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MP2I Lycée Roosevelt

1 Matrices et opérations sur les matrices
Dans tout le chapitre, K désigne l’ensemble des nombres réels R ou des nombres complexes C, n, p, q et r des
entiers supérieurs ou égaux à 1. Les éléments de K sont appelés des scalaires.

1.1 Définitions
Définition.

On appelle matrice à n lignes et p colonnes à coefficients dans K toute famille A = (ai,j)1≤i≤n
1≤j≤p

d’éléments de

K indexée par J1, nK× J1, pK. On représente cette matrice sous forme d’un tableau de la manière suivante :

A =


a1,1 a1,2 . . . a1,p

a2,1 a2,2 . . . a2,p

...
... . . . ...

an,1 an,2 . . . an,p

 .

Pour tout (i, j) ∈ J1, nK× J1, pK, le scalaire ai,j est appelé coefficient d’indice (i, j) de A, aussi noté [A]i,j , la

matrice
(
ai,1 . . . ai,p

)
est la ième ligne de A et la matrice

a1,j

...
an,j

 sa jème colonne.

L’ensemble des matrices de taille (n, p), c’est-à-dire à n lignes et p colonnes, est noté Mn,p(K).

Remarque. Par définition, deux matrices sont égales si, et seulement si, elles sont de même taille et tous leurs
coefficients sont égaux.

Exemple. A =
(

1 0 −2
3 −1 5

)
est une matrice de taille (2, 3) telle que [A]1,2 = 0 et [A]2,3 = 5.

Exemple. Dans Mn,p(K), on définit pour tout (i, j) ∈ J1, nK× J1, pK la matrice notée Ei,j suivante :

Ei,j =



0 . . . 0 . . . 0
...

...
...

0 . . . 1 . . . 0
...

...
...

0 . . . 0 . . . 0

 ,

où l’unique coefficient non nul égal à 1 est en position (i, j). Les n × p matrices Ei,j sont appelées matrices
élémentaires.

Définition.

• Lorsque n = p, on parle de matrices carrées de taille n, et on note Mn(K) au lieu de Mn,p(K).
Si A ∈Mn(K), la famille ([A]1,1, . . . , [A]n,n) est appelée diagonale de A.

• Les matrices de taille (n, 1) sont appelées matrices colonnes de taille n, et les matrices de taille (1, p)
des matrices lignes de taille p.
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Définition.

• La matrice nulle de Mn,p(K) est la matrice dont tous les coefficients sont nuls. On la note 0n,p, ou
simplement 0n si n = p.

• La matrice identité d’ordre n est la matrice de Mn(K), notée In, dont tous les coefficients diagonaux
sont égaux à 1, les autres étant égaux à 0 :

In =


1 0 . . . 0

0 1 . . . ...
... . . . . . . 0
0 . . . 0 1

 .

Il sera particulièrement utile dans ce chapitre d’utiliser le symbole de Kronecker , défini par :

∀(i, j) ∈ J1, nK× J1, pK, δi,j =
{

1 si i = j

0 si i ̸= j
.

Avec cette notation, on peut récrire In = (δi,j)1≤i,j≤n et Ei,j = (δk,iδℓ,j)1≤k≤n
1≤ℓ≤p

.

� Notation.

1.2 L’espace vectoriel Mn,p(K)
Définition.

Soient A, B ∈Mn,p(K) et λ ∈ K un scalaire. On définit les matrices A + B et λ ·A de Mn,p(K) par :

∀(i, j) ∈ [[1, n]]× [[1, p]], [A + B]i,j = [A]i,j + [B]i,j et [λ ·A]i,j = λ× [A]i,j .

L’addition de deux matrices de tailles différentes n’est pas définie.

Mise en garde.

Exemple. Calculer 2

 1 0
−2 3
− 1

2 5

+

 3 1
2 −5
−1 0

 =

L’addition dans Mn,p(K) satisfait les propriétés suivantes :

(1) Elle est associative : ∀(A, B, C) ∈ (Mn,p(K))3
, (A + B) + C = A + (B + C).

La somme de trois matrices A, B, C pourra ainsi être notée A + B + C sans parenthèse.

(2) Elle est commutative : ∀(A, B) ∈ (Mn,p(K))2
, A + B = B + A.

(3) Elle admet 0n,p pour élément neutre : ∀A ∈Mn,p(K), 0n,p + A = A + 0n,p = A.

(4) Tout élément A ∈Mn,p(K) admet un symétrique : ∃B ∈Mn,p(K), B + A = A + B = 0n,p.
Un tel élément est unique : c’est (−1) ·A, que l’on notera plus simplement −A.

