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1 Loi de composition interne
1.1 Définitions
Définition.

Soit E un ensemble. On appelle loi de composition interne sur E toute application de E × E dans E.

Une telle loi sera en général notée sous l’une des formes suivantes :

• + en notation additive ; • ∗, ⋆, ·, ◦, . . . en notation multiplicative.

Au lieu d’utiliser la notation standard +(x, y) pour l’image du couple (x, y) par l’application +, on note
plutôt x+ y (ou x ∗ y, x ⋆ y, x · y, x ◦ y, . . . ).

� Notation.

Exemples.

• La somme (x, y) 7→ x + y et le produit (x, y) 7→ x × y sont des lois de composition internes sur R, mais
aussi sur C, sur Z, sur Q ou sur N.

• La différence (x, y) 7→ x− y est une loi de composition interne sur C, R, Q et Z, mais pas sur N puisque
la différence de deux entiers naturel peut être négative.

• Sur l’ensemble P(E) des parties de E, on a deux lois de composition internes qui sont (A,B) 7→ A ∩ B
et (A,B) 7→ A ∪B.

• L’ensemble Mn(K) est muni de deux lois de composition internes, qui sont la somme et le produit.

• Sur l’ensemble F (R,R) des fonctions de R dans R, la somme (f, g) 7→ f+g et la composition (f, g) 7→ f ◦g
sont deux lois de composition internes.

Définition.
Soit E un ensemble muni d’une loi de composition interne ∗. On dit que la loi ∗ est :

• commutative si pour tout (x, y) ∈ E2, x ∗ y = y ∗ x ;

• associative si pour tout (x, y, z) ∈ E3, x ∗ (y ∗ z) = (x ∗ y) ∗ z.

Exemples.

• Sur C (et donc sur R, Q, Z et N), la somme et le produit sont à la fois associatifs et commutatifs.

• La différence n’est pas commutative sur Z car 2 − 3 ̸= 3 − 2. Elle n’est pas non plus associative car
1 − (1 − 1) ̸= (1 − 1) − 1.

• L’union et l’intersection sont commutatives et associatives sur P(E).

• Sur F (R,R) la composition est associative, mais elle n’est pas commutative.

• La somme de matrices est associative et commutative, le produit est associatif mais n’est pas commutatif
si n ≥ 2.

Définition.
Soit E un ensemble muni d’une loi de composition interne ∗, et soit A ⊂ E.
On dit que A est stable par ∗ si pour tout (x, y) ∈ A2, x ∗ y appartient à A.
Dans ce cas, on appelle restriction de la loi ∗ à A la loi de composition interne définie sur A par (x, y) 7→ x∗y.

Remarque. Si ∗ est associative (resp. commutative), alors sa restriction à A l’est également.
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Définition.
Soit E un ensemble muni de deux lois de composition internes ⊕ et ∗. On dit que ∗ est distributive par
rapport à ⊕ si

∀(x, y, z) ∈ E3, x ∗ (y ⊕ z) = (x ∗ y) ⊕ (x ∗ z) et (x⊕ y) ∗ z = (x ∗ z) ⊕ (y ∗ z).

Exemples.

• Dans R ou C, le produit est distributif par rapport à la somme. De même dans Mn(R) ou Mn(C).

• Dans P(E), ∪ est distributif par rapport à ∩ et ∩ est distributif par rapport à ∪.

1.2 Élément neutre, inversibilité
Définition.

Soit E un ensemble muni d’une loi de composition interne ∗. On dit que e ∈ E est un élément neutre pour
∗ si :

∀x ∈ E, x ∗ e = e ∗ x = x.

Soit E un ensemble muni d’une loi de composition interne ∗. Si un élément neutre existe, alors il est
unique.

Propriété 1

Exemples.

• Dans C, R, Q ou Z, 0 est l’élément neutre pour l’addition et 1 est l’élément neutre pour la multiplication.

• idR est l’élément neutre de F (R,R) pour la composition ◦.

• In est l’élément neutre de Mn(K) pour la multiplication, et la matrice nulle est l’élément neutre pour
l’addition.

L’élément neutre de E, s’il existe, sera plutôt noté 0E ou 0 en notation additive, 1E ou 1 en notation
multiplicative.

� Notation.

Définition.
Soit E un ensemble muni d’une loi de composition interne ∗ possédant un élément neutre e.
Un élément x ∈ E est dit symétrisable ou inversible s’il existe y ∈ E tel que x ∗ y = y ∗ x = e.

Exemples.

• Dans (Z,+), (Q,+), (R,+), (C,+), tout élément est symétrisable, car on a toujours x+(−x) = (−x)+x =
0. Dans (N,+), seul 0 est symétrisable.

