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1 Limites de fonctions
Dans tout le chapitre, I désignera un intervalle de R non vide et non réduit à un point. On notera :

•
◦
I = I \ {bornes de I} appelé l’intérieur de l’intervalle I ;

• Ī = I ∪ {bornes de I} appelé l’adhérence de l’intervalle I.

Par exemple,
◦

[0, 2[ = ]0, 2[ et [0, 2[ = [0, 2],
◦

]1, +∞[ = ]1, +∞[ et ]1, +∞[ = [1, +∞[∪{+∞},
◦
R = R et

R = R ∪ {±∞}.

1.1 Définitions
Limite d’une fonction en un point.
Définition.

Soient f : I → R et a un réel appartenant à Ī. On dit que :

• f admet une limite (finie) ℓ ∈ R en a, notée f(x) −→
x→a

ℓ ou lim
x→a

f(x) = ℓ, si :

∀ε > 0, ∃η > 0, ∀x ∈ I, |x − a| ≤ η =⇒ |f(x) − ℓ| ≤ ε.

• f admet pour limite +∞ en a, notée f(x) −→
x→a

+∞ ou lim
x→a

f(x) = +∞, si :

∀M ∈ R, ∃η > 0, ∀x ∈ I, |x − a| ≤ η =⇒ f(x) ≥ M.

• f admet pour limite −∞ en a, notée f(x) −→
x→a

−∞ ou lim
x→a

f(x) = −∞, si :

∀M ∈ R, ∃η > 0, ∀x ∈ I, |x − a| ≤ η =⇒ f(x) ≤ M.

Remarque. Dans le cas où f(x) −→
x→a

ℓ, la définition signifie que la distance de f(x) à ℓ peut être rendue
inférieure à tout nombre ε > 0 donné, à condition que la distance de x à a soit assez petite.

Limite d’une fonction en +∞.
Définition.

Soient f : I → R. On suppose que +∞ est une borne de I. On dit que :

• f admet une limite (finie) ℓ ∈ R en +∞, notée f(x) −→
x→+∞

ℓ ou lim
x→+∞

f(x) = ℓ, si :

∀ε > 0, ∃A ∈ R, ∀x ∈ I, x ≥ A =⇒ |f(x) − ℓ| ≤ ε.

• f admet pour limite +∞ en +∞, notée f(x) −→
x→+∞

+∞ ou lim
x→+∞

f(x) = +∞, si :

∀M ∈ R, ∃A ∈ R, ∀x ∈ I, x ≥ A =⇒ f(x) ≥ M.

• f admet pour limite −∞ en +∞, notée f(x) −→
x→+∞

−∞ ou lim
x→+∞

f(x) = −∞, si :

∀M ∈ R, ∃A ∈ R, ∀x ∈ I, x ≥ A =⇒ f(x) ≤ M.

Remarque. Dans le cas où f(x) −→
x→+∞

ℓ, la définition signifie que la distance de f(x) à ℓ peut être rendue
inférieure à tout nombre ε > 0 donné, à condition que x soit assez grand.
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Limite d’une fonction en −∞.
Définition.

Soient f : I → R. On suppose que −∞ est une borne de I. On dit que :

• f admet une limite (finie) ℓ ∈ R en −∞, notée f(x) −→
x→−∞

ℓ ou lim
x→−∞

f(x) = ℓ, si :

∀ε > 0, ∃B ∈ R, ∀x ∈ I, x ≤ B =⇒ |f(x) − ℓ| ≤ ε.

• f admet pour limite +∞ en −∞, notée f(x) −→
x→−∞

+∞ ou lim
x→−∞

f(x) = +∞, si :

∀M ∈ R, ∃B ∈ R, ∀x ∈ I, x ≤ B =⇒ f(x) ≥ M.

• f admet pour limite −∞ en −∞, notée f(x) −→
x→−∞

−∞ ou lim
x→−∞

f(x) = −∞, si :

∀N ∈ R, ∃B ∈ R, ∀x ∈ I, x ≤ B =⇒ f(x) ≤ N.

Remarques.

• Soit f : I → R, a ∈ Ī et ℓ ∈ R. Par définition :

f(x) −→
x→a

ℓ si, et seulement si, |f(x) − ℓ| −→
x→a

0.

En particulier, f(x) −→
x→a

0 si, et seulement si, |f(x)| −→
x→a

0.

• Comme pour le cas des limites de suites, les inégalités larges peuvent être remplacées par des inégalités
strictes dans les définitions.

