Compléments sur les séries réelles

Exercice 1 (\bigstar)

Calculer les sommes suivantes après avoir vérifié la convergence des séries :

$$(1) \sum_{n=4}^{+\infty} \frac{(-1)^n}{3^{n+1}}$$

(2)
$$\sum_{n=0}^{+\infty} ne^{-2n}$$

(3)
$$\sum_{n=0}^{+\infty} \frac{4n^2 - 3n - 1}{4^{n-2}}$$

$$(4) \sum_{n=1}^{+\infty} \frac{5^{n/2}}{(n+1)!}$$

$$(5) \sum_{n=0}^{+\infty} \frac{n2^n}{n!}$$

(6)
$$\sum_{n=1}^{+\infty} \frac{2n^2 + 1}{n!}$$

$$(7)\sum_{n=2}^{+\infty}\ln\left(1-\frac{1}{n}\right)$$

$$(1) \sum_{n=4}^{+\infty} \frac{(-1)^n}{3^{n+1}} \qquad (2) \sum_{n=0}^{+\infty} n e^{-2n} \qquad (3) \sum_{n=2}^{+\infty} \frac{4n^2 - 3n - 1}{4^{n-2}} \qquad (4) \sum_{n=1}^{+\infty} \frac{5^{n/2}}{(n+1)!}$$

$$(5) \sum_{n=3}^{+\infty} \frac{n2^n}{n!} \qquad (6) \sum_{n=1}^{+\infty} \frac{2n^2 + 1}{n!} \qquad (7) \sum_{n=2}^{+\infty} \ln\left(1 - \frac{1}{n}\right) \qquad (8) \sum_{n=2}^{+\infty} \frac{\ln\left(\frac{n+1}{n}\right)}{\ln(n)\ln(n+1)}$$

Exercice 2 ($\bigstar \bigstar$)
On considère la matrice $B = \begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix}$.

Pour tout entier naturel n non nul, et pour tout réel t, on définit la matrice $E_n(t)$ par :

$$E_{n}\left(t\right)=\sum_{k=0}^{n}\frac{t^{k}}{k!}B^{k}\text{ que l'on note }E_{n}\left(t\right)=\left(\begin{array}{cc}a_{n}\left(t\right)&c_{n}\left(t\right)\\b_{n}\left(t\right)&d_{n}\left(t\right)\end{array}\right)$$

- 1. Montrer que B est diagonalisable et déterminer une matrice P inversible et une matrice Ddiagonale telles que $B = PDP^{-1}$.
- 2. Pour tout entier naturel n, montrer que :

$$B^{n} = \begin{pmatrix} 2 - 2^{n} & 1 - 2^{n} \\ 2^{n+1} - 2 & 2^{n+1} - 1 \end{pmatrix}$$

- 3. Exprimer $a_n(t)$, $b_n(t)$, $c_n(t)$ et $d_n(t)$ sous la forme d'une somme.
- 4. Déterminer les limites de $a_n(t)$, $b_n(t)$, $c_n(t)$ et $d_n(t)$ lorsque n tend vers $+\infty$.
- 5. Pour tout t réel, on pose alors :

$$E\left(t\right) = \left(\begin{array}{cc} \lim_{n \to +\infty} a_n\left(t\right) & \lim_{n \to +\infty} c_n\left(t\right) \\ \lim_{n \to +\infty} b_n\left(t\right) & \lim_{n \to +\infty} d_n\left(t\right) \end{array}\right)$$

(a) Déterminer les matrice E_1 et E_2 telles que pour tout t réel, on ait :

$$E(t) = e^t E_1 + e^{2t} E_2.$$

- (b) Montrer que : $\forall (t, t') \in \mathbb{R}^2$, E(t)E(t') = E(t + t').
- (c) Calculer E(0). En déduire que pour tout réel t, E(t) est inversible et déterminer son inverse.

