TD 2

Calcul matriciel

Opérations sur les matrices

Exercice 1 (
$$\bigstar$$
)
1. On pose $J = \begin{pmatrix} 0 & 0 & 0 \\ -3 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Calculer J^k pour tout $k \in \mathbb{N}$.

- 2. On pose $T = \begin{pmatrix} 2 & 0 & 0 \\ 3 & 2 & 0 \\ 0 & -1 & 2 \end{pmatrix}$. Calculer T^n , pour tout $n \in \mathbb{N}$.
- 3. On considère les suites $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ et $(c_n)_{n\in\mathbb{N}}$ définies par $a_0,b_0,c_0\in\mathbb{R}$ et pour tout $n\in\mathbb{N}$,

$$\begin{cases} a_{n+1} = 2a_n \\ b_{n+1} = 3a_n + 2b_n \\ c_{n+1} = -b_n + 2c_n \end{cases}$$

En utilisant la question précédente, calculer a_n , b_n et c_n en fonction de n, a_0 , b_0 et c_0 .

Exercice 2 (
$$\star\star$$
) Soit la matrice $A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$.

- 1. Calcul des puissances de A par la formule du binôme.
 - (a) Soit $B = A 2I_3$. Calculer B^k pour tout $k \in \mathbb{N}$.
 - (b) En déduire A^n en fonction de A et de I_3 , pour tout $n \in \mathbb{N}$.
- 2. Calcul des puissances de A à l'aide d'un polynôme annulateur.
 - (a) Exprimer A^2 en fonction de A et de I_3 . En déduire un polynôme annulateur de A.
 - (b) Montrer qu'il existe deux suites (a_n) et (b_n) telles que, pour tout $n \in \mathbb{N}$, $A^n = a_n I_3 + b_n A$.
 - (c) Expliciter a_n et b_n en fonction de n et en déduire l'expression de A^n en fonction de A et I_3 .

Exercice 3 (★★)

- 1. Montrer que le polynôme $P(X) = X^2 4X + 3$ est annulateur de $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.
- 2. Justifier que pour tout $n \in \mathbb{N}$, il existe $Q_n \in \mathbb{R}[X]$ et $(a_n, b_n) \in \mathbb{R}^2$ tels que :

$$X^n = PQ_n + a_n X + b_n.$$

- 3. Déterminer a_n et b_n en fonction de n.
- 4. En déduire l'expression de A^n en fonction de n.

Exercice 4 ($\star\star$) On considère la matrice $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$.

- 1. Montrer que $P(X) = X^3 2X^2 + X$ est un polynôme annulateur de A.
- 2. Montrer que pour tout $n \in \mathbb{N}$, il existe $Q_n \in \mathbb{R}[X]$ et $(a_n, b_n, c_n) \in \mathbb{R}^3$ tels que :

$$X^n = PQ_n + a_n X^2 + b_n X + c_n.$$

- 3. Déterminer a_n, b_n, c_n en fonction de n. On pourra utiliser que P(0) = P(1) = P'(1) = 0.
- 4. En déduire l'expression de A^n en fonction de n.

Exercice 5 (\bigstar) On considère les matrices $A = \begin{pmatrix} 5 & 1 & 2 \\ -1 & 7 & 2 \\ 1 & 1 & 6 \end{pmatrix}, \ P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \text{ et } Q = \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$

- 1. Calculer PQ. Que peut-on en déduire ?
- 2. Déterminer la matrice $D \in \mathcal{M}_n(\mathbb{R})$ qui vérifie la relation A = PDQ.
- 3. Montrer que, pour tout entier naturel n, $A^n = PD^nQ$.
- 4. Expliciter A^n .

Exercice 6 (
$$\bigstar$$
)
On considère les matrices $A = \begin{pmatrix} 1 & 0 & 0 \\ 6 & -5 & 6 \\ 3 & -3 & 4 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ -1 & 1 & 2 \end{pmatrix}$.