• Dans le cas des limites finies, l’inégalité est d’autant plus contraignante que ε est petit. On peut donc
se contenter d’étudier le cas où ε est inférieure à une valeur ε0 donnée, par exemple « ∀ε ∈ ]0, 1[ » ou
« ∀ε ∈ ]0, 1

2 [ ».

De même, dans le cas des limites égales à +∞, on peut remplacer « ∀M ∈ R » par « ∀M > 0 » par
exemple, et dans le cas des limites égales à −∞, « ∀M ∈ R » par « ∀M < 0 ».

Formulation unique en termes de voisinages
Définition.

Soit a ∈ R. On appelle voisinage de a tout ensemble de réels de la forme :

• [a − ε, a + ε] avec ε > 0 si a est un réel ;

• [A, +∞[ avec A ∈ R si a = +∞ ;

• ] − ∞, B] avec B ∈ R si a = −∞.

On note Va l’ensemble des voisinages de a.

Définition.
Soient f : I → R une fonction et a ∈ I.
On dit que f vérifie la propriété P au voisinage de a s’il existe un voisinage V de a tel que f vérifie P sur
I ∩ V .

Exemples.

• La fonction x 7→ x2 − x est positive au voisinage de +∞. En effet, V = [1, +∞[ est un voisinage de +∞
sur lequel x2 − x ≥ 0.

• La fonction ln est négative au voisinage de 0, par exemple car ln(x) ≤ 0 pour tout x ∈ [−1, 1] ∩ R∗
+.

• La fonction exp est bornée au voisinage de −∞, par exemple car 0 ≤ exp(x) ≤ 1 sur ] − ∞, −1].
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Soient f : I → R, a ∈ I et ℓ ∈ R.
Alors f(x) −→

x→a
ℓ si, et seulement si, pour tout voisinage V de ℓ, f est à valeur dans V au voisinage

de a. Soit encore :
∀V ∈ Vℓ, ∃U ∈ Va, ∀x ∈ I, x ∈ U =⇒ f(x) ∈ V.

Propriété 1

1.2 Premières propriétés

Soient f : I → R et a ∈ I.
Si f admet une limite finie en a, cette limite est unique. On la note lim

x→a
f(x) ou lim

a
f .

Propriété 2 (Unicité de la limite)

On utilisera la notation lim
x→a

f(x) uniquement après avoir montré l’existence d’une telle limite en a.
A Danger.

Soit f : I → R. Soit a ∈ I, de sorte que f est définie en a.
Si f admet une limite ℓ ∈ R en a, alors ℓ = f(a) (et en particulier, ℓ ∈ R).

Propriété 3

Soient f : I → R, a ∈ I et ℓ ∈ R. Si lim
x→a

f(x) = ℓ, alors lim
x→a

|f(x)| = |ℓ|.

Propriété 4

Soient f : I → R et a ∈ I.
Si f admet une limite finie en a, alors f est bornée au voisinage de a.

Propriété 5

Soient f : I → R et a ∈ I.
Si f admet une limite ℓ > 0 en a, alors f est minorée au voisinage de a par un réel strictement
positif.

Propriété 6

Remarque. En particulier, si f admet une limite non nulle en a, alors f est non nulle au voisinage de a : il
suffit d’appliquer la proposition précédente à |f |.
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1.3 Limites à droite et à gauche

Dans toute cette section, a est un réel appartenant à
◦
I et f une fonction définie sur I ou I \ {a}.

Définition.

• On dit que f admet une limite à gauche en a si f|I ∩ ]−∞,a[ admet une limite en a.

Cette limite est alors notée lim
x→a−

f(x) ou lim
x→a
x<a

f(x).

• On dit que f admet une limite à droite en a si f|I ∩ ]a,+∞[ admet une limite en a.

Cette limite est alors notée lim
x→a+

f(x) ou lim
x→a
x>a

f(x)

Exemples. lim
x→1−

⌊x⌋ = 0, lim
x→1+

⌊x⌋ = 1, lim
x→ π

2
−

tan(x) = +∞, lim
x→ π

2
+

tan(x) = −∞.

• Si f est définie en a, alors

lim
x→a

f(x) = ℓ ∈ R si, et seulement si, lim
x→a+

f(x) = lim
x→a−

f(x) = ℓ et ℓ = f(a).

• Si f n’est pas définie en a, alors

lim
x→a

f(x) = ℓ ∈ R si, et seulement si, lim
x→a+

f(x) = lim
x→a−

f(x) = ℓ.