Exercice 3 (**)

Déterminer la nature des séries suivantes :

(1)
$$\sum_{n>0} e^{2/n^3}$$

(2)
$$\sum_{n>0} \frac{1}{e^n + e^{-n}}$$

$$(3)\sum_{n\geq 2}\left(1-\frac{1}{n}\right)^n$$

$$(4) \sum_{n \ge 1} \frac{\ln(n)}{n}$$

$$(5) \sum_{n \ge 0} \frac{1}{3^n + 1}$$

$$(6) \sum_{n\geq 2} \frac{1}{\sqrt{n} - 1}$$

(7)
$$\sum_{n>2} \frac{e^{-2n} + n}{n^{3/2} + (-1)^n}$$

$$(8) \sum_{n>1}^{-} \frac{\ln\left(\frac{n+1}{n}\right)}{\sqrt{n+4}}$$

(9)
$$\sum_{n \ge 0} \sqrt{n^2 + 1} - r$$

$$(1) \sum_{n\geq 0} e^{2/n^3} \qquad (2) \sum_{n\geq 0} \frac{1}{e^n + e^{-n}} \qquad (3) \sum_{n\geq 2} \left(1 - \frac{1}{n}\right)^n \qquad (4) \sum_{n\geq 1} \frac{\ln(n)}{n}$$

$$(5) \sum_{n\geq 0} \frac{1}{3^n + 1} \qquad (6) \sum_{n\geq 2} \frac{1}{\sqrt{n} - 1} \qquad (7) \sum_{n\geq 2} \frac{e^{-2n} + n}{n^{3/2} + (-1)^n} \qquad (8) \sum_{n\geq 1} \frac{\ln\left(\frac{n+1}{n}\right)}{\sqrt{n+4}}$$

$$(9) \sum_{n\geq 0} \sqrt{n^2 + 1} - n \qquad (10) \sum_{n\geq 1} \frac{(-1)^n n^4 \ln(n)}{e^{2n}} \qquad (11) \sum_{n\geq 2} \frac{1}{n\sqrt{n} \ln(n)} \qquad (12) \sum_{n\geq 0} e^{-n^2}$$

$$(13) \sum_{n\geq 0} \frac{(-1)^n}{n^2 + 2^n} \qquad (14) \sum_{n\geq 0} \ln\left(\frac{n^2 + 2}{n^2 + 1}\right) \qquad (15) \sum_{n\geq 1} \ln(2 - e^{-1/n^2}) \qquad (16) \sum_{n\geq 0} \frac{3^n + 1}{4^n + n^9}$$

$$(11) \sum_{n>2} \frac{1}{n\sqrt{n}\ln(n)}$$

$$(12) \sum_{n>0} e^{-n^2}$$

$$(13) \sum_{n>0} \frac{(-1)^n}{n^2 + 2^n}$$

(14)
$$\sum_{n\geq 0}^{\infty} \ln\left(\frac{n^2+2}{n^2+1}\right)$$

(15)
$$\sum_{n>1} \ln(2 - e^{-1/n^2})$$

$$(16) \sum_{n \ge 0} \frac{3^n + 1}{4^n + n^9}$$

Exercice $4 (\bigstar)$

1. (a) Justifier que la série de terme général $u_n = \ln\left(1 - \frac{1}{n^2}\right)$ converge.

(b) Calculer
$$\sum_{n=2}^{+\infty} \ln\left(1 - \frac{1}{n^2}\right)$$
.

(a) Justifier que la série de terme général $u_n = \frac{1}{(n+1)(n+2)}$ converge.

(b) Calculer
$$\sum_{n=0}^{+\infty} \frac{1}{(n+1)(n+2)}.$$

Exercice 5 $(\star\star)$

On considère la série
$$\sum_{n\geq 1} \frac{1}{n(n+1)(n+2)}$$
.

- 1. Justifier que cette série converge.
- 2. Déterminer des réels a, b et c tels que : $\forall k \in \mathbb{N}^*, \frac{1}{k(k+1)(k+2)} = \frac{a}{k} + \frac{b}{k+1} + \frac{c}{k+2}$.
- 3. Déterminer alors $S_n = \sum_{k=1}^n \frac{1}{k(k+1)(k+2)}$ pour tout $n \ge 1$.
- 4. En déduire la somme de la série.