• Dans (N,×), seul 1 est symétrisable. Dans (Z,×) seuls 1 et −1 sont symétrisables.
Dans (Q,×), (R,×), (C,×), tout élément non nul est symétrisable. En revanche, 0 n’est pas symétrisable
car pour tout élément y, 0 × y = y × 0 = 0 ̸= 1.

Exercice 1. On considère P(E) muni de l’intersection ∩. Existe-t-il un élément neutre ? Quels éléments sont
symétrisables ? Mêmes questions pour (P(E),∪).
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Soit E un ensemble muni d’une loi associative ∗ possédant un élément neutre e.
Si x ∈ E est symétrisable, alors il existe un unique y ∈ E tel que x ∗ y = y ∗ x = e.
Cet élément est appelé le symétrique de x.

Propriété 2

On note le symétrique de x (s’il existe) :

• −x en notation additive, et on parle plutôt de l’opposé de x dans ce cas ;

• x−1 en notation multiplicative, et on parle alors plutôt de l’inverse de x.

� Notation.

Remarque. L’élément neutre e est toujours symétrisable, et égal à son propre symétrique puisque e ∗ e = e.

Exemples.

• Dans F (R,R), un élément f est symétrisable pour ◦ si, et seulement si, f est une bijection, et alors son
symétrique est la bijection réciproque f−1 de f .

• Dans Mn(K) muni de la multiplication, on retrouve exactement la définition d’une matrice inversible.

Soit E un ensemble muni d’une loi associative ∗, d’élément neutre e.

(1) Si x est symétrisable, alors x−1 l’est aussi, et (x−1)−1 = x.

(2) Si x et y sont symétrisables, alors x ∗ y l’est aussi, et (x ∗ y)−1 = y−1 ∗ x−1.

Propriété 3

Soit E un ensemble muni d’une loi de composition interne associative ∗, et soit x un élément symétris-
able. Alors :

• ∀(y, z) ∈ E2, x ∗ y = x ∗ z ⇒ y = z. • ∀(y, z) ∈ E2, y ∗ x = z ∗ x ⇒ y = z.

On dit alors que x est un élément régulier .

Propriété 4 (Simplification par un élément inversible)

Dans (Q,×), (R,×) ou (C,×), tout élément non nul est inversible, et on peut donc « simplifier » par tout
élément non nul. Attention, cela n’est pas aussi simple dans d’autres situations :

• dans (F (R,R), ◦) par exemple, si f : x 7→ 0, g : x 7→ x et h : x 7→ |x|, alors :

f ◦ g = f ◦ h et g ◦ f = h ◦ f

mais g ̸= h. L’élément f n’est donc pas régulier, et on ne peut pas « simplifier » par f . Il est
cependant possible de « simplifier » par une fonction si celle-ci est bijective.

A Danger.
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• autre exemple dans (Mn(K),×) :(
1 0
0 0

)
×

(
0 0
0 1

)
=

(
1 0
0 0

)
×

(
0 0
0 2

)
et

(
0 0
0 1

)
×

(
1 0
0 0

)
=

(
0 0
0 2

)
×

(
1 0
0 0

)

mais
(

0 0
0 1

)
̸=

(
0 0
0 2

)
. On ne peut donc pas « simplifier » par

(
1 0
0 0

)
qui n’est pas régulier. On

peut cependant « simplifier » par toute matrice inversible.

1.3 Itérés d’un élément
Dans cette section, E désigne un ensemble muni d’une loi interne associative ∗ et d’élément neutre e.

Définition.
Soit x ∈ E. On définit les puissances de x en posant x0 = e et pour tout n ∈ N :

xn+1 = xn ∗ x.

Ainsi, pour tout n ∈ N∗ : xn = x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n fois

.

Si la loi de E est notée additivement +, on note 0x = 0 et pour tout n ∈ N∗ :

nx = x+ x+ · · · + x︸ ︷︷ ︸
n fois

,

et on parle plutôt des multiples de x.

� Notation.

(1) Soit x ∈ E. Alors pour tout (m,n) ∈ N2, xm ∗ xn = xm+n.

(2) Soient x, y ∈ E des éléments qui commutent, c’est-à-dire tels que x ∗ y = y ∗ x.
Alors pour tout n ∈ N :

xm ∗ yn = yn ∗ xm et (x ∗ y)n = xn ∗ yn.

Propriété 5

Soit x ∈ E un élément inversible. Alors pour tout n ∈ N, xn est inversible, et (xn)−1 =
(
x−1)n.

On note alors x−n au lieu de
(
x−1)n

Propriété 6

Soit x ∈ E un élément inversible. Alors pour tout (m,n) ∈ Z2, xm+n = xm ∗ xn.

Propriété 7

Remarque. Toutes les puissances de x commutent entre elles puisque m+ n = n+m.
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2 Groupes
2.1 Définitions et exemples
Définition.