Propriété 7

Exemples.

• Soit f la fonction définie sur R par f(x) =
{

1 − e−x si x > 0
0 si x ≤ 0

. Puisque lim
x→0−

f(x) = 0 = lim
x→0+

f(x) et

que f(0) = 0, alors lim
x→0

f(x) = 0.

• Soit g la fonction définie sur R par g(x) =
{

1 si x = 0
0 si x ̸= 0

. Alors lim
x→0−

g(x) = 0 = lim
x→0+

g(x). Mais comme

g(0) = 1 ̸= 0, g n’admet pas de limite en 0.

• Soit h la fonction définie sur R∗ par h(x) = |x|
x

. Puisque lim
x→0−

h(x) = −1 et lim
x→0+

h(x) = 1, h n’admet
pas de limite en 0.

1.4 Caractérisation séquentielle de la limite

Soient f : I → R, a ∈ I et ℓ ∈ R. Il y a équivalence entre :

(i) lim
x→a

f(x) = ℓ ;

(ii) pour toute suite (xn) à valeurs dans I qui tend vers a, la suite (f(xn)) tend vers ℓ.

Théorème 8 (Caractérisation séquentielle de la limite)

5



MP2I Lycée Roosevelt

Pour montrer qu’une fonction n’admet pas de limite en a, on peut chercher deux suites (xn)n∈N et (yn)n∈N
qui tendent vers a et telles que (f(xn))n∈N et (f(yn))n∈N ont deux limites différentes.

Méthode. Comment montrer qu’une fonction n’admet pas de limite ?

Exercice 1. La fonction f définie sur R∗
+ par f(x) = sin

( 1
x

)
admet-elle une limite en 0 ?

1.5 Opérations sur les limites

Soient a ∈ I et f, g : I → R deux fonctions admettant des limites finies ℓ et ℓ′ ∈ R quand x tend
vers a. Alors :

• pour tout (λ, µ) ∈ R2, lim
x→a

(λf + µg)(x) = λℓ + µℓ′.

• lim
x→a

f(x)g(x) = ℓℓ′.

• Si ℓ′ ̸= 0, f(x)
g(x) est définie au voisinage de a et lim

x→a

f(x)
g(x) = ℓ

ℓ′ .

Propriété 9

Remarque. Ces formules se généralisent aux cas des limites infinies en a, sauf en cas de formes indéterminées
du type :

∞ − ∞, 0 × (±∞), ±∞
±∞

,
0
0 .

Soient a ∈ I et f, g : I → R deux fonctions telles que lim
x→a

f(x) = 0 et g est bornée au voisinage de
a. Alors lim

x→a
f(x) × g(x) existe et vaut 0.

Propriété 10

Soient f : I → R et g : J → R telles que f(I) ⊂ J . Soient a ∈ I, b ∈ J et ℓ ∈ R.
Si lim

x→a
f(x) = b et lim

x→b
g(x) = ℓ, alors lim

x→a
(g ◦ f)(x) = ℓ.

Propriété 11 (Composition des limites)

1.6 Limites et inégalités

Soient f, g : I → R deux fonctions et a ∈ I.
Si lim

x→a
f(x) = ℓ ∈ R et lim

x→a
g(x) = ℓ′ ∈ R, et si f(x) ≤ g(x) au voisinage de a, alors ℓ ≤ ℓ′.

Propriété 12 (Passage à la limite dans les inégalités larges)

Il n’y a pas de résultat analogue avec des inégalités strictes : les inégalités strictes deviennent larges par
passage à la limite.

Mise en garde.
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2 Théorèmes d’existence de limites
2.1 Théorème d’encadrement

Soient f , g et h trois fonctions définies sur I, ℓ ∈ R et a ∈ I. Supposons que :

• f(x) ≤ g(x) ≤ h(x) au voisinage de a ; • lim
x→a

f(x) = ℓ et lim
x→a

h(x) = ℓ.

Alors lim
x→a

g(x) existe et vaut ℓ.

Théorème 13 (d’encadrement)

Soient a ∈ I, f et g deux fonctions de I dans R telles que f(x) ≤ g(x) au voisinage de a.

• Si lim
x→a

f(x) = +∞, alors lim
x→a

g(x) = +∞. • Si lim
x→a

g(x) = −∞, alors lim
x→a

f(x) = −∞.

