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1 Limites de fonctions

Dans tout le chapitre, I désignera un intervalle de R non vide et non réduit a un point. On notera :

o I =TI\ {bornes de I} appelé V'intérieur de l’intervalle I ;

o I =1TU{bornes de I'} appelé I'adhérence de lintervalle I.

Par exemple, [0,2[ = ]0,2[ et [0,2] = [0,2], |1,4+00[ = ]1,+o0[ et |1,+o00[ = [, +oo[U{+o0}, R = R et
R =R U {00}

1.1 Définitions

Limite d’une fonction en un point.
Définition.
Soient f: I — R et a un réel appartenant & I. On dit que :
o f admet une limite (finie) £ € R en a, notée f(x) — £ ou lim f(x) =4¢, si:
Tr—ra Tr—ra
Ve>0, Ip>0,Veel, |x—al<n= |f(x)—¢ <e.
e f admet pour limite 400 en a, notée f(xr) — 400 ou lim f(z) = +o0, si:
r—a r—ra

VM eR, Ip>0,Veel, |z—al<n= f(z)>M.

e f admet pour limite —co en a, notée f(xr) — —oo ou lim f(z) = —o0, si:
r—a r—a

VM eR, Ip>0,Veel, |z—al<n= f(zr) <M.

Remarque. Dans le cas ou f(x) — ¢, la définition signifie que la distance de f(z) & ¢ peut étre rendue
r—a

inférieure a tout nombre € > 0 donné, a condition que la distance de = & a soit assez petite.

Limite d’une fonction en +oo.
Définition.
Soient f : I — R. On suppose que +oco est une borne de I. On dit que :

o f admet une limite (finie) £ € R en +o0, notée f(x) = ¢ ou hrf fl@)=1¢,si:
Tr—r+00 Tr—r+00

Ve>0,JAeR, Ve el, z>A = |f(z)—{ <e.

e f admet pour limite +00 en 400, notée f(r) — +ooou lim f(x)=+oo,si:
xr—+00 Tr— 400

YVMeR, JAER, Vo el, 2>A = f(z)>M.

o f admet pour limite —oco en 400, notée f(r) — —ooou lim f(z)= —oo,si:
r—4-00 T—+00

VMeR, JAER, Vo el, 2>A = f(z)<M.

Remarque. Dans le cas ou f(x) —+> ¢, la définition signifie que la distance de f(z) & £ peut étre rendue
r—r+00

inférieure a tout nombre € > 0 donné, a condition que z soit assez grand.
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Limite d’une fonction en —oo.

Définition.

Soient f: I — R. On suppose que —oo est une borne de I. On dit que :

o f admet une limite (finie) £ € R en —oo, notée f(x) — fou lim f(x)=4¢, si:
T—r—00

Tr—r—00

Ve>0,3dBeR, Veel, 2<B = |f(zx)—{ <e.

e f admet pour limite +00 en —oo, notée f(x) — -+oo ou
—00

lim f(z) = +o0, si:
r— — 00

r—r

VM eR, IBeR, Vzel, z<B = f(z)> M.

o f admet pour limite —oco en —oo, notée f(r) — —ooou lim f(x)= —o0,si:

Tr—r—00 r—r—00

YVNeER, 3BBeR, Vzel, z<B = f(z) <N.

Remarques.

e Soit f:I =R, aeletlcR. Par définition :

f(x) — £ si, et seulement si, |f(x)—¢] — 0.

r—a T—a

En particulier, f(z) — 0 si, et seulement si, |f(x)] — 0.
r—a r—a

e Comme pour le cas des limites de suites, les inégalités larges peuvent étre remplacées par des inégalités
strictes dans les définitions.

e Dans le cas des limites finies, I'inégalité est d’autant plus contraignante que € est petit. On peut donc
se contenter d’étudier le cas ol € est inférieure a une valeur ey donnée, par exemple « Ve € ]0,1[ » ou
« Ve €10, [ »

De méme, dans le cas des limites égales a +o0o, on peut remplacer « VM € R » par « VM > 0 » par
exemple, et dans le cas des limites égales & —oo, « VM € R » par « VM < 0 ».