Exercice 6 (*)

Soit α un réel strictement positif. Pour tout $n \in \mathbb{N}^*$, on pose :

$$u_n = n \ln \left(1 + \frac{1}{n^{\alpha}} \right).$$

Étudier suivant la valeur du paramètre α la nature de la série $\sum u_n$.

Exercice 7 (★★)

Exercice 7 (
$$\star\star$$
)
Rappelons que la série $\sum_{n\geq 1} \frac{1}{n^2}$ converge et que sa somme vaut $\frac{\pi^2}{6}$.

En déduire que la série $\sum_{n\geq 0} \frac{1}{(2n+1)^2}$ converge et que sa somme vaut $\frac{\pi^2}{8}$.

Exercice 8 (*)

On considère la suite $(a_n)_{n\in\mathbb{N}}$ définie par $a_0>0$ et par la relation suivante :

$$\forall n \in \mathbb{N}, \quad a_{n+1} = a_n e^{-a_n}.$$

- 1. (a) Montrer que, pour tout $n \in \mathbb{N}$, $a_n > 0$.
 - (b) Étudier le sens de variation de la suite $(a_n)_{n\in\mathbb{N}}$.
 - (c) En déduire que $(a_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.
- 2. (a) On pose $b_n = \ln(a_n)$. Calculer $b_{n+1} b_n$ en fonction de a_n .
 - (b) En déduire la nature de la série $\sum a_n$.

Exercice 9 (★★)

Soit (u_n) la suite définie par $u_0 = \frac{1}{2}$ et par la relation de récurrence :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n - u_n^3.$$

- 1. (a) Montrer que pour tout $n \in \mathbb{N}$, $u_n \in]0,1[$.
 - (b) Montrer que la suite (u_n) est décroissante.
 - (c) Montrer que la suite (u_n) converge vers 0.
- 2. Montrer que la série $\sum_{n>0} u_n^3$ est convergente.
- 3. (a) Montrer que u_{n+1} est équivalent à u_n quand n tend vers $+\infty$.
 - (b) En déduire que $\frac{1}{u_{n+1}} \frac{1}{u_n}$ est équivalent à u_n quand n tend vers $+\infty$.
 - (c) En déduire que la série $\sum_{n>0} u_n$ est divergente.

Exercice 10 (★)

On se propose d'étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par la donnée de $u_0=0$ et par la relation :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{u_n^2 + 1}{2}.$$

- 1. (a) Montrer que, pour tout entier naturel n, on a : $0 \le u_n \le 1$.
 - (b) Étudier les variations de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge et donner sa limite.
- 2. Pour tout entier naturel n, on pose : $v_n = 1 u_n$.
 - (a) Pour tout $k \in \mathbb{N}$, exprimer $v_k v_{k+1}$ en fonction de v_k .
 - (b) Simplifier, pour tout $n \in \mathbb{N}$, la somme $\sum_{k=0}^{n} (v_k v_{k+1})$.
 - (c) Donner pour finir la nature de la série de terme général v_n^2 ainsi que la valeur de $\sum_{n=0}^{+\infty} v_n^2$

Exercice 11 (★★)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par la donnée $u_0>0$ et par la relation suivante :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n + u_n^2.$$

- 1. (a) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
 - (b) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$. On pourra faire un raisonnement par l'absurde.
- 2. On pose, pour tout entier naturel $n, v_n = \frac{\ln(u_n)}{2^n}$
 - (a) Montrer que, pour tout $n \in \mathbb{N}$, $v_{n+1} v_n = \frac{1}{2^{n+1}} \ln \left(1 + \frac{1}{u_n} \right)$.
 - (b) Montrer que, pour tout $x \ge 0$, $0 \le \ln(1+x) \le x$.
 - (c) En déduire que, pour tout $n \in \mathbb{N}$, $0 \le v_{n+1} v_n \le \frac{1}{2^{n+1}u_0}$.
 - (d) Montrer que la série de terme général $v_{n+1} v_n$ est convergente.
 - (e) En déduire que la suite $(v_n)_{n\in\mathbb{N}}$ converge.