- 1. (a) Montrer que $P(X) = X^2 + X 2$ est un polynôme annulateur de A.
 - (b) En déduire que A est inversible et déterminer son inverse.
 - (c) Retrouver ce résultat à l'aide de la méthode du pivot.
- 2. (a) Montrer que $P(X) = X^2 2X$ est un polynôme annulateur de B.
 - (b) En déduire que la matrice B n'est pas inversible.
 - (c) Proposer une autre méthode pour prouver que B n'est pas inversible.

Exercice 7 (
$$\bigstar$$
)
On considère la matrice $A = \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix}$.

- 1. Montrer que P(X) = (X 1)(X 2) est un polynôme annulateur de A.
- 2. En déduire que A est inversible et calculer son inverse (sans faire de pivot).
- 3. Vérifier vos résultats en utilisant maintenant la méthode du pivot.
- 4. Résoudre sans faire de pivot le système linéaire suivant dans \mathbb{R}^3 :

$$\begin{cases}
-x+y &= 3 \\
y-z &= 1 \\
-3x+4y-3z &= -2
\end{cases}$$

Exercice 8 (*)

Déterminer si les matrices suivantes sont inversibles et, si c'est le cas, calculer leurs inverses :

$$A = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & -2 \\ -1 & 2 \end{pmatrix}.$$

Exercice 9 ($\star\star$) On considère les matrices $A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & -1 \\ -2 & 0 & -2 \end{pmatrix}$ et $P = \begin{pmatrix} 2 & 1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix}$.

- 1. (a) Montrer que la matrice P est inversible et déterminer P^{-1} .
 - (b) On pose $T = PAP^{-1}$. Calculer T, T^2, T^3 puis T^n pour tout entier naturel $n \ge 3$..
 - (c) En déduire que : $\forall n \geq 3, A^n = 0.$
- 2. Pour tout réel t, on définit la matrice E(t) par : $E(t) = I_3 + tA + \frac{t^2}{2}A^2$.
 - (a) Montrer que : $\forall (t, t') \in \mathbb{R}^2$, E(t) E(t') = E(t + t').
 - (b) Pour tout t réel, calculer E(t) E(-t). En déduire que la matrice E(t) est inversible et déterminer son inverse en fonction de I_3 , A, A^2 , t.
 - (c) Pour tout $t \in \mathbb{R}$ et pour tout $n \in \mathbb{N}$, déterminer $[E(t)]^n$ en fonction de I_3 , A, A^2 , t et n.

Noyau, image et rang d'une matrice

Exercice 10 (\bigstar)

Déterminer le noyau, l'image et le rang des matrices suivantes :

$$A = \begin{pmatrix} -4 & 1 & 2 \\ -4 & 3 & -4 \\ -1 & -1 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -1 & 0 \\ 2 & 1 & 4 \\ -1 & 1 & 2 \\ -3 & 0 & -1 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & -1 & 1 & -4 \\ -2 & 2 & 3 & 3 \\ 0 & -4 & -1 & -11 \end{pmatrix}.$$

Réduction des matrices carrées

Exercice 11 (\bigstar) On considère la matrice $A = \begin{pmatrix} 3 & -2 & -1 \\ 1 & 0 & -1 \\ 2 & -2 & 0 \end{pmatrix}$. On pose $X_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $X_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ et $X_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

- 1. Montrer que X_1 , X_2 et X_3 sont des vecteurs propres de A et expliciter les valeurs propres associées.
- 2. Prouver que la famille (X_1, X_2, X_3) est une base de $\mathcal{M}_{3,1}(\mathbb{R})$.
- 3. En déduire que A est diagonalisable et la diagonaliser.

Exercice 12 (★) On considère les matrices $J = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & -1 & 1 \\ -\sqrt{2} & 0 & \sqrt{2} \\ 1 & 1 & 1 \end{pmatrix}$.

- 1. J est-elle diagonalisable? inversible? En déduire une valeur propre de J.
- 2. Justifier avec le minimum de calculs que $P^{-1}JP$ est diagonale et donner cette matrice.