Formulation unique en termes de voisinages

Définition.

Soit @ € R. On appelle voisinage de a tout ensemble de réels de la forme :

o [a—¢e,a+c¢]avec e > 0sia est un réel ; o | —00,B]avec B€Rsia=—o0.

o [A,+oo]avec A€ R sia=~+00;

On note 7, ’ensemble des voisinages de a.

Définition.

Soient f: I — R une fonction et a € I.

On dit que f vérifie la propriété & au voisinage de a s’il existe un voisinage V' de a tel que f vérifie & sur
Inv.

Exemples.

e La fonction o + 22 — x est positive au voisinage de +oc0. En effet, V = [1, +-00[ est un voisinage de +oo
sur lequel 2 —x>0.

« La fonction In est négative au voisinage de 0, par exemple car In(z) < 0 pour tout z € [-1,1] NR..

« La fonction exp est bornée au voisinage de —oo, par exemple car 0 < exp(z) < 1 sur | — oo, —1].
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Soient f: I - R,aeletleR.
Alors f(x) — ¢ si, et seulement si, pour tout voisinage V' de ¢, f est & valeur dans V' au voisinage
Tr—a

de a. Soit encore :
VWe,WeV,,Vrel, zeU = f(x)eV.

1.2

Premiéres propriétés

Propriété 2 (Unicité de la limite)

Soient f: I —Retacl.

Si f admet une limite finie en a, cette limite est unique. On la note lim f(z) ou lim f.
r—a a

2

=~

— Propriété 3

Danger.

On utilisera la notation lim f(z) uniquement aprés avoir montré ’existence d’une telle limite en a.
r—a

Soit f: I — R. Soit a € I, de sorte que f est définie en a.
Si f admet une limite £ € R en a, alors £ = f(a) (et en particulier, £ € R).

— Propriété 4

Soient f: I —R,a€ et leR. Silim f(z) =/, alors lij}n |f(z)| = |4

r—a

— Propriété 5

Soient f: I - Retacl.

Si f admet une limite finie en a, alors f est bornée au voisinage de a.

— Propriété 6

Soient f: I - Reta€ .

Si f admet une limite £ > 0 en a, alors f est minorée au voisinage de a par un réel strictement
positif.

Remarque. En particulier, si f admet une limite non nulle en a, alors f est non nulle au voisinage de a : il
suffit d’appliquer la proposition précédente a |f].
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1.3 Limites a droite et a gauche

[e]
Dans toute cette section, a est un réel appartenant & I et f une fonction définie sur I ou I\ {a}.
Définition.
e On dit que f admet une limite a gauche en a si firn]—oc,q @dmet une limite en a.

Cette limite est alors notée lim f(z) ou lim f(x).

r—a r<a

« On dit que f admet une limite a droite en a si fi1 A)a,+00] admet une limite en a.

Cette limite est alors notée lim f(x) ou lim f(x)
r—at Ta

r>a

Exemples. lim |2] =0, lim |2] =1, lim tan(z) = 400, lim tan(xz)= —oc.
z—1- z—1+t L P

— Propriété 7
o Si f est définie en a, alors

lim f(z) = ¢ € R si, et seulement si, lim f(z) = lim f(z)="/{et { = f(a).

r—a z—at r—a~

e Si f n’est pas définie en a, alors

lim f(z) = ¢ € R si, et seulement si, lim f(z) = lim f(x)= /.
T—a z—at T—a~

Exemples.

l—e® siz>0
0 c zi z Z 0 Puisque wlirgl_ flz)=0= Ilir(r]l+ f(z) et

e Soit f la fonction définie sur R par f(z) = {

que f(0) =0, alors lim f(z) = 0.
z—0

1 iz=0
S . Alors lim g(z) =0= lirg+ g(x). Mais comme
x—

« Soit g la fonction défini R =
01t g la ronction demnnie sur par g(:E) {O Si:l??éo r—0—

g9(0) =1 +# 0, g n’admet pas de limite en 0.

o Soit h la fonction définie sur R* par h(z) = m Puisque lim h(xz) = —1 et lim h(z) = 1, h n’admet
x

z—0~ z—0F
pas de limite en 0.