Exercice 12 (★★)

Soit (u_n) la suite définie par : $u_1 = 1$ et $\forall n \in \mathbb{N}^*, u_{n+1} = \frac{3n+1}{3n}u_n$.

- 1. Montrer que : $\forall n \in \mathbb{N}^*, u_n > 0$.
- 2. Étudier la nature de la série de terme général $\ln \left(\frac{u_{n+1}}{u_n} \right)$.
- 3. Conclure quant à la nature de la suite $(\ln(u_n))_{n\geq 1}$ et enfin quant à celle de la suite $(u_n)_{n\geq 1}$.

Exercice 13 (★★)

On désigne par α un réel strictement positif. Pour tout entier naturel n, on pose :

$$u_n(\alpha) = \frac{n!}{\prod_{k=0}^{n} (\alpha + k)}.$$

- 1. (a) Montrer que la suite $(u_n(\alpha))$ est monotone et convergente. On note $\ell(\alpha)$ sa limite.
 - (b) Que peut-on en déduire pour la série $\sum_{n\in\mathbb{N}} (u_n(\alpha) u_{n+1}(\alpha))$?
 - (c) On suppose que $\ell(\alpha)$ est non nulle. Démontrer que : $u_n(\alpha) u_{n+1}(\alpha) \underset{n \to +\infty}{\sim} \frac{\alpha \ell(\alpha)}{n}$.
 - (d) Déduire de ce qui précède que $\ell(\alpha) = 0$.
- 2. Dans cette question, on suppose que $\alpha \in]0,1[$.
 - (a) Montrer que : $\forall n \in \mathbb{N}, u_n(\alpha) \ge \frac{1}{n+1}$.
 - (b) Quelle est la nature de la série $\sum_{n\in\mathbb{N}} u_n(\alpha)$?

Exercice 14 (★★)

Soit $x \in]0,1[$. Pour tout $n \in \mathbb{N}$, on pose $S_n(x) = \sum_{k=0}^n x^k$.

- 1. (a) Calculer $S_n(x)$.
 - (b) En déduire que la série $\sum_{n\geq 0} x^n$ converge et expliciter sa somme.
- 2. (a) Calculer de deux façons distinctes la dérivée $S_n'(x)$.
 - (b) En déduire que : $\sum_{k=0}^n k x^{k-1} = \frac{n x^{n+1} (n+1) x^n + 1}{(1-x)^2}.$
 - (c) Déterminer $\lim_{n \to +\infty} nx^n$.
 - (d) En déduire que la série $\sum_{n\geq 0} nx^{n-1}$ converge et que $\sum_{n=0}^{+\infty} nx^{n-1} = \frac{1}{(1-x)^2}$.

Exercice 15 (★★)

On pose pour tout $x \in]0,1[$ et pour tout $n \in \mathbb{N}^*$: $S_n(x) = \sum_{k=1}^n \frac{x^k}{k}$ et $S(x) = \sum_{k=1}^{+\infty} \frac{x^k}{k}$.

- 1. Justifier l'existence de S(x) pour tout $x \in]0,1[$.
- 2. (a) Soient $x \in]0,1[$ et $n \in \mathbb{N}^*$. Montrer que : $S_n(x) = \int_0^x \frac{1-t^n}{1-t} dt$.
 - (b) Soit $x \in]0,1[$. Démontrer que : $\lim_{n \to +\infty} \int_0^x \frac{t^n}{1-t} dt = 0$.
 - (c) En déduire que : $\forall x \in]0,1[, S(x) = -\ln(1-x).$
- 3. En déduire la valeur de $\sum_{k=1}^{+\infty} \frac{1}{k \times 3^k}$.