Propriété 14

2.2 Cas des fonctions monotones

Soient −∞ ≤ a < b ≤ +∞ et f : ]a, b[ → R une fonction croissantea.

• Si f est majorée, alors f admet une limite finie en b et lim
x→b

f(x) = sup
x∈]a,b[

f(x).

Sinon lim
x→b

f(x) = +∞.

• Si f est minorée, alors f admet une limite finie en a et lim
x→a

f(x) = inf
x∈]a,b[

f(x).

Sinon lim
x→a

f(x) = −∞.

aOn dispose d’un énoncé analogue dans le cas où f est décroissante.

Théorème 15 (de la limite monotone)

Exercice 2. Montrer que la fonction x 7→ F (x) =
∫ x

0
e−t2

dt admet une limite finie en +∞.

Soient f : I → R une fonction monotone et a ∈
◦
I. Alors, f admet des limites finies à gauche et à

droite en a. De plus :

• lim
x→a−

f(x) ≤ f(a) ≤ lim
x→a+

f(x) si f est croissante ;

• lim
x→a+

f(x) ≤ f(a) ≤ lim
x→a−

f(x) si f est décroissante.

Propriété 16
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3 Continuité
3.1 Continuité en un point
Définition de la continuité en un point
Définition.

Soit f : I → R et a ∈ I.
On dit que f est continue en a si f admet une limite finie en a, nécessairement égale à f(a).
Autrement dit, f est continue en a si, et seulement si :

∀ε > 0, ∃η > 0, ∀x ∈ I, |x − a| ≤ η =⇒ |f(x) − f(a)| ≤ ε

Exercice 3. Soit a ∈ R+. Montrer que la fonction x 7→
√

x est continue en a.

Continuité à droite et à gauche
Définition.

Soient f : I → R une fonction et a ∈ I. On dit que :

• f est continue à gauche en a si lim
x→a−

f(x) = f(a) ;

• f est continue à droite en a si lim
x→a+

f(x) = f(a).

Exemples.

• La fonction partie entière x 7→ ⌊x⌋ est continue à droite en tout point de R mais elle n’est continue à
gauche qu’aux points de R \ Z.

−2 −1 0 1 2 3

−2

1

2

Courbe représentative de la fonction partie entière.

• La fonction f représentée ici admet une limite à droite égale à la limite à gauche en
x = 2. Elle n’est cependant pas continue en x = 2, ni même à gauche ou à droite, puisque cette limite
n’est pas égale à f(2).
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Soient f : I → R une fonction et a ∈
◦
I.

La fonction f est continue en a si, et seulement si, f est continue à droite et à gauche en a.

Propriété 17

Prolongement par continuité
Définition.

Soit a ∈ I et f : I\{a} → R une fonction.
On dit que f est prolongeable par continuité en a s’il existe une fonction f̃ : I → R continue en a et telle
que f̃|I\{a} = f .

Soit a ∈ I et f : I\{a} → R une fonction.
Alors f est prolongeable par continuité en a si, et seulement si, f admet une limite finie ℓ en a.
Dans ce cas, un tel prolongement f̃ : I → R est unique, donné par :

f̃ : x 7→
{

f(x) si x ̸= a
ℓ si x = a

.

On l’appelle le prolongement par continuité de f en a. On le notera souvent f sans distinction par
abus de notation.

Propriété 18

Exemples.

• Considérons la fonction f définie sur R∗ par f(x) = sin(x)
x

. Puisque f(x) −→
x→0

1, on peut donc prolonger
f par continuité en 0 en posant :

f̃(x) =


sin(x)

x
si x ̸= 0

1 si x = 0
.

Ce prolongement est appelé sinus cardinal.

0

1

Cf̃

Courbe représentative de la fonction sinus cardinal.

• Soit α ∈ R. On rappelle que la fonction puissance d’exposant α, notée pα, est définie sur R∗
+ par :

pα(x) = xα = eα ln(x).

Si α > 0, lim
x→0

eα ln(x) = 0 et pα peut être prolongée par continuité en 0 en posant pα(0) = 0.

Si α < 0, lim
x→0

eα ln(x) = +∞ et pα ne peut pas être prolongée par continuité en 0.
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Caractérisation séquentielle de la continuité

Soient f : I → R et a ∈ I. Il y a équivalence entre :

(i) f est continue en a ;

(ii) pour toute suite (xn)n∈N d’éléments de I convergeant vers a, la suite (f(xn)) converge vers f(a).

