durée : 4h

Exercice 1

Partie 1

Soit f la fonction définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \quad f(x) = x^3 - 3x.$$

On note \mathscr{C} la courbe représentative de f.

- 1. Étudier la parité de f sur \mathbb{R} .
- 2. Déterminer les variations de f sur $[0, +\infty[$, et calculer $\lim_{x \to +\infty} f(x)$.
- 3. Montrer que f est convexe sur $[0, +\infty[$ et justifier que le point d'abscisse 0 est un point d'inflexion de la courbe \mathscr{C} .
- 4. On note T la tangente à la courbe $\mathscr C$ au point d'abscisse 0. Déterminer une équation de T et préciser la position relative de $\mathscr C$ par rapport à T.
- 5. Tracer, sur une même figure, l'allure de la courbe \mathscr{C} (sur \mathbb{R}) et de la droite T.
- 6. Soit a un réel.
 - (a) Montrer que, si |a| < 2, alors l'équation $x^3 3x + a = 0$, d'inconnue x, possède exactement trois solutions réelles.
 - (b) Montrer que, si |a| > 2, alors l'équation $x^3 3x + a = 0$, d'inconnue x, possède une unique solution réelle.

Partie 2

Pour tout réel a, on considère la matrice :

$$A_a = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a & 3 & 0 \end{array} \right).$$

- 7. (a) Calculer $A_a^3 3A_a + aI_3$.
 - (b) Soient λ un réel tel que $\lambda^3 3\lambda + a = 0$, et soit $X = \begin{pmatrix} 1 \\ \lambda \\ \lambda^2 \end{pmatrix}$.

Exprimer A_aX en fonction de λ et de X.

- (c) Déduire des deux questions précédentes que pour tout réel λ : λ est valeur propre de $A_a \iff \lambda^3 3\lambda + a = 0$.
- 8. Dans cette question uniquement, on suppose a = 2.
 - (a) Déterminer les valeurs propres et une base de chaque sous-espace propre de A_2 .
 - (b) La matrice A_2 est-elle diagonalisable?
- 9. Dans cette question uniquement, on suppose |a| > 2.

La matrice A_a est-elle diagonalisable?

<u>Indication</u>: On pourra utiliser le résultat de la question 6.

- 10. Dans cette question uniquement, on suppose $a \in]-2, 2[$.
 - (a) Montrer que A_a est diagonalisable. Indication : On pourra utiliser le résultat de la question 6.
 - (b) On note α, β, γ les valeurs propres de A_a . On considère les deux matrices suivantes :

$$D = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 1 & 1 & 1 \\ \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \end{pmatrix}$$

Justifier que P est inversible. Exprimer A_a en fonction de D et P.

Partie 3

Pour tout réel a, on considère l'équation différentielle (\mathscr{E}_a) suivante, d'inconnue $y : \mathbb{R} \longrightarrow \mathbb{R}$ trois fois dérivable sur \mathbb{R} :

$$(\mathscr{E}_a): \quad y''' - 3y' + ay = 0.$$

- 11. Dans cette question uniquement, on suppose que a = 0.
 - (a) Soit y une solution de l'équation $(\mathcal{E}_0): y''' 3y' = 0$. Déterminer la forme générale de la fonction y'.
 - (b) En déduire l'ensemble des solutions de l'équation (\mathcal{E}_0) .

Dans la suite de l'exercice, pour toute fonction y trois fois dérivable sur \mathbb{R} , on note :

$$Y = \begin{pmatrix} y \\ y' \\ y'' \end{pmatrix} \quad \text{et} \quad Y' = \begin{pmatrix} y' \\ y''' \\ y''' \end{pmatrix}.$$

- 12. Montrer que, pour tout réel a, y est solution de l'équation différentielle (\mathcal{E}_a) si et seulement si $Y' = A_a Y$.
- 13. Dans cette question uniquement, on suppose $a \in]-2,2[$.
 - (a) Montrer qu'une fonction $y: \mathbb{R} \longrightarrow \mathbb{R}$ est solution de l'équation différentielle (\mathscr{E}_a) si et seulement si Z' = DZ, où $Z = P^{-1}Y$, où D et P sont définies à la question 10.(b).
 - (b) Montrer que les solutions de l'équation différentielle (\mathscr{E}_a) sont les fonctions y définies par une expression de la forme :

$$\forall x \in \mathbb{R}, \quad y(x) = \lambda_1 e^{\alpha x} + \lambda_2 e^{\beta x} + \lambda_2 e^{\gamma x},$$

où $\lambda_1, \lambda_2, \lambda_3$ sont des réels.