Exercice 13 (★★)

Déterminer si les matrices suivantes sont diagonalisables et, si c'est le cas, les diagonaliser :

$$A = \begin{pmatrix} 3 & 4 & -4 \\ -2 & -1 & 2 \\ -2 & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 3 & 0 & 1 \\ -1 & 2 & -1 \\ -2 & 0 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} -4 & 0 & -2 \\ 0 & 1 & 0 \\ 5 & 1 & 3 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ -2 & -2 & 5 \end{pmatrix}.$$

Exercice 14 (★★)

Déterminer les valeurs propres des matrices suivantes et en déduire si elles sont diagonalisables :

$$A = \begin{pmatrix} 2 & 4 \\ 1 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

Exercice 15 (\bigstar) On considère la matrice $A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & 1 \\ 1 & -1 & 0 \end{pmatrix}$.

- 1. Montrer que $A^2 3A + 2I_3 = 0$.
- 2. En déduire les valeurs propres de A.
- 3. Déterminer une base de chacun des sous-espaces propres de A.
- 4. En déduire que A est diagonalisable et la diagonaliser.

Exercice 16 (\bigstar) On considère la matrice $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \\ 1 & -1 & -1 \end{pmatrix}$.

- 1. Vérifier que $X^3 + X^2 2X$ est un polynôme annulateur de A.
- 2. Déterminer les valeurs propres de A.
- 3. La matrice A est-elle inversible? diagonalisable?

Exercice 17 ($\star\star$) On considère la matrice $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

- 1. La matrice A est-elle diagonalisable?
- 2. (a) La matrice A est-elle inversible?
 - (b) En déduire une valeur propre de A.
- 3. (a) Calculer A^2 .
 - (b) Déterminer alors un polynôme annulateur de A.
- 4. (a) Déterminer les valeurs propres et les sous-espaces propres de A.
 - (b) Exhiber une matrice $D \in \mathcal{M}_3(\mathbb{R})$ diagonale et $P \in \mathcal{M}_3(\mathbb{R})$ inversible telles que $A = PDP^{-1}$.

Exercice 18 (\bigstar) On considère la matrice $A = \begin{pmatrix} 0 & 2 & -1 \\ 1 & 0 & 1 \\ 2 & -3 & 3 \end{pmatrix}$.

- 1. Calculer $(A I_3)^3$.
- 2. Prouver sans faire de pivot que 1 est la seule valeur propre de A.
- 3. A est-elle diagonalisable?

Exercice 19 ($\bigstar \bigstar$) On considère la matrice $A = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}$.

- 1. Déterminer la matrice B définie par $B = A^2 + 2I_3$.
- 2. Calculer B^2 et l'exprimer en fonction de B et de I_3 .
- 3. Quelles sont les valeurs propres de B?
- 4. Montrer que si λ est une valeur propre de A, alors $\lambda^2 + 2$ est une valeur propre de B.
- 5. En déduire que A n'est pas diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.

Exercice 20 ($\star\star$) 1. On considère la matrice $N = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 3 & 1 \\ -3 & -8 & -3 \end{pmatrix}$.

- (a) Calculer N^k pour tout $k \in \mathbb{N}$.
- (b) La matrice N est-elle inversible?
- (c) Montrer que si λ est valeur propre de N, alors $\lambda = 0$.
- (d) En déduire que 0 est la seule valeur propre de N.
- (e) La matrice N est-elle diagonalisable?
- 2. On pose $A = 3I_3 + N$.
 - (a) Montrer que A admet 3 pour unique valeur propre.
 - (b) La matrice A est-elle diagonalisable?

Exercice 21 (★★)

- 1. Montrer que si une matrice carrée A est diagonalisable, alors tA est aussi diagonalisable.
- 2. Montrer que A et tA ont les mêmes valeurs propres.
- 3. (a) Montrer que A et tA ont des sous-espaces propres de même dimension.
 - (b) Les sous-espaces propres de A et tA sont-ils nécessairement égaux ?

Exercice 22 (
$$\star\star$$
)
On considère la matrice $A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

- 1. Justifier qu'il existe P inversible et D diagonale telles que $A = PDP^{-1}$. Expliciter une telle matrice D.
- 2. (a) Vérifier que $D(D I_3)(D 4I_3) = 0$.
 - (b) En déduire que $A^3 = 5A^2 4A$.
- 3. Trouver une matrice B, fonction de la matrice P, telle que $B^2 = A$.
- 4. On pose, pour tout $a \in \mathbb{R}$, $M_a = A + aI_3$. Prouver qu'il existe D_a diagonale (à expliciter) telle que $M_a = PD_aP^{-1}$.

Exercice 23 (★★)

Soit a un réel positif ou nul. On considère la matrice :

$$A(a) = \begin{pmatrix} 1 & a-2 & a & 1 \\ a & -1 & 1 & a \\ 0 & 0 & -a & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}.$$

- 1. (a) Montrer que A(0) admet 1 et -1 comme seules valeurs propres.
 - (b) Donner les sous-espaces propres correspondants. A(0) est-elle diagonalisable ?

Dans toute la suite, on suppose que a > 0.

2. Montrer que les valeurs propres de A(a) sont les réels λ solutions de l'une des équations :

$$\lambda^2 = (a-1)^2 \qquad \text{et} \qquad \lambda^2 + a\lambda + 1 = 0.$$

- 3. (a) Déduire de la question précédente la valeur pour laquelle A(a) n'est pas inversible.
 - (b) Pour cette valeur, dire si A(a) est diagonalisable.
- 4. On suppose dans cette question que a > 2.
 - (a) Montrer que A(a) possède quatre valeurs propres distinctes deux à deux.
 - (b) En déduire que A(a) est diagonalisable.

Applications de la réduction

Exercice 24 (
$$\star\star$$
) $\begin{pmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & -5 \end{pmatrix}$.

- 1. Déterminer les valeurs propres et les sous-espaces propres de A.
- 2. Justifier que A est diagonalisable et expliciter une matrice P inversible et une matrice D diagonale telles que $A = PDP^{-1}$.
- 3. Montrer que, pour tout entier naturel n, $A^n = PD^nP^{-1}$.
- 4. Donner explicitement A^n en fonction de $n \in \mathbb{N}$.

Exercice 25 (★★)

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 4, \ u_1 = 2, \ u_2 = -3, \\ \forall n \in \mathbb{N}, \ u_{n+3} = 2u_{n+2} + u_{n+1} - 2u_n. \end{cases}$$

Pour tout $n \in \mathbb{N}$, on note X_n la matrice ligne $X_n = \begin{pmatrix} u_n & u_{n+1} & u_{n+2} \end{pmatrix}$.

- 1. Déterminer une matrice $A \in \mathcal{M}_3(\mathbb{R})$ telle que pour tout $n \in \mathbb{N}$, $X_{n+1} = X_n A$.
- 2. En déduire que : $\forall n \in \mathbb{N}, X_n = X_0 A^n$.
- 3. Calculer $A^3 2A^2 A$. En déduire un polynôme annulateur de A.
- 4. Déterminer les valeurs propres de A et les sous-espaces propres associés.
- 5. Justifier que A est diagonalisable.
- 6. Déterminer l'expression de A^n pour tout $n \in \mathbb{N}$.
- 7. En déduire l'expression de u_n en fonction de $n \in \mathbb{N}$.

Exercice 26 ($\star\star$) On considère les matrices $A = \begin{pmatrix} 5 & 5 & -14 \\ 6 & 6 & -16 \\ 5 & 5 & -14 \end{pmatrix}$ et $B = \begin{pmatrix} 8 & 4 & -16 \\ 0 & 4 & -8 \\ 4 & 4 & -12 \end{pmatrix}$.

On considère également les matrices colonnes : $V_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $V_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $V_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

- 1. (a) Vérifier que V_1 , V_2 et V_3 sont des vecteurs propres de A. Quelles sont les valeurs propres associées ?
 - (b) En déduire que A est diagonalisable.
 - (c) Expliciter une matrice P inversible et une matrice D diagonale, dont les éléments diagonaux sont dans l'ordre décroissant, telles que $A = PDP^{-1}$.
 - (d) Calculer la matrice $\Delta = P^{-1}BP$ et vérifier qu'elle est diagonale.
- 2. On se propose de déterminer les matrices lignes X_n définies par :

$$X_0 = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}, \quad X_1 = \begin{pmatrix} 0 & -1 & 1 \end{pmatrix} \quad \text{et} \quad \forall n \in \mathbb{N}, \ X_{n+2} = X_{n+1}A + X_nB.$$

On définit, pour tout $n \in \mathbb{N}$, $Y_n = X_n P$ et on pose également $Y_n = \begin{pmatrix} u_n & v_n & w_n \end{pmatrix}$.