Soit G un ensemble muni d’une loi de composition interne ∗.
On dit que (G, ∗) est un groupe si :

• la loi ∗ est associative : ∀(x, y, z) ∈ G3, x ∗ (y ∗ z) = (x ∗ y) ∗ z ;

• la loi ∗ possède un élément neutre : ∃e ∈ G, ∀x ∈ G, x ∗ e = e ∗ x = x ;

• tout élément de G est symétrisable pour ∗ : ∀x ∈ G, ∃y ∈ G, x ∗ y = y ∗ x = e.

Si de plus la loi ∗ est commutative, on dira que (G, ∗) est un groupe commutatif ou abélien.
Si G est fini, son cardinal Card(G) s’appelle l’ordre de G.

Rappel. D’après les résultats précédemment obtenus, l’élément neutre d’un groupe (G, ∗) est unique, de même
que le symétrique d’un élément.

Par convention, on note généralement multiplicativement x ∗ y la loi d’un groupe non commutatif, et on
note alors 1G ou plus simplement 1 son élément neutre.
Pour les groupes abéliens, on note plutôt la loi additivement x+y. Dans ce cas, on note 0G ou 0 l’élément
neutre, −x le symétrique de x et nx au lieu de xn.

� Notation.

Exemples.

• (Z,+), (Q,+), (R,+), (C,+) sont des groupes abéliens. (N,+) n’est pas un groupe.

• (Q∗,×), (R∗,×) et (C∗,×) sont des groupes abéliens.

• Pour tout n ≥ 1, (Un,×) est un groupe abélien fini d’ordre n.

• (Mn,p(K),+) est un groupe abélien.

• (GLn(K),×) est un groupe, non abélien dès que n ≥ 2.

Soit X un ensemble. On note S(X) (ou S(X)) l’ensemble des bijections de X dans X.
Alors (S(X), ◦) est un groupe, non commutatif dès que X contient au moins trois éléments distincts.
Si de plus X est fini de cardinal n, alors S(X) est un groupe fini d’ordre n!.
Ce groupe est appelé groupe symétrique de X, et ses éléments sont nommés permutations de X.

Propriété 8

Si X = J1, nK avec n ≥ 1, on notera le groupe symétrique de X plus simplement Sn, et on l’appellera
groupe symétrique d’indice n. Un élément σ ∈ Sn se représente communément sous forme d’un tableau :

σ =
(

1 2 . . . n
σ(1) σ(2) . . . σ(n)

)
.

� Notation.
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Il est fréquent de trouver des propriétés communes dans des situations qui au départ semblent totalement
sans rapport. Une des grandes découvertes (et réussites) des mathématiques du 19ème siècle a été de parvenir
à unifier ces problèmes en apparence distincts, en faisant ressortir de ces différents problèmes des structures
ensemblistes et opératoires ayant des propriétés similaires.
C’est Évariste Galois le premier à mettre en avant ces études de structures à l’occasion de ses travaux visant
à étudier la résolubilité des équations polynomiales par radicaux. Il y parle de groupes de permutations des
solutions d’une équation, et est amené à étudier des propriétés de certains sous-ensembles de ces groupes de
permutations. C’est lui qui introduit la terminologie de « groupe », même si la formalisation précise de cette
notion est beaucoup plus tardive.

Le saviez-vous ?

Soient (G1, ∗1) et (G2, ∗2) deux groupes. On définit sur le produit cartésien G1 × G2 la loi de
composition interne ⋆ suivante :

∀(g1, g2), (g′
1, g

′
2) ∈ G1 ×G2, (g1, g2) ⋆ (g′

1, g
′
2) = (g1 ∗1 g

′
1, g2 ∗2 g

′
2)

Alors (G1 ×G2, ⋆) est un groupe, appelé le produit direct des groupes G1 et G2.
De plus, (G1 ×G2, ⋆) est abélien si, et seulement si, (G1, ∗1) et (G2, ∗2) le sont.

Propriété 9

Table de Cayley d’un groupe fini.
Lorsque G est un groupe fini dont on note a1, a2, . . . , an les éléments, on peut résumer la loi ∗ dans un tableau
à n lignes et n colonnes dans lequel on fait figurer à l’intersection de la ligne i et de la colonne j le résultat
ai ∗ aj .

∗ a1 . . . aj . . . an

a1 a1 ∗ a1 . . . a1 ∗ aj . . . a1 ∗ an

...
...

...
...

ai a1 ∗ ai . . . ai ∗ aj . . . ai ∗ an

...
...

...
...

an an ∗ a1 . . . an ∗ aj . . . an ∗ an

Exercice 2. Dresser la table des groupes U3, U2 × U2 et S3.

Remarque. Dans la table d’un groupe fini, chaque élément apparaît une et une seule fois sur chaque ligne et
chaque colonne. On peut le justifier pour les colonnes en notant que pour tout g ∈ G, l’application φg : x 7→
x ∗ g est une bijection de G sur G, d’inverse φg−1 . