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1 Nombre dérivé, fonction dérivée

Dans tout le chapitre, I désignera un intervalle de R non vide et non réduit à un point, et
◦
I = I \ {bornes de I}

l’intérieur de I.

1.1 Définition de la dérivabilité
Définition.

Soit f : I → R une fonction et a ∈ I. On dit que f est dérivable en a si son taux d’accroissement en a :

τa(f) :

 I \ {a} → R

x 7→ f(x) − f(a)
x − a

admet une limite finie en a. Cette limite, lorsqu’elle existe, est la dérivée de f en a et est noté f ′(a).

Interprétation géométrique. Fixons a ∈ I et considérons m ∈ I, m ̸= a. On note A(a, f(a)) et M(m, f(m))
un point distinct de A appartenant à la courbe représentative de f .

A

a

f(a)

M

m

f(m)

Rappelons que la droite (ou corde) (AM) a pour équation cartésienne :

y = f(m) − f(a)
m − a

(x − a) + f(a).

Par définition, f est dérivable en a si, et seulement si, le coefficient directeur de la droite (AM) admet une
limite finie quand x tend vers a.

A

M

a m

A

a

M

m

A

a

Dans ce cas, la position limite de la droite (AM) lorsque M tend vers A est la tangente à Cf au point A. Son
coefficient directeur est donc f ′(a), et son équation cartésienne est :

y = f ′(a)(x − a) + f(a).

Remarque. Si lim
x→a

f(x) − f(a)
x − a

= ±∞, f n’est pas dérivable en a. On dit dans ce cas que Cf admet une
tangente verticale au point A d’équation x = a.
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Exemple. Soit f : x 7→
√

x. Pour tout a ∈ R∗
+ et x ∈ R+\{a} :

f(x) − f(a)
x − a

=
√

x −
√

a

(
√

x −
√

a)(
√

x +
√

a)

= 1√
x +

√
a

−→
x→a

1
2
√

a
.

La fonction racine carrée est donc dérivable en a, de dérivée
1

2
√

a
. Elle n’est cependant pas dérivable en 0, puisque pour

tout x ̸= 0 : √
x − 0
x

= 1√
x

−→
x→0

+∞.

La courbe de f admet au point d’abscisse 0 une tangente ver-
ticale d’équation x = 0.

Cf

Courbe représentative de la fonction racine
carrée.

Exercice 1. Soient n ∈ N et a ∈ R. Montrer que la fonction f : x 7→ xn est dérivable en a et que f ′(a) = nan−1.

Définition.
Soit f : I → R une fonction et a ∈ I.
On dit que f est dérivable à droite (resp. à gauche) en a si son taux d’accroissement en a :

τa(f) :

 I \ {a} → R

x 7→ f(x) − f(a)
x − a

admet une limite finie à droite (resp. à gauche) en a. Si elles existent, on note alors ces limites f ′
d(a) et

f ′
g(a), appelées dérivées à droite et à gauche de la fonction f en a.

Remarque. On définit les demi-tangentes à droite et à gauche à la courbe Cf au point A(a, f(a)) par les
demi-droites d’équation respective :

x ≥ a et y = f ′
d(a)(x − a) + f(a),

x ≤ a et y = f ′
g(a)(x − a) + f(a).

Soit f : I → R une fonction et a ∈ I qui n’est pas une borne de I. Alors :

f est dérivable en a ⇔


f est dérivable à gauche en a,
f est dérivable à droite en a,
f ′

g(a) = f ′
d(a).

Dans ces conditions, f ′(a) = f ′
g(a) = f ′

d(a).

Propriété 1

Remarque. Si a ∈ I est la borne inférieure (resp. supérieure) de I, alors f est dérivable en a si, et seulement
si, f est dérivable à droite (resp. à gauche) en a.

Exemple. La fonction valeur absolue f : x 7→ |x| est
continue sur R. Étudions sa dérivabilité en 0. Pour tout
x ̸= 0 :

|x| − |0|
x − 0 = |x|

x
→

{
1 si x → 0+

−1 si x → 0− .

