Applications linéaires

Généralités sur les applications linéaires

Exercice 1 (\bigstar)

Justifier que les applications suivantes ne sont pas linéaires :

$$f_{1}: \left\{ \begin{array}{ccc} \mathbb{R}^{2} & \to & \mathbb{R}^{2} \\ (x,y) & \mapsto & (x+1,x-y) \end{array} \right. \qquad f_{2}: \left\{ \begin{array}{ccc} \mathbb{R}^{2} & \to & \mathbb{R} \\ (x,y) & \mapsto & |x|+y \end{array} \right.$$

$$f_{3}: \left\{ \begin{array}{ccc} \mathscr{M}_{2}(\mathbb{R}) & \to & \mathscr{M}_{2}(\mathbb{R}) \\ M & \mapsto & {}^{t}MM \end{array} \right. \qquad f_{4}: \left\{ \begin{array}{ccc} \mathbb{R}[X] & \to & \mathbb{R}[X] \\ P & \mapsto & P^{2} \end{array} \right.$$

Exercice 2 (**)

Soit f l'application définie par : $\forall (x,y) \in \mathbb{R}^2$, f(x,y) = (2x - y, 3x + y).

- 1. Montrer que f est un endomorphisme de \mathbb{R}^2 .
- 2. Déterminer Ker(f). f est-elle injective?
- 3. Montrer que f est un automorphisme de \mathbb{R}^2 et déterminer f^{-1} .

Exercice 3 (*)

- 1. (a) Vérifier que la famille ((1,1),(0,1)) est une base de \mathbb{R}^2 .
 - (b) Décomposer (x, y) dans cette base.
- 2. Soit f l'application linéaire de \mathbb{R}^2 dans \mathbb{R}^3 telle que f(1,1)=(1,0,3) et f(0,1)=(-2,-1,1).
 - (a) Calculer f(x,y) pour tout $(x,y) \in \mathbb{R}^2$.
 - (b) Déterminer la dimension du noyau de f. f est-elle injective?
 - (c) Déterminer une base de l'image de f. f est-elle surjective?
 - (d) Le vecteur (1,1,1) admet-il un antécédent par f?

Exercice 4 (\bigstar)

Soit l'application f définie par : $\forall M \in \mathcal{M}_2(\mathbb{R}), \ f(M) = M - {}^tM.$

- 1. Montrer que f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$ et calculer f^2 .
- 2. Déterminer le noyau et l'image de f.
- 3. Justifier de deux manières que f n'est pas un automorphisme de $\mathcal{M}_2(\mathbb{R})$.

Exercice 5 (\bigstar)

On considère les matrices $A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ et $D = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ et f l'application définie par :

$$\forall M \in \mathscr{M}_2(\mathbb{R}), \ f(M) = AM - MD.$$

- 1. Montrer que f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
- 2. Déterminer le noyau de f et donner sa dimension.

- 3. Montrer que $f^3 = f$.
- 4. Justifier de deux manières que f n'est pas un automorphisme de $\mathcal{M}_2(\mathbb{R})$.
- 5. Déterminer les matrices $M \in \mathcal{M}_2(\mathbb{R})$ telles que f(M) = M.

Exercice 6 (*)

Soit l'application f définie par : $\forall P \in \mathbb{R}_2[X], f(P) = P + P'$.

- 1. Montrer que f est un endomorphisme de $\mathbb{R}_2[X]$.
- 2. Déterminer le noyau et l'image de f.
- 3. f est-elle un automorphisme de $\mathbb{R}_2[X]$?

Exercice 7 (★★)

Soit E l'espace vectoriel des fonctions de classe \mathscr{C}^{∞} sur \mathbb{R} à valeurs dans \mathbb{R} .

- 1. On considère l'application $\phi: E \to E$ définie par : $\phi(f) = f'$.
 - (a) Montrer que ϕ est un endomorphisme de E.
 - (b) ϕ est-elle injective? surjective? bijective?
- 2. On considère l'application $\psi: E \to E$ définie par : $\psi(f) = \int_0^x f(t)dt$.
 - (a) Montrer que ψ est un endomorphisme de E.
 - (b) Montrer que $\phi \circ \psi = Id_E$.
- 3. En déduire que E n'est pas de dimension finie.

Applications linéaires en dimension finie

Exercice 8 (★)

Soit f l'application définie sur \mathbb{R}^2 par : $\forall (x,y) \in \mathbb{R}^2$, f(x,y) = (4x - 6y, 2x - 3y).