Propriété 1 (de l’addition)
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Soient A, B ∈Mn,p(K) et λ, µ ∈ K des scalaires. Alors :

(1) λ · (A + B) = λ ·A + λ ·B ;

(2) (λ + µ) ·A = λ ·A + µ ·A ;

(3) λ · (µ ·A) = (λµ) ·A.

Propriété 2 (du produit par un scalaire)

Soit A = (ai,j)1≤i≤n
1≤j≤p

∈Mn,p(K). Alors :

A =
n∑

i=1

p∑
j=1

ai,jEi,j .

On dit que A s’écrit comme une combinaison linéaire des matrices Ei,j .
Cette écriture est de plus unique : pour toute famille (λi,j)1≤i≤n

1≤j≤p
de scalaires, si :

A =
n∑

i=1

p∑
j=1

λi,jEi,j ,

alors λk,ℓ = ak,ℓ pour tout (k, ℓ) ∈ J1, nK× J1, pK.

Propriété 3 (Base canonique des matrices élémentaires de Mn,p(K))

Exemple. Si A =
(

1 0 −2
3 −1 5

)
, alors : A = E1,1 − 2E1,3 + 3E2,1 − E2,2 + 5E2,3.

1.3 Produit matriciel
Définition.

Soient A ∈Mn,p(K) et B ∈Mp,q(K). On définit la matrice C = A×B de Mn,q(K) par :

∀(i, j) ∈ [[1, n]]× [[1, q]], [C]i,j =
p∑

k=1
[A]i,k × [B]k,j

Pour pouvoir effectuer le produit de A par B, il faut impérativement que le nombre de colonnes de A soit
égal au nombre de lignes de B.

A Danger.

Exercice 1. On considère les matrices suivantes :

A =

3 5
1 −4
0 2

 , B =
(

2 1 −3
4 0 0

)
, C =

(
1 0
0 1

)
.

Calculer, s’ils sont définis, les produits deux à deux de ces matrices.
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Le produit matriciel satisfait les propriétés suivantes :

(1) Il est associatif : pour tout (A, B, C) ∈Mn,p(K)×Mp,q(K)×Mq,r(K),

(A×B)× C = A× (B × C).

Ainsi, le produit de trois matrices A, B et C pourra être noté A×B × C sans parenthèses.

(2) Il est bilinéaire : pour tous A, A′ ∈Mn,p(K), B, B′ ∈Mp,q(K) et (λ, µ) ∈ K2,

A×(λ ·B +µ ·B′) = λ ·(A×B)+µ ·(A×B′) et (λ ·A+µ ·A′)×B = λ ·(A×B)+µ ·(A′×B).

(3) Pour tous (A, B) ∈Mn,p(K)×Mp,q(K) et λ ∈ K : λ · (A×B) = (λ ·A)×B) = A× (λ ·B).

(4) Pour tout A ∈Mn,p : In ×A = A× Ip = A et 0n ×A = A× 0p = 0n,p.

Propriété 4 (du produit matriciel)

• Le produit matriciel n’est pas commutatif, comme le montre l’exemple suivant :(
0 1
0 0

)
×
(

0 0
1 0

)
=
(

1 0
0 0

)
̸=
(

0 0
0 1

)
=
(

0 0
1 0

)
×
(

0 1
0 0

)
.

Notons cependant que la matrice In, et plus généralement les matrices λ · In avec λ ∈ K, commutent
avec toutes les matrices carrées de taille n.

• Un produit de matrices peut être nul sans qu’aucune d’entre elles le soit. Par exemple :(
0 1
0 0

)
×
(

0 1
0 0

)
=
(

0 0
0 0

)
.

A Danger.

Soit A ∈Mn,p(K). Pour tous i ∈ J1, nK et j ∈ J1, pK :

A×



0
...
1
...
0

← Position j et
(
0 · · · 1 · · · 0

)
↑

Position i

×A

sont respectivement la j-ème colonne de A et sa i-ème ligne.

Plus généralement, pour tout X =

x1
...

xp

 ∈Mp,1(K) : AX = x1C1 + · · ·+ xpCp.

Propriété 5 (Multiplication par une ligne ou une colonne)

Exemple.
(

1 3
2 4

)(
5
6

)
= 5

(
1
2

)
+ 6

(
3
4

)
.
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Il peut être utile pour certains calculs d’effectuer un produit matriciel colonne par colonne :

AB =
(
AC1(B) . . . ACq(B)

)
en notant C1(B), · · · , Cq(B) les colonnes de B.

Astuce.

Exercice 2. Montrer l’égalité suivante dans Mn(K), où i, j, k, ℓ ∈ J1, nK :

Ei,j × Ek,ℓ = δj,kEi,ℓ.

1.4 Transposée
Définition.

Soit A ∈Mn,p(K). On appelle transposée de A la matrice de Mp,n(K), notée A⊤ ou tA, définie par :

∀(i, j) ∈ [[1, p]]× [[1, n]], [A⊤]i,j = [A]j,i.