(c) Vérifier en particulier que les résultats de 11.(b) et 13.(b) sont cohérents.

Exercice 2

Dans tout l'exercice, a est un réel strictement positif.

Partie A

On considère la fonction φ définie sur \mathbb{R}_+^* par : $\forall x > 0, \varphi(x) = \ln(x) - ax^{2a}$.

1. Déterminer $\lim_{x\to 0} \varphi(x)$ et $\lim_{x\to +\infty} \varphi(x)$.

2. Étudier les variations de φ et dresser son tableau de variations.

On fera apparaı̂tre dans ce tableau le réel $x_0 = \left(\frac{1}{2a^2}\right)^{(1/2a)}$.

3. Démontrer que si $a < \sqrt{\frac{1}{2e}}$, l'équation $\varphi(x) = 0$ admet exactement deux solutions z_1 et z_2 , vérifiant : $z_1 < x_0 < z_2$.

Que se passe-t-il si $a=\sqrt{\frac{1}{2e}}$? Si $a>\sqrt{\frac{1}{2e}}$?

Partie B

Soit f la fonction définie sur l'ouvert $U = (\mathbb{R}_+^*)^2$ par :

$$\forall (x,y) \in U, \ f(x,y) = \ln(x)\ln(y) - (xy)^{a}.$$

- 4. Justifier que f est de classe C^2 sur U.
- 5. Calculer les dérivées partielles premières de f.
- 6. Démontrer que pour tout $(x,y) \in U$:

$$(x,y)$$
 est un point critique de $f \Leftrightarrow \begin{cases} x=y, \\ \varphi(x)=0. \end{cases}$

7. Démontrer que si $a < \sqrt{\frac{1}{2e}}$, la fonction f admet exactement deux points critiques : (z_1, z_1) et (z_2, z_2) , où z_1 et z_2 sont les réels définis dans la partie A.

Déterminer aussi les éventuels points critiques de f dans les cas où $a = \sqrt{\frac{1}{2e}}$ et $a > \sqrt{\frac{1}{2e}}$.

Partie C

Dans cette partie, on suppose que $a < \sqrt{\frac{1}{2e}}$. On rappelle alors que la fonction f admet exactement deux points critiques : (z_1, z_1) et (z_2, z_2) , où z_1 et z_2 sont les réels définis dans la partie A.

- 8. Calculer les dérivées partielles d'ordre 2 de la fonction f.
- 9. Calculer la matrice hessienne de f au point (z_1, z_1) . Vérifier que cette matrice peut s'écrire sous la forme :

$$\nabla^{2}(f)(z_{1}, z_{1}) = \begin{pmatrix} -a^{2}z_{1}^{2a-2} & \frac{1}{z_{1}^{2}} - a^{2}z_{1}^{2a-2} \\ \frac{1}{z_{1}^{2}} - a^{2}z_{1}^{2a-2} & -a^{2}z_{1}^{2a-2} \end{pmatrix}.$$

10. On pose $M = \nabla^2(f)(z_1, z_1), X_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $X_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Calculer MX_1 et MX_2 , et en déduire les valeurs propres de M.

- 11. La fonction f présente-t-elle un extremum local en (z_1, z_1) ? Si oui, est-ce un minimum ? Un maximum ?
- 12. La fonction f présente-t-elle un extremum local en (z_2, z_2) ? Si oui, est-ce un minimum ? Un maximum ?