- 1. Montrer que f est un endomorphisme de \mathbb{R}^2 .
- 2. (a) Déterminer Ker(f). En déduire le rang de f.
 - (b) Déterminer une base de Im(f).
- 3. Justifier que f n'est pas un automorphisme de \mathbb{R}^2 .

Exercice 9 (★)

On considère la matrice $A = \begin{pmatrix} 3 & 6 \\ 2 & 4 \end{pmatrix}$ et f l'application définie par : $\forall M \in \mathcal{M}_2(\mathbb{R}), \ f(M) = AM$.

- 1. Montrer que f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
- 2. (a) Déterminer le noyau de f et en donner une base.
 - (b) En déduire la dimension de l'image de f.
 - (c) Déterminer une base de l'image de f.

Exercice 10 (★★)

xercice 10 ($\star\star$)
1. Soit F l'ensemble des matrices de la forme $\begin{pmatrix} x & y & x \\ y & z & y \\ x & y & x \end{pmatrix}$, où $x, y, z \in \mathbb{R}$.

Vérifier que F est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ et donner une base de F.

- 2. On note φ l'application de F dans \mathbb{R} qui à toute matrice A de F associe le nombre $\sum_{i=1}^{3} \sum_{j=1}^{3} a_{i,j}$, où $a_{i,j}$ désigne l'élément de la matrice A situé à la i-ième ligne et j-ième colonne.
 - (a) Montrer que φ est une application linéaire de F dans \mathbb{R} .
 - (b) Déterminer $Im(\varphi)$. En déduire que $Ker(\varphi)$ est de dimension 2.
 - (c) Soit $M=\begin{pmatrix} x&y&x\\y&z&y\\x&y&x \end{pmatrix}$ une matrice de $Ker(\varphi)$. Exprimer $\varphi(M)$ en fonction de x,y,z et en déduire une base de $Ker(\varphi)$.

Exercice 11 $(\star\star)$

On considère l'application f définie par :

$$f: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \to & \mathbb{R}^3 \\ P & \mapsto & (P(1), P'(1), P(0)) \end{array} \right.$$

- 1. Calculer l'image par f de chacun des vecteurs de la base canonique de $\mathbb{R}_2[X]$.
- 2. Montrer que f est linéaire.
- 3. Montrer que f est un isomorphisme.
- 4. Justifier qu'il existe un unique polynôme P de $\mathbb{R}_2[X]$ tel que P(1) = P'(1) = 1 et P(0) = 0 puis le déterminer.

Exercice 12 $(\star\star)$

Soit f l'application linéaire qui à un polynôme $P \in \mathbb{R}_2[X]$ associe Q tel que :

$$\forall x \in \mathbb{R}, \quad Q(x) = P(2x+1) - 2xP'(1-x).$$

- 1. Démontrer que f est un endomorphisme de $\mathbb{R}_2[X]$.
- 2. Déterminer le noyau de f (on en donnera une base et la dimension).
- 3. Déterminer l'image de f (on en donnera une base et la dimension).
- 4. f est-elle un automorphisme de $\mathbb{R}_2[X]$?

Applications linaires et matrices

Exercice 13 (★)

Soit $\mathscr{B} = (\vec{i}, \vec{j}, \vec{k})$ une base de \mathbb{R}^3 et f l'endomorphisme de \mathbb{R}^3 défini par $f(\vec{i}) = \vec{k}$, $f(\vec{j}) = \vec{i}$ et $f(\vec{k}) = \vec{j}$.

- 1. Déterminer les matrices de f et de $g = f f^2$ dans la base \mathscr{B} .
- 2. (a) Déterminer f^3 . Donner un polynôme annulateur de f.
 - (b) En déduire que f est bijective et déterminer f^{-1} .
- 3. Déterminer le novau et l'image de q.

Exercice 14 (*)

Soit f l'endomorphisme de \mathbb{R}^3 défini par : $f(x,y,z) = (x-2y-\frac{4}{3}z,-2x+4y+\frac{8}{3}z,3x-6y-4z)$.

- 1. Écrire la matrice A de f dans la base canonique $\mathscr{B} = (e_1, e_2, e_3)$.
- 2. (a) On note $e'_1 = (2, 1, 0)$, $e'_2 = (4, 0, 3)$ et $e'_3 = (1, -2, 3)$. Montrer que $\mathscr{B}' = (e'_1, e'_2, e'_3)$ est une base de \mathbb{R}^3 .
 - (b) Écrire la matrice A' de f dans la base \mathscr{B}' .
- 3. Utiliser A' pour :
 - (a) Déterminer Ker(f) et Im(f).
 - (b) Déterminer si f Id est un isomorphisme. Que vaut Ker(f Id)? Im(f Id)?
 - (c) Déterminer $f \circ f$.

