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1 Nombre dérivé, fonction dérivée

Dans tout le chapitre, I désignera un intervalle de R non vide et non réduit & un point, et I = I'\ {bornes de I}
Iintérieur de I.

1.1 Définition de la dérivabilité
Béﬁnition.

Soit f : I — R une fonction et a € I. On dit que f est dérivable en a si son taux d’accroissement en a :

I\{a} — R
7a(f) : fz) = f(a)

x —
Tr—a

admet une limite finie en a. Cette limite, lorsqu’elle existe, est la dérivée de f en a et est noté f'(a).

Interprétation géométrique. Fixons a € I et considérons m € I, m # a. On note A(a, f(a)) et M(m, f(m))
un point distinct de A appartenant a la courbe représentative de f.

Rappelons que la droite (ou corde) (AM) a pour équation cartésienne :

y= T =T 0 ).

m—a

Par définition, f est dérivable en a si, et seulement si, le coefficient directeur de la droite (AM) admet une
limite finie quand x tend vers a.

M

M
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Dans ce cas, la position limite de la droite (AM) lorsque M tend vers A est la tangente d € au point A. Son
coefficient directeur est donc f/(a), et son équation cartésienne est :

ly=f(a)(x—a) + f(a)]

Remarque. Si lim M

T—a xTr —
tangente verticale au point A d’équation xz = a.

= o0, f n’est pas dérivable en a. On dit dans ce cas que ¢y admet une
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Exemple. Soit f : 2 +— \/z. Pour tout a € R et v € Ry\{a}:

f(z) = f(a) Ve —a

v (Vi Va)(i+ a)
1 1
VRN TN

La fonction racine carrée est donc dérivable en a, de dérivée

1
2a

tout © # 0 :

Elle n’est cependant pas dérivable en 0, puisque pour

La courbe de f admet au point d’abscisse 0 une tangente ver-
ticale d’équation = = 0.

Exercice 1. Soient n € N et a € R. Montrer que la fonction f : 2 — z™ est dérivable en a et que f'(a) = na

Définition.

Soit f : I — R une fonction et a € I.

Ta(f) N

g
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Cy

Courbe représentative de la fonction racine
carrée.

n—1

On dit que f est dérivable a droite (resp. & gauche) en a si son taux d’accroissement en a :

I\{a} — R
f(z) — f(a)

T —a

admet une limite finie & droite (resp. & gauche) en a. Si elles existent, on note alors ces limites f}(a) et
f!(a), appelées dérivées d droite et d gauche de la fonction f en a.

Remarque. On définit les demi-tangentes a droite et a gauche a la courbe € au point A(a, f(a)) par les

demi-droites d’équation respective :

r>a et y=fia)z—a)+ fla),

r<a et y=f(a)(r—a)+ f(a)

— Propriété 1

Dans ces conditions, f'(a) = f,(a) = fi(a).

Soit f : I — R une fonction et a € I qui n’est pas une borne de I. Alors :

f est dérivable a gauche en a,
f est dérivable en a« < f est dérivable a droite en a,

fo(a) = fila).

Remarque. Si a € I est la borne inférieure (resp. supérieure) de I, alors f est dérivable en a si, et seulement

si, f est dérivable a droite (resp. a gauche) en a.

Exemple. La fonction valeur absolue f : x — |z| est
continue sur R. Etudions sa dérivabilité en 0. Pour tout

x#0:
|z] — 0] |z { 1 siz— 0t
—_— -

x—0 x -1 sixz— 0~

La fonction valeur absolue est donc dérivable a gauche et a
droite en 0, de dérivées a gauche et a droite égales & —1 et
1. Elle n’est par contre pas dérivable en 0.

3 y
2
1
-3 -2 -1 1 2 3
Courbe représentative de la fonction valeur
absolue.
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Définition.
Soit f : I — R une fonction et a € I.
On dit que f admet un développement limité a ’ordre 1 en a s'il existe (ag, a1) € R? et une fonctione : I — R
tels que :
Veel, f(r) =ao+ (x —a)ay + (x —a)e(x) avec lime(z) =0.

T—ra

— Propriété 2

Soit f : I — R une fonction et a € I.
Alors f est dérivable en a si, et seulement si, f admet un développement limité & l’ordre 1 en a, et
ce développement limité est alors nécessairement :

Ve el, f(z) = f(a) + f(a)(x = a) + (x — a)e(x).

— Corollaire 3

Si f est dérivable en a, alors f est continue en a.