Autrement dit, A⊤ est obtenue à partir de A par échange de ses lignes et de ses colonnes.

Exemple.
(

3 1 0
5 −4 2

)⊤

=

3 5
1 −4
0 2

.

(1) Involutivité : ∀A ∈Mn,p(K),
(
A⊤)⊤ = A.

(2) Linéarité : ∀λ, µ ∈ K, ∀(A, B) ∈Mn,p(K)2, (λ ·A + µ ·B)⊤ = λ ·A⊤ + µ ·B⊤.

(3) Effet sur un produit : ∀A ∈Mn,p(K), ∀B ∈Mp,q(K), (A×B)⊤ = B⊤ ×A⊤.

Propriété 6 (de la transposition)

Définition.
Une matrice carrée A est dite :

• symétrique si A⊤ = A ; • antisymétrique si A⊤ = −A.

On notera Sn(K) (resp. An(K)) l’ensemble des matrices symétriques (resp. antisymétriques) de Mn(K).

Exemple.

1 0 4
0 2 −1
4 −1 5

 est symétrique,

 0 2 −1
−2 0 1
1 −1 0

 est antisymétrique.

Remarque. La diagonale d’une matrice antisymétrique est toujours nulle.

2 Systèmes linéaires
2.1 Écriture matricielle d’un système linéaire
Considérons le système (S ) suivant à n équations et p inconnues à coefficients dans K :

(S ) :


a1,1x1 + · · ·+ a1,pxp = b1
a2,1x1 + · · ·+ a2,pxp = b2

...
...

an,1x1 + · · ·+ an,pxp = bn

On appelle système homogène associé à (S ) le système (S0) obtenu en remplaçant le second membre (b1, . . . , bn)
par (0, . . . , 0).
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Définition.
On appelle matrice des coefficients de (S ) la matrice :

A =

a1,1 . . . a1,p

...
...

an,1 . . . an,p

 ∈Mn,p(K).

On note B =

b1
...

bp

 ∈ Mp,1(K) la matrice colonne des seconds membres, et X =

x1
...

xp

 ∈ Mp,1(K) la

matrice colonne des inconnues.

Avec les notations introduites précédemment :

(x1, . . . , xp) ∈ Kp est solution de (S ) ⇔ X =

x1
...

xp

 ∈Mp,1(K) est solution de AX = B.

Propriété 7

Le système AX = B est compatible (c’est-à-dire admet des solutions) si, et seulement si, B est
combinaison linéaire des colonnes de A.

Propriété 8 (CNS de compatibilité)

Le mot matrice est formé sur le mot latin mater qui signifie mère. Il apparait
au Moyen Âge dans son sens anatomique d’utérus. Comme on enregistrait les
enfants à la naissance, il désigna rapidement le registre où on les inscrivait,
d’où les mots matricule et immatriculation.
Au début de l’imprimerie, matrice désignait le moule à imprimer sur lequel on
place les caractères. Par analogie, James Joseph Sylvester (1814 - 1897) utilisa ce
mot pour nommer le tableau où l’on enregistre les coefficients d’un système
linéaire. Son ami Arthur Cayley (1821 - 1895) introduisit les opérations usuelles
du calcul matriciel (addition, multiplication), et jeta les bases de la théorie des
matrice. Arthur Cayley (1821 - 1895).

Le saviez-vous ?

2.2 Structure des solutions d’un système linéaire

Soit (S0) un système homogène de n équations à p inconnues, d’écriture matricielle AX = 0n,1.
Alors l’ensemble E0 de ses solutions est un sous-espace vectoriel de Mp,1(K), c’est-à-dire :

(1) 0p,1 appartient à E0 ;

(2) pour tous X1, X2 dans E0, pour tout (λ, µ) ∈ K2 :

λ ·X1 + µ ·X2 ∈ E0.

Propriété 9 (Structure des solutions d’un système homogène)
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Soit (S ) un système de n équations à p inconnues d’écriture matricielle AX = B, (S0) son système
homogène associé. Notons E (resp. E0) l’ensemble des solutions de (S ) (resp. (S0)).
Soit X0 ∈Mp,1(K) une solution particulière de (S ). Alors pour tout X ∈Mp,1(K) :

X ∈ E ⇔ X −X0 ∈ E0.

Ainsi : E = X0 + E0 = {X0 + Y, Y ∈ E0}.

Propriété 10 (Structure des solutions d’un système avec second membre)

Exercice 3. Résoudre le système (S ) :
{

x− y + z = 1
x + 2y + z = −2

.