Exercice 15 (★★)

Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$ et f l'application définie par : $\forall M \in \mathcal{M}_n(\mathbb{R}), \ f(M) = AMA$.

- 1. (a) Montrer que f est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
 - (b) Montrer que, si A est inversible, alors f est un automorphisme de $\mathcal{M}_n(\mathbb{R})$. Déterminer f^{-1} .
- 2. On suppose dans cette question que n=2 et que $A=\begin{pmatrix} 1 & -2 \\ -1 & 2 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$
 - (a) Donner la matrice de f dans la base canonique de $\mathcal{M}_2(\mathbb{R})$.
 - (b) Déterminer le noyau de f. On en donnera une base et sa dimension.
 - (c) Déterminer l'image de f. On en donnera une base et sa dimension.

Exercice 16 (*)

Soit f l'application définie sur $\mathcal{M}_2(\mathbb{R})$ par :

$$\forall M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathscr{M}_2(\mathbb{R}), \ f(M) = M + (a+d)I_2.$$

- 1. Montrer que f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
- 2. Déterminer la matrice A de f dans la base canonique de $\mathcal{M}_2(\mathbb{R})$.
- 3. (a) Montrer que $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ est une base de $\mathcal{M}_2(\mathbb{R})$.
 - (b) Déterminer la matrice D de f dans cette base.
- 4. Montrer que f est un automorphisme de $\mathcal{M}_2(\mathbb{R})$.

Exercice 17 (★★)

Soit \mathscr{B} la base canonique de \mathbb{R}^4 et f l'endomorphisme de \mathbb{R}^4 dont la matrice dans la base \mathscr{B} est :

$$A = \begin{pmatrix} 3 & 0 & 1 & 2 \\ 4 & 0 & 3 & 1 \\ 3 & 0 & 0 & 3 \\ 1 & 0 & 3 & -2 \end{pmatrix}.$$

4

1. (a) Montrer que les vecteurs $f(e_3)$ et $f(e_4)$ sont linéairement indépendants.

- (b) Vérifier que : $f(e_1) = f(e_3) + f(e_4)$.
- (c) En déduire une base de Im(f).
- 2. Donner une base de Ker(f).
- 3. Calculer A^2 et vérifier que : $Ker(f) = Ker(f^2)$.

Exercice 18 (*)

- 1. Soient f et g deux endomorphismes de $\mathbb{R}_2[X]$ définis par : f(P) = P(X+1) et g(P) = P'.
 - (a) Déterminer les matrices de f et g dans la base canonique de $\mathbb{R}_2[X]$.
 - (b) Les endomorphismes f et g sont-ils des automorphismes de $\mathbb{R}_2[X]$?
- 2. Soient ϕ et ψ deux endomorphismes de $\mathbb{R}_2[X]$ définis par : $\phi(P) = P(X+2)$ et $\psi(P) = P'(X+1)$.
 - (a) Exprimer ϕ et ψ à l'aide de f et g.
 - (b) En déduire les matrices de ϕ et ψ .

Exercice 19 (★★)

On désigne par E l'espace vectoriel des fonctions polynômiales de degré inférieur ou égal à 2 et on note \mathscr{B} la base (e_0, e_1, e_2) de E, où pour tout réel x, on a : $e_0(x) = 1$, $e_1(x) = x$ et $e_2(x) = x^2$. On considère l'application, notée f, qui à toute fonction polynômiale P appartenant à E associe la fonction polynômiale Q définie par :

$$\forall x \in \mathbb{R}, \ Q(x) = 2xP(x) - (x^2 - 1)P'(x).$$

- 1. (a) Montrer que f est une application linéaire.
 - (b) Montrer que f est un endomorphisme de E.
 - (c) Écrire $f(e_0)$, $f(e_1)$ et $f(e_2)$ comme combinaisons linéaires de e_0 , e_1 et e_2 , puis en déduire la matrice A de f dans la base \mathcal{B} .
- 2. (a) Vérifier que $Im(f) = Vect(e_1, e_0 + e_2)$ et donner la dimension de Im(f).
 - (b) Déterminer Ker(f).