1.4 Caractérisation séquentielle de la limite

Théoréme 8 (Caractérisation séquentielle de la limite)

Soient f: I —R,a€IetlcR. Ilya équivalence entre :

(i) lm f(z) =¢;

Tr—ra

(ii) pour toute suite (z,) & valeurs dans I qui tend vers a, la suite (f(x,)) tend vers £.
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% Méthode. Comment montrer qu’une fonction n’admet pas de limite ?

Pour montrer qu’une fonction n’admet pas de limite en a, on peut chercher deux suites (Xn)nen €t (Yn)nen
qui tendent vers a et telles que (f(zn))nen €t (f(yn))nen ont deux limites différentes.

Exercice 1. La fonction f définie sur RY par f(z) = sin (%) admet-elle une limite en 0 7

1.5 Opérations sur les limites

— Propriété 9

Soient a € I et f,g : I — R deux fonctions admettant des limites finies £ et # € R quand = tend
vers a. Alors :

« pour tout (\, i) € R?, liin A+ pg)(x) =M+ ul'.

o lim f(z)g(z) =00

T—a

L
o Sil #£0, f(@) est définie au voisinage de a et lim M = —

9(x) avag(x) L

Remarque. Ces formules se généralisent aux cas des limites infinies en a, sauf en cas de formes indéterminées
du type :
+oo 0

00— 00, 0x (£o0), I O
00

— Propriété 10

Soient a € I et f,g: I — R deux fonctions telles que lim f(x) = 0 et g est bornée au voisinage de
r—a

a. Alors lim f(x) x g(x) existe et vaut 0.
r—a

— Propriété 11 (Composition des limites)

Soient f: I —Ret g:J— R telles que f(I) CJ. Soient a € I, be Jet £ €R.
Si lim f(z) = b et lim g(z) = ¢, alors lim (g o f)(x) = ¢.
T—ra r—b T—ra

1.6 Limites et inégalités

Propriété 12 (Passage a la limite dans les inégalités larges)

Soient f,g: I — R deux fonctions et a € I.
Si lim f(z) =¢ € Ret lim g(z) =¢ € R, et si f(x) < g(x) au voisinage de a, alors £ < ¢'.
Tr—a

T—ra

& Mise en garde.

Il n’y a pas de résultat analogue avec des inégalités strictes : les inégalités strictes deviennent larges par
passage a la limite.
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2 Théoremes d’existence de limites

2.1 Théoréme d’encadrement

Théoreme 13 (d’encadrement)

Soient f, g et h trois fonctions définies sur I, £ € R et a € I. Supposons que :

o f(z) < g(z) < h(z) au voisinage de a ; o lim f(z) =/ et lim h(z) =¢.

r—a r—a

Alors lim g(z) existe et vaut £.
Tr—ra

— Propriété 14

Soient a € I, f et g deux fonctions de I dans R telles que f(z) < g(z) au voisinage de a.

e Si lim f(z) = 400, alors lim g(z) = +o0. o Si lim g(z) = —o0, alors lim f(z) = —o0.
r—a T—a

T—a T—ra

2.2 Cas des fonctions monotones

Théoreme 15 (de la limite monotone)

Soient —oo < a < b < 400 et f:]a,b[ = R une fonction croissante®.

e Si f est majorée, alors f admet une limite finie en b et lim f(x)

= sup f(z).
T—b z€]a,b|
Sinon lim f(z) = +o0.
r—b
e Si f est minorée, alors f admet une limite finie en a et liLn f(z) = i?fb[f(:lc).
r—a z€]a,
Sinon lim f(z) = —o0.
r—a

%On dispose d’un énoncé analogue dans le cas ou f est décroissante.

x
Exercice 2. Montrer que la fonction = — F(x) = / e dt admet une limite finie en +oc.
0

— Propriété 16

Soient f : I — R une fonction monotone et a € I. Alors, f admet des limites finies & gauche et a
droite en a. De plus :

o lim f(z) < f(a) < lim f(z) si f est croissante ;
z—a~ z—at

e lim f(z) < f(a) < lim f(x) si f est décroissante.
z—at r—a~
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3 Continuité

3.1 Continuité en un point

Définition de la continuité en un point

Définition.