Propriété 19 (Caractérisation séquentielle de la continuité en un point)

Exemple. Soient f : I → I une fonction continue, et (un) une suite définie par u0 ∈ I et pour tout n ∈ N :

un+1 = f(un). (∗)

Si (un) converge vers une limite finie ℓ ∈ I, alors ℓ est nécessairement un point fixe de f . En effet, puisque f
est continue en ℓ, on obtient par caractérisation séquentielle, en faisant tendre n vers +∞ dans (∗) :

ℓ = f(ℓ).

Exercice 4. Montrer que la fonction caractéristique 1Q est discontinue en tout point de R.

3.2 Continuité sur un intervalle
Définition.

On dit que f : I → R est continue sur l’intervalle I si elle est continue en tout point de I.
On note C 0(I,R) ou C (I,R) l’ensemble des fonctions continues de I dans R.

Exemples. La fonction racine carrée est continue sur R+, la fonction partie entière est continue sur chaque
intervalle [n, n + 1[ avec n ∈ Z.

Soient f et g des fonctions continues sur I et (λ, µ) ∈ R2.

(1) Les fonctions λf + µg, f × g sont continue sur I.

(2) Si de plus, g ne s’annule pas sur I, f

g
est continue sur I.

Propriété 20 (Opérations sur les fonctions continues)

Exemples. La fonction idR étant continue sur R, les fonctions polynomiales le sont également en tant que
sommes et produits de fonctions continues. De même, les fonctions rationnelles sont continues sur leur ensemble
de définition.

Soient f : I → R continue sur I et g : J → R continue sur J , avec f(I) ⊂ J . Alors, la fonction g ◦ f
est continue sur I.

Propriété 21
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Définition.
Une fonction f : I → R est dite lipschitzienne sur I s’il existe un nombre réel k ≥ 0 tel que :

∀(x, x′) ∈ I2, |f(x) − f(x′)| ≤ k|x − x′|.

On dira plus particulièrement dans ce cas que f est k-lipschitzienne.

Exercice 5. Montrer que la fonction valeur absolue est 1-lipschitziennes sur R.

Soit f : I → R. Si f est lipschitzienne sur I, alors f est continue sur I.

Propriété 22

La réciproque est fausse en général : par exemple, la fonction x 7→
√

x est continue sur R+, mais elle n’est
pas lipschitzienne sur R+. En effet, dans le cas contraire, il existerait k > 0 tel que :

∀(x, x′) ∈ R2
+, |

√
x −

√
x′| ≤ k|x − x′| = k|

√
x −

√
x′| × |

√
x +

√
x′|.

D’où pour x ̸= x′ :
1 ≤ k(

√
x +

√
x′),

ce qui est faux si on choisit x et x′ suffisamment petits.

Mise en garde.

Remarque. La fonction valeur absolue est continue sur R car lipschitzienne. On en déduit en particulier que
si f est une fonction continue sur un intervalle I, alors |f | l’est aussi par composition de fonctions continues.

Exercice 6. Montrer que, si f, g : I → R sont continues sur I, alors sup(f, g) et inf(f, g) sont continues sur I.

3.3 Image continue d’un intervalle

Soient a et b deux réels pour lesquels a ≤ b et f ∈ C ([a, b],R).
Pour tout y compris entre f(a) et f(b), il existe c ∈ [a, b] tel que f(c) = y.

Théorème 23 (des valeurs intermédiaires)

Remarques.

• Le réel c ∈ [a, b] tel que f(c) = y n’est pas unique en général.

• On dit souvent qu’une fonction est continue sur un intervalle quand on peut la tracer « sans lever le
crayon ». Cela n’apparait pourtant pas clairement dans la définition de la continuité. C’est en fait une
conséquence du théorème des valeurs intermédiaires.

Le mathématicien tchèque Bernard Bolzano (1781-1848) est l’un de ces oubliés dont on a retrouvé les résultats
scientifiques de manière posthume. Prêtre dans l’empire autrichien (plus précisément en Bohème), son activité
mathématique peut être essentiellement séparée en deux pans distincts :

• d’une part, son travail sur les « fonctions » qui l’amène à définir la continuité et à adopter une approche
rigoureuse, par exemple pour démontrer la propriété des valeurs intermédiaires ;

• d’autre part, un important travail de logicien pour fournir des bases à tous les domaines scientifiques,
qui influencera la génération suivante, notamment Georg Cantor ou Richard Dedekind.

Le saviez-vous ?
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Exercice 7. Soit f une fonction continue sur I et ne s’annulant pas sur I. Montrer que f garde un signe
constant sur I.