Exercice 20 $(\star\star)$

Soit $n \in \mathbb{N}^*$ et a_0, a_1, \dots, a_n des réels deux à deux distincts. On définit l'application :

$$\varphi: \mathbb{R}_n[X] \to \mathbb{R}^{n+1}, \ P \mapsto \varphi(P) = (P(a_0), P(a_1), \dots, P(a_n)).$$

- 1. Montrer que φ est linéaire.
- 2. Montrer que φ est un isomorphisme.
- 3. En déduire que pour tout $(b_0, b_1, \dots, b_n) \in \mathbb{R}^{n+1}$, il existe un unique polynôme $Q \in \mathbb{R}_n[X]$ tel que : $\forall i \in [0, n], Q(a_i) = b_i$.
- 4. (a) Écrire la matrice de φ dans les bases canoniques de $\mathbb{R}_n[X]$ et \mathbb{R}^{n+1} .
 - (b) En déduire que la matrice suivante (appelée matrice de Vandermonde)

$$\begin{pmatrix} 1 & a_0 & \cdots & a_0^n \\ 1 & a_1 & \cdots & a_1^n \\ \vdots & \vdots & & \vdots \\ 1 & a_n & \cdots & a_n^n \end{pmatrix}$$

est inversible si et seulement si les a_i sont deux à deux distincts.

Exercice 21 (**)

On note $E = Vect(f_1, f_2)$ le sous-espace vectoriel de $\mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ engendré par les fonctions $f_1(x) = e^{2x}$ et $f_2(x) = xe^{2x}$. Soit Δ l'endomorphisme de E défini par :

$$\Delta: f \mapsto f'$$
.

- 1. Vérifier que (f_1, f_2) est libre et forme bien une base de E.
- 2. Quelle est la matrice, que l'on notera A, de Δ dans cette base ?
- 3. L'endomorphisme Δ est-il un automorphisme ?
- 4. Expliciter A^n à l'aide de la formule du binôme de Newton.
- 5. En déduire les expressions de $f_1^{(n)}(x)$ et $f_2^{(n)}(x)$.

Formule de changement de bases

Exercice 22 (★★)

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique \mathscr{B} est

$$A = \begin{pmatrix} 2 & -1 & -2 \\ 2 & -1 & -4 \\ -1 & 1 & 3 \end{pmatrix}.$$

On pose : u = (1, 2, -1), v = (1, 1, 0), w = (2, 0, 1).

- 1. Calculer f(u).
- 2. Montrer que Ker(f Id) = Vect(v, w).
- 3. Montrer que $\mathscr{B}' = (u, v, w)$ est une base de \mathbb{R}^3 .
- 4. Déterminer la matrice A' de f dans la base \mathscr{B}'
- 5. En déduire la matrice de f^n dans la base \mathscr{B} pour tout $n \in \mathbb{N}$.

Exercice 23 $(\star\star)$

Soient E un espace vectoriel de dimension 3 muni d'une base $\mathscr{B}=(\vec{i},\vec{j},\vec{k})$ et f l'endomorphisme de E dont la matrice dans la base \mathscr{B} est :

$$A = \begin{pmatrix} -4 & -6 & 0 \\ 3 & 5 & 0 \\ 3 & 6 & 5 \end{pmatrix}.$$

- 1. On note $\vec{u}=2\vec{i}-\vec{j},\,\vec{v}=\vec{i}-\vec{j}+\vec{k},\,\vec{w}=\vec{k}.$ Déterminer $f(\vec{u}),\,f(\vec{v})$ et $f(\vec{w}).$
- 2. Montrer que $\mathscr{B}' = (\vec{u}, \vec{v}, \vec{w})$ est une base de E. Écrire $P = P_{\mathscr{B}, \mathscr{B}'}$.
- 3. Écrire la matrice D de f dans la base \mathscr{B}' .
- 4. Rappeler l'expression reliant A, D, P et P^{-1} . Calculer A^n .
- 5. Justifier que f est un automorphisme de E et donner la matrice de f^{-1} dans la base \mathscr{B} .

Exercice 24 (**)

E désigne un espace vectoriel sur \mathbb{R} , rapporté à une base $\mathscr{B}=(e_1,e_2,e_3)$. Pour tout réel a, on considère l'endomorphisme f_a de E défini par :

$$f_a(e_2) = 0$$
 et $f_a(e_1) = f_a(e_3) = ae_1 + e_2 - ae_3$.