Exercice 16 $(\star\star)$

Le but de cet exercice est de démontrer le résultat bien connu suivant sur les séries de Riemann :

$$\sum_{n\geq 1}\frac{1}{n^{\alpha}} \text{ converge si et seulement si } \alpha>1.$$

- 1. Étudier la nature de la série $\sum_{\alpha>1} \frac{1}{n^{\alpha}}$ lorsque $\alpha \leq 0$.
- 2. Soit $\alpha > 0$.
 - (a) Soit $k \in \mathbb{N}^*$. Donner un encadrement de $\frac{1}{x^{\alpha}}$ lorsque $x \in [k, k+1]$.
 - (b) En déduire que, pour tout $k \in \mathbb{N}^*$: $\frac{1}{(k+1)^{\alpha}} \le \int_{k}^{k+1} \frac{dx}{x^{\alpha}} \le \frac{1}{k^{\alpha}}$.
 - (c) En sommant les inégalités précédentes, montrer que :

$$\frac{1}{n^{\alpha}} + \int_{1}^{n} \frac{dx}{x^{\alpha}} \le \sum_{k=1}^{n} \frac{1}{k^{\alpha}} \le 1 + \int_{1}^{n} \frac{dx}{x^{\alpha}}.$$

- (d) Déduire de la question précédente que si $\alpha \in]0,1]$, alors la série $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ diverge.
- (e) Déduire toujours de la question 2.(c) que si $\alpha > 1$, alors la série $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ converge.

Exercice 17 $(\star\star\star)$

Le but de cet exercice est de démontrer que :

$$\sum_{n\geq 2} \frac{1}{n^{\alpha} \ln(n)}$$
 converge si et seulement si $\alpha>1$

- 1. Montrer que si $\alpha > 1$, alors la série de terme général $\frac{1}{n^{\alpha} \ln(n)}$ converge.
- 2. Montrer que si $\alpha < 1$, alors la série de terme général $\frac{1}{n^{\alpha} \ln(n)}$ diverge.
- 3. On note pour tout entier $n \ge 2$, $S_n = \sum_{k=2}^{n} \frac{1}{k \ln(k)}$.

(a) Démontrer que pour tout entier naturel $k \geq 3$,

$$\int_{k}^{k+1} \frac{1}{t \ln(t)} dt \le \frac{1}{k \ln(k)} \le \int_{k-1}^{k} \frac{1}{t \ln(t)} dt.$$

- (b) En déduire que $S_n \sim \ln(\ln(n))$ et déterminer la nature de la série de terme général $\frac{1}{n \ln(n)}$.
- 4. Pour tout entier $n \geq 2$, on pose :

$$u_n = S_n - \ln(\ln(n+1))$$
 et $v_n = S_n - \ln(\ln(n))$.

- (a) Montrer que les suites $(u_n)_{n\geq 2}$ et $(v_n)_{n\geq 2}$ sont adjacentes. On notera ℓ leur limite commune.
- (b) Montrer que, pour tout entier $n \ge 2$, on a : $0 \le v_n \ell \le \frac{1}{n \ln(n)}$.
- (c) Écrire un programme pour obtenir une valeur approchée de ℓ à 10^{-5} près.

Exercice 18 ($\star\star\star$) Pour tout $n \in \mathbb{N}^*$, on note $S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$.

- 1. Déterminer $\lim_{n\to+\infty} S_n$.
- (a) Montrer que pour tout entier naturel $k \geq 2$:

$$\int_{k}^{k+1} \frac{1}{\sqrt{t}} dt \le \frac{1}{\sqrt{k}} \le \int_{k-1}^{k} \frac{1}{\sqrt{t}} dt.$$

(b) En déduire que pour tout entier $n \geq 2$:

$$2\sqrt{n+1} - 2\sqrt{2} \le S_n - 1 \le 2\sqrt{n} - 2.$$

- (c) En déduire que $S_n \sim 2\sqrt{n}$.
- 3. Dans la suite, on note pour tout $n \in \mathbb{N}^*$, $w_n = S_n 2\sqrt{n}$.
 - (a) Déterminer alors deux constantes α et K telles que $w_n w_{n-1} \sim \frac{K}{n^{\alpha}}$ au voisinage de $+\infty$.
 - (b) En déduire que la série de terme général $w_n w_{n-1}$ converge.
 - (c) En déduire l'existence d'une constante réelle β telle que :

$$S_n = 2\sqrt{n} + \beta + o(1).$$