La fonction valeur absolue est donc dérivable à gauche et à
droite en 0, de dérivées à gauche et à droite égales à −1 et
1. Elle n’est par contre pas dérivable en 0.

−3 −2 −1 1 2 3

1

2

3 Cf

Courbe représentative de la fonction valeur
absolue.
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Définition.
Soit f : I → R une fonction et a ∈ I.
On dit que f admet un développement limité à l’ordre 1 en a s’il existe (a0, a1) ∈ R2 et une fonction ε : I → R
tels que :

∀x ∈ I, f(x) = a0 + (x − a)a1 + (x − a)ε(x) avec lim
x→a

ε(x) = 0.

Soit f : I → R une fonction et a ∈ I.
Alors f est dérivable en a si, et seulement si, f admet un développement limité à l’ordre 1 en a, et
ce développement limité est alors nécessairement :

∀x ∈ I, f(x) = f(a) + f ′(a)(x − a) + (x − a)ε(x).

Propriété 2

Si f est dérivable en a, alors f est continue en a.

Corollaire 3

La réciproque est fausse : une fonction peut être continue en un point et non dérivable en ce point.
Par exemple, la fonction valeur absolue est continue en 0 et non dérivable en 0.

Mise en garde.

Définition.
On dit que f : I → R est dérivable sur I si elle est dérivable en chaque point de I. On définit alors la
fonction dérivée de f sur I, notée f ′, par :

f ′ :
{

I → R
x 7→ f ′(x) .

On note alors D(I,R) l’ensemble des fonctions dérivables sur I à valeurs dans R.

1.2 Opérations sur les fonctions dérivables

Soient f et g : I → R deux fonctions dérivables en a ∈ I.

(1) Pour tout (λ, µ) ∈ R2, (λf + µg) est dérivable en a et

(λf + µg)′(a) = λf ′(a) + µg′(a).

(2) fg est dérivable en a et
(fg)′(a) = f ′(a)g(a) + f(a)g′(a).

(3) Si g(a) ̸= 0, alors f

g
est dérivable en a et

(
f

g

)′

(a) = f ′(a)g(a) − f(a)g′(a)
g(a)2 .

Propriété 4

Remarque. Puisque les fonctions x 7→ xn sont dérivables sur R pour tout n ∈ N, par combinaison linéaire,
toute fonction polynomiale est dérivable sur R. Comme quotient de fonctions dérivables, une fonction rationnelle
est dérivable sur tout intervalle où elle est définie.
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Soient f : I → R et g : J → R telles que f(I) ⊂ J .
Si f est dérivable en a ∈ I et si g est dérivable en b = f(a), alors g ◦ f est dérivable en a et

(g ◦ f)′(a) = f ′(a)g′(f(a)).

Propriété 5

Remarque. Cette propriété permet d’obtenir la dérivée de certaines composées usuelles :

(ln(f))′(x) = f ′(x)
f(x) , (exp(f))′(x) = f ′(x) exp(f(x)), (fα)′(x) = αf ′(x)fα−1(x), (

√
f)′(x) = f ′(x)

2
√

f(x)
,

(cos(f))′(x) = −f ′(x) sin(f(x)), (sin(f))′(x) = f ′(x) cos(f(x)), (tan(f))′(x) = f ′(x)(1 + tan(f(x))2).

Soient a ∈ I et f : I → J une fonction continue, strictement monotone sur I et dérivable en a.
Alors f−1 est dérivable en b = f(a) si, et seulement si, f ′(a) ̸= 0. Et dans ce cas :(

f−1)′ (b) = 1
f ′(a) = 1

f ′ (f−1(b)) .