Exercice 3

Une urne contient une boule blanche et une boule noire, les boules étant indiscernables au toucher. On y prélève une boule, chaque boule ayant la même probabilité d'être tirée, on note sa couleur, et on la remet dans l'urne avec c boules de la couleur de la boule tirée. On répète cette épreuve, on réalise ainsi une succession de n tirages $(n \ge 2)$.

I. Étude du cas c=0.

On effectue donc ici n tirages avec remise de la boule dans l'urne.

On note X la variable aléatoire réelle égale au nombre de boules blanches obtenues au cours des n tirages et Y la variable aléatoire réelle définie par :

 $\begin{cases} Y=k & \text{si l'on obtient une boule blanche pour la première fois au $k^{\grave{e}me}$ tirage.} \\ Y=0 & \text{si les n boules tirées sont noires.} \end{cases}$

- 1. (a) Déterminer la loi de X. Donner la valeur de E(X) et de V(X).
 - (b) i. Compléter le programme Python suivant qui effectue 1000 simulations de la variable X et enregistre les 1000 modalités obtenues dans un vecteur \mathbf{s} :

- ii. Rajouter une instruction à la suite qui affiche une valeur approchée de l'espérance de X obtenue grâce à ces 1000 simulations.
- 2. Pour $k \in \{1, ..., n\}$, déterminer la probabilité P(Y = k) de l'évènement (Y = k), puis déterminer P(Y = 0).
- 3. Vérifier que :

$$\sum_{k=0}^{n} P(Y = k) = 1.$$

4. Pour $x \neq 1$ et n entier naturel non nul, montrer que :

$$\sum_{k=1}^{n} kx^{k} = \frac{nx^{n+2} - (n+1)x^{n+1} + x}{(1-x)^{2}}.$$

5. En déduire E(Y).

II. Étude du cas $c \neq 0$.

On considère les variables aléatoires $(X_i)_{1 \le i \le n}$ définies par :

$$\begin{cases} X_i = 1 & \text{si on obtient une boule blanche au } i^{\grave{e}me} \text{ tirage.} \\ X_i = 0 & \text{sinon.} \end{cases}$$

On définit alors, pour $2 \le p \le n$, la variable aléatoire Z_p , par :

$$Z_p = \sum_{i=1}^p X_i.$$

- 6. Que représente la variable Z_p ?
- 7. Donner la loi de X_1 et l'espérance $E(X_1)$ de X_1 .
- 8. Déterminer la loi du couple (X_1, X_2) . En déduire la loi de X_2 puis l'espérance $E(X_2)$.
- 9. Déterminer la loi de probabilité de Z_2 .

- 10. Déterminer l'univers image $Z_p(\Omega)$ de Z_p .
- 11. Soit $p \le n 1$.
 - (a) Déterminer $P_{(Z_p=k)}(X_{p+1}=1)$ pour $k \in Z_p(\Omega)$.
 - (b) Montrer que:

$$P(X_{p+1} = 1) = \frac{1 + cE(Z_p)}{2 + pc}.$$

- (c) En déduire que X_p est une variable aléatoire de Bernoulli de paramètre $\frac{1}{2}$. On raisonnera par récurrence forte sur p: les variables $X_1, X_2, ..., X_p$ étant supposées suivre une loi de de Bernoulli de paramètre $\frac{1}{2}$, et on calculera $E(Z_p)$.
- 12. Compléter le programme Python suivant qui, étant donné c, effectue une simulation des 10 variables : $X_1,\,X_2$, ..., X_{10} , les mémorise dans un vecteur ligne nommé X, et affiche les valeurs obtenues :

```
c = input('entrer la valeur de c')
  X = np.zeros(10)
  n = 1 #désigne le nombre de boules noires
   b = 1 #désigne le nombre de boules blanches
   for i in range(10):
       if rd.random() < b/(b+n) :</pre>
            X[i] = \dots
            n = \dots
            b = ....
10
       else:
11
            X[i] = \dots
12
13
            n = \dots
            b = ....
14
  print(X)
```