- 1. (a) Déterminer une base de $Im(f_a)$.
 - (b) Montrer qu'une base de $Ker(f_a)$ est $(e_2, e_1 e_3)$.
- 2. Écrire la matrice A de f_a dans \mathscr{B} et calculer A^2 . En déduire sans calcul $f_a \circ f_a$.
- 3. On pose $e'_1 = f_a(e_1)$, $e'_2 = e_1 e_3$ et $e'_3 = e_3$.
 - (a) Montrer que $\mathscr{B}' = (e'_1, e'_2, e'_3)$ est une base de E.
 - (b) Donner la matrice A' de f_a dans cette base.
 - (c) Écrire la matrice P de passage de \mathscr{B} à \mathscr{B}' . Donner la formule reliant A, A' et P.

Exercice 25 (★★)

On considère les matrices

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix} \text{ et } D = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

Soit f l'application définie sur $\mathcal{M}_2(\mathbb{R})$ par : f(M) = AM - MA.

- 1. Démontrer que f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
- 2. (a) Donner la matrice $M_{\mathscr{B}}(f)$ de f dans la base canonique \mathscr{B} de $\mathscr{M}_2(\mathbb{R})$.
 - (b) Justifier que f n'est pas un automorphisme de $\mathcal{M}_2(\mathbb{R})$.
 - (c) Déterminer le noyau de f.
- 3. (a) Montrer que $\mathscr{B}'=(A,B,C,D)$ est une base de $\mathscr{M}_2(\mathbb{R})$.
 - (b) Donner la matrice $M_{\mathscr{B}'}(f)$ de f dans la base \mathscr{B}' de $\mathscr{M}_2(\mathbb{R})$.
 - (c) Déterminer la matrice de passage $P_{\mathcal{B},\mathcal{B}'}$ puis donner exprimer $M_{\mathcal{B}'}(f)$ à l'aide de $P_{\mathcal{B},\mathcal{B}'}$ et de $M_{\mathcal{B}}(f)$.

Exercice 26 (**)

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{pmatrix}.$$

- 1. Déterminer les éléments propre de la matrice A. A est-elle diagonalisable ?
- 2. Déterminer trois vecteurs e_1 , e_2 , e_3 formant une base de \mathbb{R}^3 et vérifiant :

$$f(e_1) = -2e_1, \quad f(e_2) = e_2, \quad f(e_3) = e_2 + e_3.$$

3. En déduire une matrice triangulaire semblable à A.

Exercice 27 (★★)

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique \mathscr{B} de \mathbb{R}^3 est :

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}.$$

- 1. (a) Montrer que $(A I_3)^2 = 0$.
 - (b) En déduire que A n'est pas diagonalisable.
- 2. (a) Déterminer une base $\mathscr{B}' = (u, v, w)$ de \mathbb{R}^3 dans laquelle la matrice de f s'écrit :

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

(b) Justifier qu'il existe P (que l'on explicitera) telle que $A = PTP^{-1}$.

Exercice 28 (★★★)

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par ses trois premiers termes u_0,u_1,u_2 et la relation de récurrence :

$$\forall n \in \mathbb{N}, \quad u_{n+3} = 3u_{n+1} - 2u_n.$$

On pose:

$$M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix} \quad \text{et} \quad \forall n \in \mathbb{N}, \ X_n = \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix}.$$

- 1. (a) Reconnaître pour tout entier naturel n, le produit MX_n .
 - (b) En déduire l'expression de X_n en fonction des matrices M, X_0 et de l'entier naturel n.
- 2. (a) Déterminer les valeurs propres de M et les sous-espaces propres associés.
 - (b) La matrice M est-elle diagonalisable?
- 3. On note f l'endomorphisme canoniquement associé à M, c'est-à-dire tel que M soit la matrice de f dans la base canonique \mathscr{B} de \mathbb{R}^3 .
 - (a) Déterminer une base $\mathscr{B}'=(e_1',e_2',e_3')$ de \mathbb{R}^3 telle que la matrice T de f dans \mathscr{B}' vérifie

$$T = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$

et que les vecteurs e_1', e_2', e_3' aient respectivement pour première composante 1, 1 et 0.

- (b) Déterminer, pour tout entier naturel n, l'expression de T^n .
- 4. Soit P la matrice de passage de la base \mathscr{B} à la base \mathscr{B}' .

Exprimer M en fonction de T, P et P^{-1} , puis M^n en fonction des mêmes matrices et de l'entier naturel n.

- 5. (a) Calculer P^{-1} .
 - (b) Pour tout entier naturel n, calculer les coefficients de la première ligne de M^n .
 - (c) En déduire l'expression de u_n en fonction de u_0, u_1, u_2 et de l'entier naturel n.