& Mise en garde.

La réciproque est fausse : une fonction peut étre continue en un point et non dérivable en ce point.
Par exemple, la fonction valeur absolue est continue en 0 et non dérivable en O.

Définition.
On dit que f : I — R est dérivable sur I si elle est dérivable en chaque point de I. On définit alors la
fonction dérivée de f sur I, notée f’, par :

I = R
f'{z — f)

On note alors Z(I,R) 'ensemble des fonctions dérivables sur I a valeurs dans R.

1.2 Opérations sur les fonctions dérivables

— Propriété 4

Soient f et g : I — R deux fonctions dérivables en a € I.

(1) Pour tout (A, ) € R2, (Af + pg) est dérivable en a et

(Af +1g) (a) = Af'(a) + pg'(a).

(2) fg est dérivable en a et
(f9)'(a) = f'(a)g(a) + f(a)g'(a).

(3) Sig(a) # 0, alors f est dérivable en a et
g

(f)' (a) = f'@)g(a) — fla)g'(a)

Remarque. Puisque les fonctions x +— x™ sont dérivables sur R pour tout n € N, par combinaison linéaire,
toute fonction polynomiale est dérivable sur R. Comme quotient de fonctions dérivables, une fonction rationnelle
est dérivable sur tout intervalle ou elle est définie.
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— Propriété 5

Soient f: T —Retg:J — R telles que f(I) C J.

Si f est dérivable en a € I et si g est dérivable en b = f(a), alors g o f est dérivable en a et

(9o f)(a) = f'(a)g'(f(a).

Remarque. Cette propriété permet d’obtenir la dérivée de certaines composées usuelles :

o) = 1 @) ex "(z) = f'(x) ex x N(z) = af () f* Yz "z) = ==
(lﬂ(f))(x)—f(x)7 (exp(f))'(x) = f'(x)exp(f(x)), (f*)(z) =af (x)f* (@), (VF)(2) NiiEh

(cos(f))' () = —f'(x)sin(f(2)), (sin(f))(x) = f'(z) cos(f(x)), (tan(f))'(x) = f'(2)(1 + tan(f(x))?).

— Propriété 6 (Dérivabilité de la fonction réciproque)

Soient a € I et f: I — J une fonction continue, strictement monotone sur I et dérivable en a.

Alors f~! est dérivable en b = f(a) si, et seulement si, f’(a) # 0. Et dans ce cas :

1 1

~fa) T F)

(FY )

Interprétation géométrique. On peut retrouver la formule de la dérivée de I’application réciproque par un

argument géométrique. En effet, la courbe de f~! s’obtenant & partir de celle de f via une symétrie par rapport

a la premiére bissectrice, il en est de méme pour les tangentes : pour tout (a,b) € I x J tel que b = f(a), a la

tangente a € en (a, f(a)) correspond par symétrie la tangente & €;-1 au point (b, f~1(b)).

Supposons f’(a) # 0. Le coefficient directeur de la tangente & €5 en (a, f(a)) est f'(a), celui de la droite obtenue

a partir de cette tangente par symétrie par rapport a la premiere bissectrice est m Or nous venons de le
a

noter, cette droite n’est autre que la tangente & €5-1 en (b, f~1(b)), de coefficient directeur (f~1)(b). Ainsi :

Dans le cas ol f'(a) = 0, € possede une tangente horizontale en (a, f(a)). Par symétrie, ¢y-1 possede une
tangente verticale en (b, f~1(b)).

2 Dérivées n-emes, fonctions de classe ¢

2.1 Définitions

Définition.

Soit f : I — R une fonction. On définit récursivement les dérivées successives de f par :
« O =7
« pour tout n € N, si f(™ est dérivable sur I, f(+1) = (M),

Si pour n € N, la fonction f(™ existe, on dit que f est n fois dérivable sur I, et on appelle (™ la dérivée
n-iéme de f sur I.

Interprétation cinématique. On décrit le mouvement d’un mobile qui se déplace sur un axe par une fonction
f:I =R de classe €2 qui associe & tout ¢ 'abscisse du mobile & ’instant ¢. Rappelons que :

o la vitesse & 'instant ¢ du mobile est donnée par f’(t).

o laccélération a linstant ¢ du mobile est donnée par f”(¢).



MP21 Lycée Roosevelt

Définition.
Soient f : I — R une fonction définie sur un intervalle I et n € N. On dit que :
o fest de classe €™ sur I si f est n fois dérivable sur I, et f(") est continue sur I.

o fest de classe € sur I si f est €% sur I pour tout k € N.