Propriété 6 (Dérivabilité de la fonction réciproque)

Interprétation géométrique. On peut retrouver la formule de la dérivée de l’application réciproque par un
argument géométrique. En effet, la courbe de f−1 s’obtenant à partir de celle de f via une symétrie par rapport
à la première bissectrice, il en est de même pour les tangentes : pour tout (a, b) ∈ I × J tel que b = f(a), à la
tangente à Cf en (a, f(a)) correspond par symétrie la tangente à Cf−1 au point (b, f−1(b)).
Supposons f ′(a) ̸= 0. Le coefficient directeur de la tangente à Cf en (a, f(a)) est f ′(a), celui de la droite obtenue
à partir de cette tangente par symétrie par rapport à la première bissectrice est 1

f ′(a) . Or nous venons de le

noter, cette droite n’est autre que la tangente à Cf−1 en (b, f−1(b)), de coefficient directeur (f−1)′(b). Ainsi :

(f−1)′(b) = 1
f ′(f−1(b)) .

Dans le cas où f ′(a) = 0, Cf possède une tangente horizontale en (a, f(a)). Par symétrie, Cf−1 possède une
tangente verticale en (b, f−1(b)).

2 Dérivées n-èmes, fonctions de classe C n

2.1 Définitions
Définition.

Soit f : I → R une fonction. On définit récursivement les dérivées successives de f par :

• f (0) = f ;

• pour tout n ∈ N, si f (n) est dérivable sur I, f (n+1) = (f (n))′.

Si pour n ∈ N, la fonction f (n) existe, on dit que f est n fois dérivable sur I, et on appelle f (n) la dérivée
n-ième de f sur I.

Interprétation cinématique. On décrit le mouvement d’un mobile qui se déplace sur un axe par une fonction
f : I → R de classe C 2 qui associe à tout t l’abscisse du mobile à l’instant t. Rappelons que :

• la vitesse à l’instant t du mobile est donnée par f ′(t).

• l’accélération à l’instant t du mobile est donnée par f ′′(t).
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Définition.
Soient f : I → R une fonction définie sur un intervalle I et n ∈ N. On dit que :

• f est de classe C n sur I si f est n fois dérivable sur I, et f (n) est continue sur I.

• f est de classe C ∞ sur I si f est C k sur I pour tout k ∈ N.

On note C n(I,R) (resp. C ∞(I,R)) l’ensemble des fonctions de I dans R de classe C n (resp. C ∞).

Remarque. Si f est n fois dérivable sur I, avec n ≥ 1, alors f (n−1) est dérivable, donc continue sur I. Par
conséquent, f est de classe C n sur I.
En notant Dn(I,R) l’ensemble des fonctions n fois dérivables sur I, on dispose donc de la suite d’inclusions
suivantes :

C ∞(I,R) ⊂ · · · ⊂ Dn+1(I,R) ⊂ C n(I,R) ⊂ Dn(I,R) ⊂ · · · ⊂ C 1(I,R) ⊂ D1(I,R) ⊂ C 0(I,R).
De plus, toutes ces inclusions sont strictes comme le montre l’exercice suivant.

Exercice 2.
1. Montrer que la fonction

f : x ∈ R 7→

 x2 cos
(

1
x

)
si x ̸= 0

0 si x = 0
est dérivable sur R. Est-elle de classe C 1 sur R.

2. En déduire l’existence, pour tout n ∈ N∗, d’une fonction n fois dérivable sur R qui n’est pas de classe C n

sur R.

3. De même, montrer l’existence, pour tout n ∈ N, d’une fonction de classe C n sur R qui n’est pas n + 1 fois
dérivable sur R.

On ne confondra donc pas « dérivable » et « de classe C 1 », « deux fois dérivable » et « de classe C 2 », etc.

Mise en garde.

2.2 Opérations sur les fonctions C k

Soit n un entier naturel.

(1) Si (f, g) ∈ (C n(I,R))2 et (λ, µ) ∈ R2, alors λf + µg ∈ C n(I,R) et

(λf + µg)(n) = λf (n) + µg(n).

(2) Si (f, g) ∈ (C n(I,R))2, alors fg ∈ C n(I,R) et

(fg)(n) =
n∑

k=0

(
n

k

)
f (k)g(n−k) (Formule de Leibniz).

(3) Si (f, g) ∈ (C n(I,R))2 et si g ne s’annule pas sur I, alors f

g
∈ C n(I,R).

(4) Si f ∈ C n(I,R) et g ∈ C n(J,R) avec f(I) ⊂ J , alors (g ◦ f) ∈ C n(I,R).