2.3 Matrices d’opérations élémentaires
Définition.

On appelle opération élémentaire sur les lignes d’une matrice l’une des trois opérations suivantes :

(i) multiplication d’une ligne Li par un scalaire α non nul, qu’on notera Li ← α · Li ;

(ii) ajout de β · Lj à Li avec i ̸= j, qu’on notera Li ← Li + β · Lj où β ∈ K ;

(iii) échange des lignes Li et Lj avec i ̸= j, qu’on notera Li ↔ Lj ;

Comme pour les systèmes, on précisera bien à chaque étape les opérations élémentaires qu’on a effectuées
pour passer d’une matrice à une autre.

� Rédaction.

Remarque. L’opération élémentaire (iii) n’est pas nécessaire car elle peut être réalisée à partir des deux
premières. En effet, l’échange des lignes i et j peut être obtenu ainsi :

• Étape 1 : on effectue Li ← Li − Lj ;

• Étape 2 : on effectue Lj ← Lj + Li ;

• Étape 3 : on effectue Li ← Li − Lj ;

• Étape 4 : on effectue Li ← −Li.

Les contenus successifs des lignes i et j (dans cet ordre) sont alors :

(Li, Lj)→ (Li − Lj , Lj)→ (Li − Lj , Li)→ (−Lj , Li)

Définition.
On définit les matrices d’opérations élémentaires suivantes :

• on appelle matrice de dilatation toute matrice Di(α) ∈ Mn(K) de la forme suivante, où i ∈ J1, nK et
α ∈ K différent de 0 :

Di(α) = In + (α− 1)Ei,i.

• on appelle matrice de transvection toute matrice Ti,j(β) ∈ Mn(K) de la forme suivante, où (i, j) ∈
J1, nK2 tel que i ̸= j et β ∈ K :

Ti,j(β) = In + βEi,j .

• on appelle matrice de transposition toute matrice Pi,j ∈Mn(K) de la forme suivante, où (i, j) ∈ J1, nK2

tel que i < j :
Pi,j = (In − Ei,i − Ej,j) + Ei,j + Ej,i.
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Exemple. Pour n = 3 par exemple :

D1(α) =

α 0 0
0 1 0
0 0 1

 , T1,3(β) =

1 0 β
0 1 0
0 0 1

 , P1,2 =

0 1 0
1 0 0
0 0 1

 .

Soit A ∈Mn,p(K). Alors :

(1) Di(α)A est la matrice obtenue en effectuant Li ← α · Li sur les lignes de A.

(2) Ti,j(β)A est la matrice obtenue en effectuant Li ← Li + β · Lj sur les lignes de A.

(3) Pi,jA est la matrice obtenue en effectuant Li ↔ Lj sur les lignes de A.

Propriété 11

Puisque Ti,j(β) = Ti,j(β)× In, Ti,j(β) est la matrice obtenue en appliquant Li ← Li + β · Lj à In. Cette
remarque permet de retrouver l’expression de Ti,j(β). Elle vaut également pour les matrices Di(α) et Pi,j .

Astuce.

Définition.
On dit que deux matrices A et B de Mn,p(K) sont équivalentes par lignes, et on note A

L∼ B, si on peut
passer de A à B par une suite d’opérations élémentaires sur les lignes de A.

Remarque. Par ce qui précède, A et B sont équivalentes par ligne si, et seulement si, il existe des matrices
d’opérations élémentaires M1, M2, . . . , Mk telles que A = Mk · · ·M2M1B.

2.4 Traduction matricielle de l’algorithme de Gauss-Jordan
Définition.

Une matrice est dite échelonnée par lignes si chaque ligne non nulle commence par strictement plus de zéros
que la ligne précédente, c’est-à-dire si elle est de la forme générale suivante :

E =


0 +⃝ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 +⃝ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 +⃝ ∗ ∗ ∗
0 0 0 0 0 0 0 +⃝ ∗
0 0 0 0 0 0 0 0 0


où +⃝ sont des réels non nuls et ∗ sont des réels.
Les réels +⃝ sont appelés les pivots de la matrice échelonnée par lignes. Ce sont les premiers coefficients non
nuls de chaque ligne non nulle.

Exemple. A =


1 5 −4 3
0 2 3 0
0 0 7 8
0 0 0 0

 est échelonnée par lignes, avec 1, 2 et 7 pour pivots, B =

 1 1 2 3
0 0 2 3
0 0 4 5


n’est pas échelonnée par lignes.

Pour toute matrice A ∈Mn,p(K), il existe une matrice E produit de matrices d’opérations élémen-
taires, et une matrice échelonnée par lignes R telles que E ×A = R.

Théorème 12
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Exercice 4. Soit A =

−2 1 −1
1 1 2
3 −2 1

. Déterminer une matrice E produit de matrices d’opérations élémen-

taires, et une matrice R échelonnée par lignes telles que E ×A = R.