On note €"(I,R) (resp. €°°(I,R)) ensemble des fonctions de I dans R de classe €™ (resp. €°).

Remarque. Si f est n fois dérivable sur I, avec n > 1, alors f(*~1

conséquent, f est de classe €™ sur I.

est dérivable, donc continue sur I. Par

En notant 2™(I,R) l'ensemble des fonctions n fois dérivables sur I, on dispose donc de la suite d’inclusions
suivantes :

¢>(I,R)C---Cc "' (I,R) c €"(I,R) c 2"(I,R) C --- Cc € (I,R) c 2'(I,R) C €°(I,R).

De plus, toutes ces inclusions sont strictes comme le montre I'exercice suivant.

Exercice 2.
1. Montrer que la fonction
1
2 2 .
fireR- xcos<x> six #0
0 siz=0
est dérivable sur R. Est-elle de classe €' sur R.

2. En déduire I'existence, pour tout n € N*, d’une fonction n fois dérivable sur R qui n’est pas de classe €™
sur R.

3. De méme, montrer ’existence, pour tout n € N, d’une fonction de classe €™ sur R qui n’est pas n+ 1 fois
dérivable sur R.

& Mise en garde.

| On ne confondra donc pas « dérivable » et « de classe €' », « deux fois dérivable » et « de classe €2 », etc.

2.2 Opérations sur les fonctions ¢*

— Propriété 7
Soit nm un entier naturel.
(1) Si (f,9) € (€"(I,R))* et (A, 1) € R2, alors Af + pug € €"(I,R) et
(Af +pg)™ = Af0 4 pgt).

(2) Si (f,9) € (¢™(I,R))?, alors fg € €"(I,R) et

n

(fg)™ = Z (Z) fR) gn=k) (Formule de Leibniz).

k=0

(3) Si (f,g) € (¢"(I,R))? et si g ne s’annule pas sur I, alors 5 € €¢"(I,R).

(4) Si fe€™(I,R) et g € €"(J,R) avec f(I) C J, alors (go f) € €"(I,R).

(5) Si f: I — J bijective, de classe €™ sur I et telle que f’ ne s’annule pas sur I, alors f~! est de
classe " sur J.

Remarque. Tous ces énoncés restent valables en changeant « de classe €™ » en « n fois dérivable » ou en « de
classe € ».
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3 Propriétés des fonctions dérivables
3.1 Extremum local
Définition.
Soit f : I — R une fonction. On dit que :

e f admet un mazimum global (resp. minimum global) en a si :

Veel, f(z)<f(a) (resp. f(z) > f(a)).
o f admet un mazimum local (resp. minimum local) en a §'il existe un réel n > 0 tel que la fonction
Jirnla=n,a+y) @admette un maximum (resp. minimum) en a, c’est-a-dire :
Veelna—na+n], flz)<f(a) (resp. f(x) > f(a)).

o f admet un extremum local (resp. global) en a si f admet un maximum ou un minimum local (resp.

global) en a.

- ¢

Exemple. La fonction f représentée ci-contre admet trois extrema :

e un minimum local (et méme global) atteint aux points
d’abscisse a et b ; /\

o un maximum local (mais non global) au point d’abscisse 0.

----de

Définition.
Soient f : I — R dérivable et a € I. On dit que a est un point critique de f si f'(a) = 0.

Propriété 8 (Condition nécessaire d’extrémum)

Soit f une fonction dérivable sur un intervalle ouvert 1.

Si f admet un extremum local en un point a € I, alors a est un point critique de f.

& Mise en garde. ()
4

e La réciproque est fausse !

Par exemple, la fonction f : # € R — 23 satisfait
f/(0) =0, mais f n’admet pas d’extremum local en 0. d

o L’hypothese I ouvert est essentielle : par exemple,
la fonction f : x € [0,1] — =z est dérivable sur [0, 1],

admet un minimum en 0 et un maximum en 1, mais
Fo)y=f(1)=1+#£0. Courbe représentative de f : x v+ x3.

% Méthode. Recherche des extrema d’une fonction.
Pour déterminer les extrema d’une fonction f, on pourra procéder comme suit :
e On étudie les extrema en les points intérieurs a I : on résout l’équation f'(x) = 0, puis on vérifie
si les points obtenus correspondent ou non a des extrema locaux (avec le tableau de variations de f
par exemple).
o On étudie si les bornes de I (si elles appartiennent a I) correspondent ou non d des extrema locaux
de f.
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3.2 Théoréme de Rolle

Théoreme 9 (de Rolle (os2 -

Soient a et b deux réels avec a < b et f : [a,b] — R continue sur [a,b], dérivable sur ]a, b et telle
que f(a) = f(b). Alors il existe ¢ € ]a, b] tel que f'(c) = 0.