(5) Si f : I → J bijective, de classe C n sur I et telle que f ′ ne s’annule pas sur I, alors f−1 est de
classe C n sur J .

Propriété 7

Remarque. Tous ces énoncés restent valables en changeant « de classe C n » en « n fois dérivable » ou en « de
classe C ∞ ».
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3 Propriétés des fonctions dérivables
3.1 Extremum local
Définition.

Soit f : I → R une fonction. On dit que :

• f admet un maximum global (resp. minimum global) en a si :

∀x ∈ I, f(x) ≤ f(a) (resp. f(x) ≥ f(a)).

• f admet un maximum local (resp. minimum local) en a s’il existe un réel η > 0 tel que la fonction
f|I∩[a−η,a+η] admette un maximum (resp. minimum) en a, c’est-à-dire :

∀x ∈ I ∩ [a − η, a + η], f(x) ≤ f(a) (resp. f(x) ≥ f(a)).

• f admet un extremum local (resp. global) en a si f admet un maximum ou un minimum local (resp.
global) en a.

Exemple. La fonction f représentée ci-contre admet trois extrema :

• un minimum local (et même global) atteint aux points
d’abscisse a et b ;

• un maximum local (mais non global) au point d’abscisse 0.

Cf

a

O

b

Définition.
Soient f : I → R dérivable et a ∈ I. On dit que a est un point critique de f si f ′(a) = 0.

Soit f une fonction dérivable sur un intervalle ouvert I.

Si f admet un extremum local en un point a ∈ I, alors a est un point critique de f .

Propriété 8 (Condition nécessaire d’extrémum)

• La réciproque est fausse !

Par exemple, la fonction f : x ∈ R 7→ x3 satisfait
f ′(0) = 0, mais f n’admet pas d’extremum local en 0.

• L’hypothèse I ouvert est essentielle : par exemple,
la fonction f : x ∈ [0, 1] 7→ x est dérivable sur [0, 1],
admet un minimum en 0 et un maximum en 1, mais
f ′(0) = f ′(1) = 1 ̸= 0.

Mise en garde.
Cf

O

Courbe représentative de f : x 7→ x3.

Pour déterminer les extrema d’une fonction f , on pourra procéder comme suit :

• On étudie les extrema en les points intérieurs à I : on résout l’équation f ′(x) = 0, puis on vérifie
si les points obtenus correspondent ou non à des extrema locaux (avec le tableau de variations de f
par exemple).

• On étudie si les bornes de I (si elles appartiennent à I) correspondent ou non à des extrema locaux
de f .

Méthode. Recherche des extrema d’une fonction.
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3.2 Théorème de Rolle

Soient a et b deux réels avec a < b et f : [a, b] → R continue sur [a, b], dérivable sur ]a, b[ et telle
que f(a) = f(b). Alors il existe c ∈ ]a, b[ tel que f ′(c) = 0.

Théorème 9 (de Rolle (1652 - 1719))

Remarque. Un élément c ∈ ]a, b[ tel que f ′(c) = 0 n’est pas unique en général, comme dans l’exemple suivant :

c1

c2
a

b

Cf

Exercice 3. Soit f : [a, b] → R. On suppose que f s’annule au moins n + 1 fois sur [a, b], et que f est n fois
dérivable sur [a, b].

1. Montrer que l’équation f ′(x) = 0 admet au moins n solutions sur ]a, b[.

2. Montrer qu’il existe c ∈ ]a, b[ tel que f (n)(c) = 0.

3.3 Égalité des accroissements finis

Soient a et b deux réels avec a < b et f : [a, b] → R, continue sur [a, b] et dérivable sur ]a, b[. Alors
il existe c ∈ ]a, b[ tel que :

f(b) − f(a) = f ′(c)(b − a).