2.5 Opérations sur les colonnes
Définition.

De manière analogue, on définit les trois opérations élémentaires suivantes sur les colonnes d’une matrice :

• multiplication d’une colonne Ci par un scalaire α non nul qu’on notera Ci ← α · Ci ;

• ajout de β · Cj à Ci avec i ̸= j, qu’on notera Ci ← Ci + β · Cj où β ∈ K ;

• échange des colonnes Ci et Cj avec i ̸= j, qu’on notera Ci ↔ Cj .

Définition.
On dit que deux matrices A et B de Mn,p(K) sont équivalentes par colonnes, et on note A

C∼ B, si on peut
passer de A à B par une suite d’opérations élémentaires sur les colonnes de A.

Soit A ∈Mn,p(K). Alors :

(1) ADi(α) est la matrice obtenue en effectuant Ci ← α · Ci sur les colonnes de A ;

(2) ATi,j(β) est la matrice obtenue en effectuant Cj ← Cj + β · Ci sur les colonnes de A ;

(3) APi,j est la matrice obtenue en effectuant Ci ↔ Cj sur les colonnes de A.

Propriété 13

Remarque. On retiendra bien que :

Opérations élémentaires . . . Multiplication par des matrices d’opérations élémentaires . . .
. . . sur les lignes . . . à gauche

. . . sur les colonnes . . . à droite

Pour résoudre un système linéaire, on fera des opérations élémentaires uniquement sur les lignes de la
matrice associée, jamais sur les colonnes. En effet, les opérations sur les lignes correspondent à celles qu’on
effectue sur le système pour sa résolution. À l’inverse, agir sur les colonnes correspondrait à modifier les
inconnues du système, et donc à changer l’ensemble des solutions.

Mise en garde.

3 Matrices carrées
3.1 L’algèbre Mn(K) des matrices carrées

L’addition matricielle et le produit matriciel sont des lois de compositions internes sur Mn(K),
c’est-à-dire pour tous A, B ∈Mn(K) :

A + B ∈Mn(K) et A×B ∈Mn(K).

Propriété 14
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Rappelons entre autres que :

• l’addition est associative, commutative, et qu’elle admet pour élément neutre la matrice nulle 0n ;

• le produit est associatif, distributif par rapport à l’addition, et qu’il admet pour élément neutre In.

On dit que Mn(K) muni de l’addition, du produit par un scalaire et du produit matriciel est une algèbre sur
K. Elle est de plus :

• non commutative : en général, A×B ̸= B ×A pour A, B ∈Mn(K) ;

• non intègre : il existe des matrices A, B ∈Mn(K) non nulles et telles que A×B = 0n.

3.2 Matrices carrées particulières
Définition.

Soit A ∈Mn(K) une matrice carrée. On dit que :

• A est une matrice scalaire s’il existe λ ∈ K tel que A = λ · In ;

• A est une matrice diagonale si [A]i,j = 0 pour tous i ̸= j ;

• A est triangulaire supérieure (resp. triangulaire inférieure) si [A]i,j = 0 pour tous i > j (resp. i < j),
c’est-à-dire si tous ses coefficients situés en dessous (resp. au dessus) de sa diagonale sont nuls ;

• A est triangulaire supérieure stricte (resp. inférieure stricte) si A est triangulaire supérieure (resp.
inférieure) et si de plus sa diagonale est nulle.

Pour λ1, . . . , λn ∈ K des scalaires, on note diag(λ1, . . . , λn) la matrice diagonale

λ1
. . .

λn

.

� Notation.

Exemples.

1 3 1
0 −1 5
0 0 2

 est triangulaire supérieure,

0 0 0
3 0 0
1 5 0

 est triangulaire inférieure stricte.

Le produit de deux matrices A et B diagonales (resp. triangulaires supérieures (strictes), resp.
triangulaires inférieures (strictes)) est diagonale (resp. triangulaire (stricte)). De plus, les coefficients
diagonaux de AB sont les produits des coefficients diagonaux de A et de B.
Ainsi, dans le cas par exemple des matrices triangulaires supérieures :

a1,1 · · ·

0 a2,2 (∗)
...

... . . . . . .
0 · · · 0 an,n

×


b1,1 · · ·

0 b2,2 (∗)
...

... . . . . . .
0 · · · 0 bn,n

 =


a1,1b1,1 · · ·

0 a2,2b2,2 (∗)
...

... . . . . . .
0 · · · 0 an,nbn,n



Propriété 15

3.3 Puissances d’une matrice
Définition.

Pour tout entier k ∈ N et pour toute matrice A ∈Mn(K), on appelle puissance k-ème de A la matrice notée
Ak définie par :

• si k = 0, A0 = In ; • si k ≥ 1, Ak = A× · · · ×A︸ ︷︷ ︸
k fois

.