Remarque. Un élément ¢ € |a, b] tel que f/(c) = 0 n’est pas unique en général, comme dans l’exemple suivant :

s
e
AR

Exercice 3. Soit f : [a,b] = R. On suppose que f s’annule au moins n + 1 fois sur [a, b], et que f est n fois
dérivable sur [a, b].

1. Montrer que I'équation f’(z) = 0 admet au moins n solutions sur ]a, b].

2. Montrer qu'il existe ¢ € Ja, b tel que £ (c) = 0.

3.3 Egalité des accroissements finis

Théoréme 10 (Egalité des accroissements finis)

Soient a et b deux réels avec a < bet f : [a,b] — R, continue sur [a, b] et dérivable sur |a,b[. Alors
il existe ¢ € a, b[ tel que :

f®b) = f(a) = f'(e)(b - a).

b) —
Interprétation géométrique. L’égalité des accroissements finis se récrit w = f'(¢). Elle signifie
—a
qu’il existe (au moins) une tangente au graphe de f sur |a, b[ qui soit paralléle & la corde (AB), ou A(a, f(a))

et B(b, f(b)).
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Interprétation cinématique. Considérons toujours le mouvement d’un mobile se déplagant sur un axe et

supposons que son abscisse f(t) soit une fonction dérivable par rapport au temps t. Ce théoreme nous dit qu’il

. . o : e SRR . f() = fla)

existe un instant ¢ ol la vitesse instantanée f’(c) est égale a la vitesse moyenne sur le trajet T4
—a

3.4 Dérivabilité et monotonie

— Propriété 11

Soit f : I — R une fonction continue sur I, dérivable sur I.

Alors f est constante sur I si, et seulement si, f/(z) = 0 pour tout = € I.

— Propriété 12

Soit f : I — R une fonction continue sur I, dérivable sur I.

(1) f est croissante (resp. décroissante) sur I si, et seulement si, f’ est positive (resp. négative)
sur [.

(2) f est strictement croissante sur I si, et seulement si, f’ est positive sur I et n’est identiquement
nulle sur aucun intervalle [a,b] avec a < b.

En particulier, si f’ est strictement positive sur I, alors f est strictement croissante sur I.

3.5 Théoréme de la limite de la dérivée

Théoréme 13 (de la limite de la dérivée)

Soient f : I — R une fonction définie sur un intervalle I, et a € I.
Si f est continue sur I, dérivable sur les intervalles formant I \ {a} et si

%g}lf'(x) ={¢ecRU{to0},

alors :
Lo @) = (@)

T—a T —a

= /.
En particulier :
o sifeR, alors f est dérivable en a avec f'(a) = ¢, et f’ est continue en a ;

e si { = +o0, alors la courbe de f admet une tangente verticale en a.

Remarque. Sans le théoréeme de la limite de la dérivée, il aurait fallu commencer par prouver que f est
dérivable en a (soit un premier calcul de limite), puis étudier la continuité de f’ en a (second calcul de limite).
Le théoreme de la limite de la dérivée nous permet de conclure avec le second calcul seulement.

— Corollaire 14 ( Théoréme de prolongement €*)

Soit k € N* et soit f est une fonction de classe €% sur les intervalles constituant I \ {a}.

Si £ possede une limite finie quand 2 tend vers a pour tout i € [0, k], alors f peut étre prolongée
en une fonction de classe €% sur I.
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Remarque. On déduit de méme un « théoréme de prolongement €°° » si les hypothéses de la proposition
ci-dessus sont satisfaites pour tout k € N*.

-1,1] — R

1 _
- s arcsin(l — 21) Montrer que f est de classe € sur [—1, 1].

Exercice 4. Soit f : {

3.6 Inégalité des accroissements finis et applications

Théoréme 15 (Inégalité des accroissements finis)

Soit f : I — R continue sur [a,b] et dérivable sur |a, b.
(1) Sl existe (m, M) € R? tel que pour tout = €]a,b[, m < f/(x) < M, alors

m(b—a) < f(b) — f(a) < M(b— a).