Théorème 10 (Égalité des accroissements finis)

Interprétation géométrique. L’égalité des accroissements finis se récrit f(b) − f(a)
b − a

= f ′(c). Elle signifie
qu’il existe (au moins) une tangente au graphe de f sur ]a, b[ qui soit parallèle à la corde (AB), où A(a, f(a))
et B(b, f(b)).

x

y

a

bc1 c2

f(a)

f(b)

Cf

8



MP2I Lycée Roosevelt

Interprétation cinématique. Considérons toujours le mouvement d’un mobile se déplaçant sur un axe et
supposons que son abscisse f(t) soit une fonction dérivable par rapport au temps t. Ce théorème nous dit qu’il

existe un instant c où la vitesse instantanée f ′(c) est égale à la vitesse moyenne sur le trajet f(b) − f(a)
b − a

.

3.4 Dérivabilité et monotonie

Soit f : I → R une fonction continue sur I, dérivable sur
◦
I.

Alors f est constante sur I si, et seulement si, f ′(x) = 0 pour tout x ∈ I.

Propriété 11

Soit f : I → R une fonction continue sur I, dérivable sur
◦
I.

(1) f est croissante (resp. décroissante) sur I si, et seulement si, f ′ est positive (resp. négative)
sur I.

(2) f est strictement croissante sur I si, et seulement si, f ′ est positive sur I et n’est identiquement
nulle sur aucun intervalle [a, b] avec a < b.

En particulier, si f ′ est strictement positive sur I, alors f est strictement croissante sur I.

Propriété 12

3.5 Théorème de la limite de la dérivée

Soient f : I → R une fonction définie sur un intervalle I, et a ∈ I.
Si f est continue sur I, dérivable sur les intervalles formant I \ {a} et si

lim
x→a
x ̸=a

f ′(x) = ℓ ∈ R ∪ {±∞},

alors :
lim
x→a

f(x) − f(a)
x − a

= ℓ.

En particulier :

• si ℓ ∈ R, alors f est dérivable en a avec f ′(a) = ℓ, et f ′ est continue en a ;

• si ℓ = ±∞, alors la courbe de f admet une tangente verticale en a.

Théorème 13 (de la limite de la dérivée)

Remarque. Sans le théorème de la limite de la dérivée, il aurait fallu commencer par prouver que f est
dérivable en a (soit un premier calcul de limite), puis étudier la continuité de f ′ en a (second calcul de limite).
Le théorème de la limite de la dérivée nous permet de conclure avec le second calcul seulement.

Soit k ∈ N∗ et soit f est une fonction de classe C k sur les intervalles constituant I \ {a}.
Si f (i) possède une limite finie quand x tend vers a pour tout i ∈ J0, kK, alors f peut être prolongée
en une fonction de classe C k sur I.

Corollaire 14 (Théorème de prolongement C k)

9
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Remarque. On déduit de même un « théorème de prolongement C ∞ » si les hypothèses de la proposition
ci-dessus sont satisfaites pour tout k ∈ N∗.

Exercice 4. Soit f :
{

[−1, 1] → R
x 7→ arcsin(1 − x4) . Montrer que f est de classe C 1 sur [−1, 1].

3.6 Inégalité des accroissements finis et applications

Soit f : I → R continue sur [a, b] et dérivable sur ]a, b[.

(1) S’il existe (m, M) ∈ R2 tel que pour tout x ∈]a, b[, m ≤ f ′(x) ≤ M , alors

m(b − a) ≤ f(b) − f(a) ≤ M(b − a).

(2) S’il existe M ≥ 0 tel que pour tout x ∈]a, b[, |f ′(x)| ≤ M , alors

|f(b) − f(a)| ≤ M |b − a|.

Théorème 15 (Inégalité des accroissements finis)

Définition.
Une fonction f : I → R est dite lipschitzienne sur I s’il existe un nombre réel k ≥ 0 tel que :

∀(x, x′) ∈ I2, |f(x) − f(x′)| ≤ k|x − x′|.

On dira plus particulièrement dans ce cas que f est k-lipschitzienne sur I.
On dira que f est contractante sur I si elle y est k-lipschitzienne avec 0 ≤ k < 1.

Soit f : I → R une fonction dérivable sur I.
Si |f ′| est majorée par une constante M sur I, alors f est M -lipschitzienne sur I.