" [soit f:T—sRetacl.

On dit que f est continue en a si f admet une limite finie en a, nécessairement égale & f(a).

Autrement dit, f est continue en a si, et seulement si :

Ve>0,3dn>0,Veel, |[zx—al<n = |f(x)—f(a)|<ce

Exercice 3. Soit a € R;. Montrer que la fonction z — /z est continue en a.

Continuité a droite et a gauche
Définition.
Soient f : I — R une fonction et a € I. On dit que :

o f est continue d gauche en a si lim f(z) = f(a) ;
r—a—

o f est continue a droite en a si lim f(z) = f(a).
z—at

Exemples.

o La fonction partie entiére x — |z est continue & droite en tout point de R mais elle n’est continue a
gauche qu’aux points de R \ Z.

2 1 — <
14 —<
-2 1 2 3
- |
o 21

Courbe représentative de la fonction partie entiére.

e La fonction f représentée ici admet une limite a droite égale a la limite a gauche en
x = 2. Elle n’est cependant pas continue en x = 2, ni méme a gauche ou a droite, puisque cette limite
n’est pas égale & f(2).
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Propriété 17

[e]
Soient f : I — R une fonction et a € I.

La fonction f est continue en a si, et seulement si, f est continue a droite et & gauche en a.

Prolongement par continuité

Définition.

“[SoitaeIet f:I\{a} — R une fonction.

On dit que f est prolongeable par continuité en a s’il existe une fonction f: I — R continue en a et telle
que fingay = f-

— Propriété 18

Soit a € I et f: I\{a} — R une fonction.
Alors f est prolongeable par continuité en a si, et seulement si, f admet une limite finie £ en a.
Dans ce cas, un tel prolongement f : I — R est unique, donné par :

: {f(x) sizta

Tx .
f 4 siz=a

On l'appelle le prolongement par continuité de f en a. On le notera souvent f sans distinction par
abus de notation.

Exemples.
L . L. . sin(z) .
o Considérons la fonction f définie sur R* par f(z) = . Puisque f(z) — 1, on peut donc prolonger
X r—r
f par continuité en 0 en posant :
sin(x) .

z siz#0

fay=1{ "= 70
1 siz=0

Ce prolongement est appelé sinus cardinal.

4

Courbe représentative de la fonction sinus cardinal.

e Soit o € R. On rappelle que la fonction puissance d’exposant «, notée p,, est définie sur R* par :

a _ aln(r)'

Pala) = a® =
Sia >0, lin%) (@) = 0 et p, peut étre prolongée par continuité en 0 en posant p,(0) = 0.
r—r

Sia<0, limO ™) — 450 et p, ne peut pas étre prolongée par continuité en 0.
rT—r
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Caractérisation séquentielle de la continuité

— Propriété 19 (Caractérisation séquentielle de la continuité en un point)

Soient f: I — Retael. Ilya équivalence entre :
(i) f est continue en a ;

(ii) pour toute suite (x,)nen d’éléments de I convergeant vers a, la suite (f(z,)) converge vers f(a).

Exemple. Soient f: I — I une fonction continue, et (u,) une suite définie par ug € I et pour tout n € N :

Un1 = fun). (%)

Si (uy,) converge vers une limite finie £ € I, alors £ est nécessairement un point fixe de f. En effet, puisque f
est continue en ¢, on obtient par caractérisation séquentielle, en faisant tendre n vers +o0o dans (x) :

= f(0).
Exercice 4. Montrer que la fonction caractéristique 1g est discontinue en tout point de R.
3.2 Continuité sur un intervalle
Définition.