(2) S’il existe M > 0 tel que pour tout x €]a, b, |f'(x)| < M, alors

|f(b) = fla)] < M|b—al.

Définition.

Une fonction f : I — R est dite lipschitzienne sur I s’il existe un nombre réel k > 0 tel que :
V(z,2') € I?, |f(x) — f(2")| < k| — 2]

On dira plus particulierement dans ce cas que f est k-lipschitzienne sur I.

On dira que f est contractante sur I si elle y est k-lipschitzienne avec 0 < k < 1.

Propriété 16

Soit f : I — R une fonction dérivable sur I.

Si |f’]| est majorée par une constante M sur I, alors f est M-lipschitzienne sur I.

Exemple. Les fonctions sinus et cosinus sont 1-lipschitziennes sur R. En effet pour le sinus par exemple,
|sin’ | = | cos| < 1. Par la proposition précédente, pour tous z,y € R :

|sin(z) —sin(y)| < |z —yl.

En particulier pour y = 0, on retrouve l'inégalité classique |sin(z)| < |z| pour tout z € R.

— Propriété 17

Soit f : I — I une fonction contractante.

Si f admet un point fixe ¢, alors ¢ est unique. De plus, pour toute suite (u,) définie par ug € I et
pour tout n € N, w41 = f(uy), (u,) converge vers £.

Exercice 5. Soit (u,) la suite définie par ug = 1 et pour tout n € N, u, 11 = exp(—u, — 1).
1. Montrer que (u,) converge vers une limite finie .

2. Déterminer un entier naturel N & partir duquel u,, est & 107> pres de /.

10



MP21 Lycée Roosevelt

4 Extension aux fonctions a valeurs dans C
Définition.
Soit f : I — C une fonction de la variable réelle a valeurs complexes.

e On dit que f est dérivable en a € I si le taur d’accroissement en a :

IN{a} — C
7a(f) : f(x) — f(a)

T —
r—a

admet une limite finie en a. On appelle alors dérivée de f en a et on note f’(a) cette limite.

e On dit que f est dérivable sur I si f est dérivable en chaque point de I.

% Notation.
Soit f : I — C. On note Re(f) et Im(f) les fonctions de I dans R définies par :

Ve el, Re(f)(z)=Re(f(x)) et TIm(f)(z)=Im(f(z)).

— Propriété 18

La fonction f : I — C est dérivable en a € I si, et seulement si, Re(f) et Im(f) sont dérivables en a,
et alors :

f'(a) =Re(f)'(a) + i Im(f)"(a).

Remarque. On peut définir comme dans le cas réel la notion de fonction & valeurs complexes de classe €.
On peut alors montrer plus généralement que f : I — C est de classe €% sur I si, et seulement si, Re(f) et
Im(f) sont de classe €% sur I, et dans ce cas :

FO = Re(f)™ + 3 (Im(£))®.

& Mise en garde.

Les théoremes de Rolle et des accroissement finis sont faux pour les fonctions a valeurs complexes. Par
exemple, la fonction f : t +— e est continue sur [0,2n], dérivable sur ]0,27[, et f(27) = f(0) = 1.
Cependant pour tout ¢ € ]0,2x[, f'(t) = i€’ est de module 1, donc non nul.

On conserve cependant 'inégalité des accroissements finis pour les fonctions a valeurs complexes.

— Propriété 19 (Inégalité des accroissements finis)

Soit f : [a,b] — C une fonction continue sur [a,b], dérivable sur |a,b[. On suppose que |f'| est
majorée par M sur ]a,b[. Alors :

£ (b) = fla)] < M|b— al.

— Corollaire 20

Une fonction f: I — C est constante si et seulement si elle est dérivable et de dérivée nulle.

11
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Remarque. Résumons par un tableau ce qui reste valable ou non pour les fonctions a valeurs complexes.

Ce qui reste valable dans C Ce qui n’est plus valable dans C
Développement limité a I’ordre 1 Théoreme de dérivabilité de la fonction réciproque
Dérivable implique continu Annulation aux extremums locaux
Opérations sur les dérivées Théoreéme de Rolle
Dérivées d’ordre supérieur, fonctions €* Théoréme des accroissements finis
Opérations sur les fonctions €% Lien monotonie/signe de la dérivée
Inégalité des accroissements finis Théoréme de prolongement ¢!
Dérivée bornée implique f lipschitzienne
Dérivée nulle implique f constante

Liens utiles.

CJ Flaneries infinitésimales, Voyage au pays des maths, ARTE.
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