Propriété 16

Exemple. Les fonctions sinus et cosinus sont 1-lipschitziennes sur R. En effet pour le sinus par exemple,
| sin′ | = | cos | ≤ 1. Par la proposition précédente, pour tous x, y ∈ R :

| sin(x) − sin(y)| ≤ |x − y|.

En particulier pour y = 0, on retrouve l’inégalité classique | sin(x)| ≤ |x| pour tout x ∈ R.

Soit f : I → I une fonction contractante.
Si f admet un point fixe ℓ, alors ℓ est unique. De plus, pour toute suite (un) définie par u0 ∈ I et
pour tout n ∈ N, un+1 = f(un), (un) converge vers ℓ.

Propriété 17

Exercice 5. Soit (un) la suite définie par u0 = 1 et pour tout n ∈ N, un+1 = exp(−un − 1).

1. Montrer que (un) converge vers une limite finie ℓ.

2. Déterminer un entier naturel N à partir duquel un est à 10−5 près de ℓ.

10
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4 Extension aux fonctions à valeurs dans C
Définition.

Soit f : I → C une fonction de la variable réelle à valeurs complexes.

• On dit que f est dérivable en a ∈ I si le taux d’accroissement en a :

τa(f) :

 I \ {a} → C

x 7→ f(x) − f(a)
x − a

admet une limite finie en a. On appelle alors dérivée de f en a et on note f ′(a) cette limite.

• On dit que f est dérivable sur I si f est dérivable en chaque point de I.

Soit f : I → C. On note Re(f) et Im(f) les fonctions de I dans R définies par :

∀x ∈ I, Re(f)(x) = Re(f(x)) et Im(f)(x) = Im(f(x)).

� Notation.

La fonction f : I → C est dérivable en a ∈ I si, et seulement si, Re(f) et Im(f) sont dérivables en a,
et alors :

f ′(a) = Re(f)′(a) + i Im(f)′(a).

Propriété 18

Remarque. On peut définir comme dans le cas réel la notion de fonction à valeurs complexes de classe C k.
On peut alors montrer plus généralement que f : I → C est de classe C k sur I si, et seulement si, Re(f) et
Im(f) sont de classe C k sur I, et dans ce cas :

f (k) = (Re(f))(k) + i (Im(f))(k).

Les théorèmes de Rolle et des accroissement finis sont faux pour les fonctions à valeurs complexes. Par
exemple, la fonction f : t 7→ eit est continue sur [0, 2π], dérivable sur ]0, 2π[, et f(2π) = f(0) = 1.
Cependant pour tout t ∈ ]0, 2π[, f ′(t) = ieit est de module 1, donc non nul.

Mise en garde.

On conserve cependant l’inégalité des accroissements finis pour les fonctions à valeurs complexes.

Soit f : [a, b] → C une fonction continue sur [a, b], dérivable sur ]a, b[. On suppose que |f ′| est
majorée par M sur ]a, b[. Alors :

|f(b) − f(a)| ≤ M |b − a|.

Propriété 19 (Inégalité des accroissements finis)

Une fonction f : I → C est constante si et seulement si elle est dérivable et de dérivée nulle.

Corollaire 20
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Remarque. Résumons par un tableau ce qui reste valable ou non pour les fonctions à valeurs complexes.

Ce qui reste valable dans C Ce qui n’est plus valable dans C

Développement limité à l’ordre 1 Théorème de dérivabilité de la fonction réciproque
Dérivable implique continu Annulation aux extremums locaux
Opérations sur les dérivées Théorème de Rolle

Dérivées d’ordre supérieur, fonctions C k Théorème des accroissements finis
Opérations sur les fonctions C k Lien monotonie/signe de la dérivée
Inégalité des accroissements finis Théorème de prolongement C 1

Dérivée bornée implique f lipschitzienne
Dérivée nulle implique f constante

� Flâneries infinitésimales, Voyage au pays des maths, ARTE.

Liens utiles.
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https://youtu.be/NsYxAZPmWho?si=VIqn5svXbLe2qg1A
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