11
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Soit A une matrice triangulaire supérieure (resp. triangulaire inférieure, resp. diagonale), dont les
coefficients diagonaux sont λ1, . . . , λn. Pour tout p ∈ N :

Ap =


λp

1 · · ·

0 λp
2 (∗)

...
... . . . . . .
0 · · · 0 λp

n

 , resp.


λp

1 0 · · · 0

λp
2

. . . ...
... (∗) . . . 0
· · · λp

n

 , resp.


λp

1 0 · · · 0

0 λp
2

. . . ...
... . . . . . . 0
0 · · · 0 λp

n


où (∗) sont des réels.

Propriété 16 (Puissance d’une matrice triangulaire ou diagonale)

Remarque. Il est donc particulièrement facile de calculer les puissances d’une matrice diagonale : il suffit de
prendre les puissances des termes diagonaux.

On peut avoir Ak = 0n pour un certain k ∈ N alors que A ̸= 0n, comme dans l’exemple suivant :

A =
(

1 −1
1 −1

)
et A2 =

(
0 0
0 0

)
.

Mise en garde.

Définition.
Une matrice A ∈Mn(K) est dite nilpotente s’il existe k ∈ N∗ tel que Ak = 0n.
On appelle alors indice de nilpotence le plus petit entier naturel non nul p tel que Ap = 0n. C’est donc
l’unique entier p tel que Ap−1 ̸= 0n et Ap = 0n.

Exemple. La matrice A =
(

1 −1
1 −1

)
est nilpotente d’ordre 2.

Exercice 5. Montrer que N =


0 1 2 3
0 0 1 2
0 0 0 1
0 0 0 0

 est nilpotente et déterminer son indice de nilpotence.

Plus généralement, on montrera en TD que toute matrice de Mn(K) triangulaire supérieure stricte ou
triangulaire inférieure stricte est nilpotente d’indice de nilpotence inférieur à n.

Pour aller plus loin.

Remarque. De même que pour les matrices diagonales, le calcul des puissances d’une matrice nilpotente A
d’ordre de nilpotence p est aisé, puisque pour tout k ≥ p, Ak = 0n. Il suffit donc de calculer un nombre fini de
puissances de A.

Soient A et B deux matrices de Mn(K) qui commutent, c’est-à-dire telles que AB = BA. Pour
tout entier p ∈ N :

(A + B)p =
p∑

k=0

(
p

k

)
Ak Bp−k.

Théorème 17 (Formule du binôme de Newton matriciel (1642 - 1727))

12
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Cette formule est fausse si A et B ne commutent pas. Vous serez sanctionné si vous ne précisez pas
que les matrices commutent avant d’utiliser la formule du binôme.

A Danger.

La formule du binôme de Newton, valable pour deux matrices qui commutent, permet dans certains cas
de calculer les puissances d’une matrice.

Méthode. Calcul de puissances par la formule du binôme de Newton.

Exercice 6. Soit A =

1 2 6
0 1 2
0 0 1

. Calculer Ap pour tout p ∈ N.

Soient A et B deux matrices de Mn(K) qui commutent. Pour tout entier p ∈ N∗ :

Ap −Bp = (A−B)
(

p−1∑
i=0

AiBp−1−i

)
= (A−B)

(
Ap−1B0 + Ap−2B1 + · · ·+ A1Bp−2 + A0Bp−1) .

Propriété 18

3.4 Polynôme d’une matrice
Définition.

Soit P : x 7→
d∑

k=0
akxk une fonction polynomiale à cœfficients dans K, et soit A ∈Mn(K).

On note P (A) la matrice de Mn(K) définie par :

P (A) =
d∑

k=0
akAk = adAd + · · ·+ a1A + a0In.

Exemple. Si A ∈Mn(K) et P : x 7→ x2 + 3x− 10, alors P (A) = A2 + 3A− 10In.

Attention de ne pas se tromper : le terme constant a0 dans P devient a0In dans P (A).
A Danger.

Soient A ∈Mn(K) et P, Q des fonctions polynomiales à coefficients dans A. Alors, les matrices P (A)
et Q(A) commutent :

P (A)×Q(A) = Q(A)× P (A).

En particulier, A commute avec toutes ses puissances et avec tous les polynômes en A.

Propriété 19

Définition.
Soient A ∈Mn(K) et P une fonction polynomiale.
On dit que P est un polynôme annulateur de A lorsque P (A) = 0n.

13
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Exercice 7. Déterminer un polynôme annulateur non nul de N =


0 1 2 3
0 0 1 2
0 0 0 1
0 0 0 0

 et A =

 1 0 −1
3 1 0
−3 −1 1

.

Exercice 8. Soit A =
(

a b
c d

)
∈M2(K).