On dit que f : I — R est continue sur l’intervalle I si elle est continue en tout point de I.
On note ¢°(I,R) ou € (I, R) Pensemble des fonctions continues de I dans R.

Exemples. La fonction racine carrée est continue sur R, la fonction partie entiere est continue sur chaque
intervalle [n,n + 1] avec n € Z.

— Propriété 20 (Opérations sur les fonctions continues)

Soient f et g des fonctions continues sur I et (\, ) € R?.

(1) Les fonctions Af 4+ g, f X g sont continue sur I.

(2) Si de plus, g ne s’annule pas sur I, i est continue sur I.
g

Exemples. La fonction idg étant continue sur R, les fonctions polynomiales le sont également en tant que
sommes et produits de fonctions continues. De méme, les fonctions rationnelles sont continues sur leur ensemble
de définition.

Propriété 21

Soient f: I — R continue sur I et g : J — R continue sur J, avec f(I) C J. Alors, la fonction g o f
est continue sur .

10
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Définition.

Une fonction f: I — R est dite lipschitzienne sur I s’il existe un nombre réel &k > 0 tel que :

V(z,2') € I?, |f(z) - f(a')] < K|z —2'].

On dira plus particulierement dans ce cas que f est k-lipschitzienne.

Exercice 5. Montrer que la fonction valeur absolue est 1-lipschitziennes sur R.

Propriété 22

Soit f: I — R. Si f est lipschitzienne sur I, alors f est continue sur I.

& Mise en garde.

La réciproque est fausse en général : par exemple, la fonction x — /x est continue sur R, mais elle n’est
pas lipschitzienne sur R;. En effet, dans le cas contraire, il existerait £ > 0 tel que :

W(z,a') €RE, |[VE—Va| < kla—a'| = KVE - Va| x [Va +Va .

D’ou pour x # z’ :
1< k(Vz + V'),

ce qui est faux si on choisit z et z’ suffisamment petits.

Remarque. La fonction valeur absolue est continue sur R car lipschitzienne. On en déduit en particulier que
si f est une fonction continue sur un intervalle I, alors |f| l’est aussi par composition de fonctions continues.

Exercice 6. Montrer que, si f,g: I — R sont continues sur I, alors sup(f,g) et inf(f, g) sont continues sur I.

3.3 Image continue d’un intervalle

Théoreme 23 (des valeurs intermédiaires)

Soient a et b deux réels pour lesquels a < b et f € €([a,b],R).
Pour tout y compris entre f(a) et f(b), il existe ¢ € [a, ] tel que f(c) = y.

Remarques.
o Le réel ¢ € [a,b] tel que f(c) =y n’est pas unique en général.

e On dit souvent qu’'une fonction est continue sur un intervalle quand on peut la tracer « sans lever le
crayon ». Cela n’apparait pourtant pas clairement dans la définition de la continuité. C’est en fait une
conséquence du théoreme des valeurs intermédiaires.

-
Le saviez-vous 7

Le mathématicien tcheque Bernard Bolzano (i7si-1sas) est I'un de ces oubliés dont on a retrouvé les résultats
scientifiques de maniére posthume. Prétre dans ’empire autrichien (plus précisément en Bohéme), son activité
mathématique peut étre essentiellement séparée en deux pans distincts :

e d’une part, son travail sur les « fonctions » qui ’amene & définir la continuité et a adopter une approche
rigoureuse, par exemple pour démontrer la propriété des valeurs intermédiaires ;

e d’autre part, un important travail de logicien pour fournir des bases a tous les domaines scientifiques,
qui influencera la génération suivante, notamment Georg Cantor ou Richard Dedekind.

11
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Exercice 7. Soit f une fonction continue sur I et ne s’annulant pas sur I. Montrer que f garde un signe
constant sur 1.

Corollaire 24

L’image d’un intervalle par une fonction continue est un intervalle.