L’image d’un intervalle par une fonction continue est un intervalle.

Corollaire 24

Remarque. L’intervalle de départ et l’intervalle image ne sont pas en général de même nature (c’est-à-dire
ouvert, semi-ouvert ou fermé). Par exemple si f est la fonction sinus :

f(] − π, π[) = [−1, 1], f(]0, π[) = ]0, 1].

Soit f : I → R une fonction continue.
Alors f est injective sur I si, et seulement si, f est strictement monotone.

Propriété 25

Soit f une fonction continue et strictement monotone sur un intervalle I de R. Alors :

• J = f(I) est un intervalle, et f réalise une bijection de I sur J = f(I) ;

• son application réciproque f−1 est elle-même continue sur J , strictement monotone et de
même sens de variation que f .

Théorème 26 (de la bijection)

Remarque. Avec l’hypothèse supplémentaire de stricte monotonie, on peut montrer que les intervalles I et
J = f(I) sont cette fois de même nature. Par exemple, si f : [a, b[→ R est continue et strictement croissante,

je vous laisse montrer que f([a, b[) =
[
f(a), lim

b
f

[
.

3.4 Image continue d’un segment

Une fonction continue sur un segment est bornée et atteint ses bornes.
Autrement dit, si f : [a, b] → R est continue sur [a, b], alors f possède un maximum et un minimum
sur [a, b] : il existe (c, d) ∈ [a, b]2 tel que :

∀x ∈ [a, b], f(c) ≤ f(x) ≤ f(d).

Théorème 27 (des bornes atteintes)

L’image d’un segment par une fonction continue est un segment.

Corollaire 28
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4 Extension aux fonctions à valeurs dans C
Comme pour les suites, on peut étendre aux fonctions complexes toutes les propriétés des fonctions réelles qui ne
font pas référence à la notion d’ordre sur R. Les propriétés faisant intervenir la valeur absolue seront étendues
en la remplaçant par le module.

Soit f : I → C. On note Re(f) et Im(f) les fonctions de I dans R définies par :

∀x ∈ I, Re(f)(x) = Re(f(x)) et Im(f)(x) = Im(f(x)).

� Notation.

Définition.
Soient f : I → C et a ∈ I.
On dit que f admet une limite (finie) ℓ ∈ C en a, et on note lim

x→a
f(x) = ℓ, si :

∀ε > 0, ∃η > 0, ∀x ∈ I, |x − a| ≤ η =⇒ |f(x) − ℓ| ≤ ε.

Soient f : I → C et a ∈ I.
Alors f admet une limite en a si, et seulement si, Re(f) et Im(f) admettent des limites finies en a,
et alors :

lim
x→a

f(x) = lim
x→a

Re(f)(x) + i lim
x→a

Im(f)(x).

Propriété 29

Soit f : I → C. Si lim
x→a

f(x) = ℓ alors lim
x→a

f(x) = ℓ.

Corollaire 30

Définition.
Soit f : I → C une fonction. On dit que :

• f est continue en a ∈ I si lim
x→a

f(x) = f(a) ;

• f est continue sur I si f est continue en tout point de I.

Soit f : I → C une fonction à valeurs complexes. Alors :

f est continue sur I ⇐⇒ Re(f) et Im(f) sont continues sur I.

Propriété 31

Si f : I → C est continue sur I, alors |f | est continue sur I.

Corollaire 32
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Définition.
Soit f : I → C une fonction à valeurs complexes.
On dit que f est bornée si la fonction réelle |f | est bornée, c’est-à-dire s’il existe M ∈ R tel que :

∀x ∈ I, |f(x)| ≤ M.

Si f : I → C admet une limite en a ∈ I, alors f est bornée au voisinage de a.

Propriété 33

Soit f : [a, b] → C une fonction à valeurs complexes continue sur un segment [a, b]. Alors f est
bornée.

Propriété 34

Remarque. Résumons par un tableau ce qui reste valable ou non pour les fonctions à valeurs complexes.

Ce qui reste valable dans C Ce qui n’est plus valable dans C

Unicité de la limite Majorant/minorant/maximum/minimum
Une fonction ayant une limite finie en a Monotonie

est bornée au voisinage de a Limites infinies
Opérations sur les limites Passage à la limite dans les inégalités

Opérations sur les fonctions continues Théorème d’encadrement
Théorème de la limite monotone

Théorème des valeurs intermédiaires
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