Montrer que P : x 7→ x2 − (a + d)x + (ad− bc) est un polynôme annulateur de A.

3.5 Trace d’une matrice carrée
Définition.

Soit A ∈Mn(K) une matrice carrée.
On appelle trace de A, et on note tr(A), la somme de ses cœfficients diagonaux, c’est-à-dire :

tr(A) =
n∑

i=1
[A]i,i ∈ K.

Exemples.

• tr

1 2 3
4 5 6
7 8 9

 = 1 + 5 + 9 = 15.
• tr(0n) = 0 et tr(In) = n.

• tr(diag(λ1, . . . , λn)) = λ1 + · · ·+ λn.

L’application tr :
{

Mn(K) −→ K
A 7−→ tr(A) est une forme linéaire, c’est-à-dire :

tr(λ ·A + µ ·B) = λtr(A) + µtr(B)

pour tous A, B ∈Mn(K) et λ, µ ∈ K.

Propriété 20

Soient A, B ∈Mn(K). Alors :

• tr(A⊤) = tr(A) ; • tr(A×B) = tr(B ×A).

Propriété 21

4 Matrices carrées inversibles
4.1 Définitions et exemples
Définition.

Soit A ∈Mn(K). La matrice A est dite inversible s’il existe B ∈Mn(K) telle que :

AB = BA = In.

On note GLn(K) l’ensemble des matrices inversibles de Mn(K), appelé groupe linéaire d’ordre n.

14
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Si A ∈Mn(K) est inversible, alors il existe une unique matrice B ∈Mn(K) telle que :

AB = BA = In.

On l’appelle l’inverse de A et on le note A−1.

Propriété 22

Exemples.

• In est inversible car In × In = In, et I−1
n = In.

• Les matrices d’opérations élémentaires sont inversibles, et pour tous 1 ≤ i, j ≤ n et α ∈ K∗, β ∈ K :

Di(α)−1 = Di(1/α) ; P −1
i,j = Pi,j ; Ti,j(β)−1 = Ti,j(−β).

Remarques.

• On ne peut considérer un inverse que pour une matrice carrée.

• Si A ∈Mn(K) est inversible, alors pour tous B, C ∈Mn(K) :

AC = AD ⇔ A−1(AC) = A−1(AD) ⇔ (A−1A)︸ ︷︷ ︸
=In

C = (A−1A)︸ ︷︷ ︸
=In

D ⇔ C = D.

Et de même : CA = DA ⇔ C = D.

Cette propriété devient fausse si on ne suppose plus A inversible. Par exemple :(
0 1
0 0

)
×
(

1 0
0 0

)
=
(

0 1
0 0

)
×
(

0 1
0 0

)
mais

(
1 0
0 0

)
̸=
(

0 1
0 0

)
.

A Danger.

Exercice 9. Soit A ∈Mn(K). Montrer que A n’est pas inversible dans les cas suivants :

• A possédant une ligne ou une colonne nulle ; • A est nilpotente.

Soient λ1, . . . , λn ∈ K des scalaires.
Alors diag(λ1, . . . , λn) est inversible si, et seulement si, λi ̸= 0 pour tout i ∈ J1, nK.
Lorsque c’est le cas, diag(λ1, . . . , λn)−1 = diag(λ−1

1 , . . . , λ−1
n ).

Propriété 23 (Inversibilité des matrices diagonales)

Soit A ∈Mn(K) et soit P un polynôme annulateur de A.
Si P (0) ̸= 0, alors A n’est pas inversible. De plus, A−1 est un polynôme en A.

Propriété 24

Exercice 10. Déterminer l’inverse, s’il existe, de A =

 1 0 −1
3 1 0
−3 −1 1

.
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Soit A =
(

a b
c d

)
∈M2(K). Alors A est inversible si, et seulement si, ad− bc ̸= 0. Et lorsque c’est

le cas :
A−1 = 1

ad− bc

(
d −b
−c a

)
.

Propriété 25

Le scalaire ad− bc s’appelle le déterminant de A et se note det(A).
� Notation.

4.2 Opérations sur les matrices inversibles

Soient A, B ∈ GLn(K) deux matrices inversibles. Alors :

(1) A−1 est inversible, et (A−1)−1 = A ;

(2) pour tout λ ∈ K∗, λ ·A est inversible, d’inverse 1
λ
·A ;

(3) AB est inversible, et (AB)−1 = B−1A−1 ;

(4) pour tout k ∈ N, Ak est inversible, et (Ak)−1 =
(
A−1)k ;

(5) A⊤ est inversible, et
(
A⊤)−1 = (A−1)⊤.

Propriété 26

Remarque. L’ensemble GLn(K) est donc stable pour le produit matriciel. Attention cependant : l’inverse
d’un produit est le produit des inverses, mais on n’oubliera pas de changer l’ordre.