- (a) Calculer Y_0 et Y_1 .
- (b) Montrer que pour tout entier naturel $n, Y_{n+2} = Y_{n+1}D + Y_n\Delta$.
- (c) Montrer alors que pour tout entier naturel n:

$$\begin{cases} u_{n+2} &= u_{n+1} \\ v_{n+2} &= 4v_n \\ w_{n+2} &= -4w_{n+1} - 4w_n \end{cases}$$

En déduire les expressions explicites de u_n , v_n et w_n en fonction de n.

(d) Donner finalement la matrice X_n en fonction de n.

Exercice 27 ($\star\star\star$) On considère la matrice $A = \begin{pmatrix} 7 & 2 & -2 \\ 2 & 4 & -1 \\ -2 & -1 & 4 \end{pmatrix}$.

- 1. (a) Déterminer le spectre de A.
 - (b) Déterminer une base de chacun des sous-espaces propres de A.
 - (c) Démontrer que A est diagonalisable et expliciter une matrice P inversible et une matrice D diagonale vérifiant $d_{3,3} = 9$ telles que $A = PDP^{-1}$.
- 2. On souhaite déterminer l'ensemble appelé **commutant** de A suivant :

$$C_A = \{ M \in \mathcal{M}_3(\mathbb{R}) \mid AM = MA \}.$$

C'est l'ensemble des matrices qui commutent avec A.

- (a) On pose le changement de variable $N = P^{-1}MP$. Montrer que M appartient à C_A si et seulement si N vérifie l'équation DN = ND.
- (b) Montrer que N vérifie DN = ND si et seulement si $N = \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & e \end{pmatrix}$ avec $a, b, c, d, e \in \mathbb{R}$.
- (c) En déduire les matrices de C_A .

Exercice 28 $(\star\star\star)$

On considère dans $\mathcal{M}_2(\mathbb{R})$ l'équation :

$$(\mathcal{E}): \qquad X^2 - 3X + I_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

- 1. Diagonaliser la matrice $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (en mettant les valeurs propres de A dans l'ordre décroissant).
- 2. En effectuant un changement de variable judicieux, justifier que l'équation (\mathcal{E}) est équivalente à l'équation:

$$(\mathcal{E}'): \qquad Y^2 - 3Y + I_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

sur la nouvelle variable Y.

- 3. Montrer que toute solution de (\mathcal{E}') commute avec $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
- 4. Résoudre (\mathcal{E}') puis en déduire les solutions de (\mathcal{E}) en fonction de P et de P^{-1} .

Exercice 29 ($\star\star\star$)
On pose considère la matrice : $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 3 \end{pmatrix}$.

- 1. (a) Déterminer les valeurs propres et les sous-espaces propres de A.
 - (b) Montrer que A est diagonalisable.
 - (c) Déterminer une matrice diagonale D et une matrice inversible P telles que $A = PDP^{-1}$.
 - (d) Calculer P^{-1} .
- 2. On se propose de résoudre l'équation $M^2 = A$, d'inconnue M une matrice carrée d'ordre trois.
 - (a) On note $N = P^{-1}MP$. Montrer: $M^2 = A \Leftrightarrow N^2 = D$.
 - (b) Établir que, si $N^2 = D$, alors ND = DN.
 - (c) Résoudre l'équation DN = ND d'inconnue $N \in \mathcal{M}_3(\mathbb{R})$.
 - (d) Déterminer toutes les matrices diagonales $N \in \mathcal{M}_3(\mathbb{R})$ telles que $N^2 = D$.
 - (e) Expliciter les matrices M solutions de l'équation $M^2 = A$.