Remarque. L’intervalle de départ et 'intervalle image ne sont pas en général de méme nature (c’est-a-dire
ouvert, semi-ouvert ou fermé). Par exemple si f est la fonction sinus :

f(] _Waﬂ—[) = [_171}’ f(]ovﬂ[) :]07 ”

— Propriété 25

Soit f : I — R une fonction continue.

Alors f est injective sur I si, et seulement si, f est strictement monotone.

Théoréme 26 (de la bijection)

Soit f une fonction continue et strictement monotone sur un intervalle I de R. Alors :
o J = f(I) est un intervalle, et f réalise une bijection de I sur J = f(I) ;

« son application réciproque f~! est elle-méme continue sur J, strictement monotone et de
méme sens de variation que f.

Remarque. Avec 'hypothese supplémentaire de stricte monotonie, on peut montrer que les intervalles I et
J = f(I) sont cette fois de méme nature. Par exemple, si f : [a,b[— R est continue et strictement croissante,

je vous laisse montrer que f([a,b]) = {f(a), liII)nf {

3.4 Image continue d’un segment

Théoréme 27 (des bornes atteintes)

Une fonction continue sur un segment est bornée et atteint ses bornes.

Autrement dit, si f : [a,b] — R est continue sur [a, b], alors f posséde un maximum et un minimum
sur [a,b] : il existe (c,d) € [a,b]? tel que :

Ve elabl, f(o) < f(z) < f(d).

— Corollaire 28

L’image d’un segment par une fonction continue est un segment.

12



MP21 Lycée Roosevelt

4 Extension aux fonctions a valeurs dans C

Comme pour les suites, on peut étendre aux fonctions complexes toutes les propriétés des fonctions réelles qui ne
font pas référence a la notion d’ordre sur R. Les propriétés faisant intervenir la valeur absolue seront étendues

en la remplagant par le module.

% Notation.
Soit f: I — C. On note Re(f) et Im(f) les fonctions de I dans R définies par :

Ve eI, Re(f)(x)=Re(f(x)) et Im(f)()=Im(f(z)).

Définition.
Soient f: T — Cetac 1.

On dit que f admet une limite (finie) £ € C en a, et on note lim f(z) =4, si :
r—a

Ve>0,3dn>0,Veel, |x—al<n = |f(x)—¢ <e.

— Propriété 29

Soient f: I — Cetacl.
Alors f admet une limite en a si, et seulement si, Re(f) et Im(f) admettent des limites finies en a,
et alors :

lim f(x) = lim Re(f)(z) + ¢ lim Im(f)(z).

r—a r—a r—a

— Corollaire 30

Soit f: I — C. Si lim f(x) = £ alors lim f(z) = £.
r—a T—ra

Définition.
Soit f : I — C une fonction. On dit que :

o fest continue en a € I si lim f(z) = f(a) ;

T—ra

o f est continue sur I si f est continue en tout point de I.

— Propriété 31
Soit f : I — C une fonction a valeurs complexes. Alors :

f est continue sur I <= Re(f) et Im(f) sont continues sur I.

— Corollaire 32

Si f: I — C est continue sur I, alors |f]| est continue sur I.

13
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Définition.
Soit f : I — C une fonction a valeurs complexes.

On dit que f est bornée si la fonction réelle |f| est bornée, c’est-a-dire s’il existe M € R tel que :

Veel, |f(z)] <M.

— Propriété 33

Si f: I — C admet une limite en a € I, alors f est bornée au voisinage de a.

— Propriété 34

Soit f : [a,b] — C une fonction & valeurs complexes continue sur un segment [a,b]. Alors f est
bornée.

Remarque. Résumons par un tableau ce qui reste valable ou non pour les fonctions a valeurs complexes.

Ce qui reste valable dans C I Ce qui n’est plus valable dans C I
Unicité de la limite Majorant /minorant/maximum/minimum
Une fonction ayant une limite finie en a Monotonie
est bornée au voisinage de a Limites infinies
Opérations sur les limites Passage a la limite dans les inégalités
Opérations sur les fonctions continues Théoreme d’encadrement
Théoréme de la limite monotone
Théoréme des valeurs intermédiaires
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