L’ensemble GLn(K) n’est cependant pas stable par somme. On peut facilement s’en convaincre avec
l’égalité In + (−In) = 0n.

Mise en garde.

4.3 Inversibilité et opérations élémentaires

(1) La relation binaire L∼ est une relation d’équivalence sur l’ensemble Mn(K) des matrices carrées
de taille n.

(2) Si A
L∼ B, alors A est inversible si, et seulement si, B l’est.

Propriété 27

Soit A ∈Mn(K). Il y a équivalence entre :

(1) A est inversible ; (2) A
L∼ In ; (3) A

C∼ In.

Théorème 28 (Première caractérisation de l’inversibilité)
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Soit A ∈Mn(K) une matrice inversible. Alors :

(1) A s’écrit comme un produit d’un nombre fini de matrices de transvections et de dilations ;

(2) son inverse A−1 s’obtient en effectuant les mêmes opérations élémentaires sur les lignes de In

que celles qui permettent de ramener A à l’identité.

Corollaire 29

Pour déterminer si une matrice A ∈ Mn(K) est inversible, et le cas échéant obtenir A−1, on procèdera
comme suit :

(i) on écrit la matrice In à droite de A sous la forme (A | In) ;

(ii) à l’aide d’opérations élémentaires sur les lignes en suivant l’algorithme du pivot, on échelonne A
par lignes, tout en réalisant les mêmes opérations sur la matrice de droite ;

(iii) si le nombre de pivots de la matrice échelonnée est n, alors A est inversible, sinon A ne l’est pas ;

(iv) dans le cas où A est inversible, on effectue la « remontée » par opérations sur les lignes afin de
transformer A en In. La matrice de droite est alors A−1.

Méthode. Inversibilité et calcul pratique de l’inverse, version « matricielle ».

Exercice 11. Déterminer si les matrices suivantes sont inversibles, et le cas échéant calculer l’inverse :

• A =

 1 1 −1
1 −1 1
−1 1 1

 ; • B =

 1 −1 −1
2 −1 0
−3 2 0

.

Soit T ∈Mn(K) une matrice triangulaire supérieure (resp. inférieure).
Alors T est inversible si, et seulement si, ses coefficients diagonaux sont tous non-nuls.
Dans ce cas, T −1 est encore triangulaire supérieure (resp. inférieure), et ses coefficients diagonaux
sont les inverses de ceux de T .

Propriété 30 (CNS d’inversibilité d’une matrice triangulaire)

Exemple. La matrice

1 3 1
0 −1 5
0 0 2

 est inversible car triangulaire avec des coefficients diagonaux tous non

nuls.

4.4 Inversibilité et systèmes linéaires

Soit A ∈Mn(K). Il y a équivalence entre :

(1) A est inversible ;

(4) pour toute matrice B ∈Mn,1(K), le système AX = B admet une unique solutiona ;

(5) il existe une matrice B ∈Mn,1(K) telle que le système AX = B admet une unique solution ;

(6) le système AX = 0 admet pour unique solution X = 0n,1.
aRappelons qu’un tel système est alors dit de Cramer .

Théorème 31 (Deuxième caractérisation de l’inversibilité)
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Pour déterminer si A ∈Mn(K) est inversible et obtenir le cas échéant A−1, on peut aussi procéder comme
suit :

(i) on échelonne par l’algorithme du pivot le système (S ) : AX = Y d’inconnue X ∈ Mn,1(K) et de
second membre Y ∈Mn,1(K) ;

(ii) si (S ) est de Cramer (nombre de pivots égal à n), A est inversible, sinon A ne l’est pas ;

(iii) si A est inversible, on effectue la remontée de (S ). Son unique solution X s’exprime alors en
fonction des composantes de Y , ce qui permet d’écrire :

X = BY avec B ∈Mn(R).

Par identification, on obtient A−1 = B.

Méthode. Inversibilité et calcul pratique de l’inverse, version « système linéaire ».

Exercice 12. Déterminer si les matrices suivantes sont inversibles, et calculer leur inverse le cas échéant :

• A =

3 2 −1
1 −1 1
2 −2 1

 ; • B =

 1 −1 2
−2 1 3
3 −1 −8

.

Soient A, B ∈Mn(K). Si AB = In, alors A et B sont inversibles, et A = B−1.

Corollaire 32

Pour montrer qu’une matrice A ∈Mn(K) est inversible, il suffit de trouver une matrice B ∈Mn(K) telle
que A× B = In (resp. B × A = In). Il est donc inutile de vérifier que B × A = In (resp. A× B = In),
c’est automatiquement vérifié.

Méthode. Inversibilité à l’aide d’un inverse à gauche ou à droite.
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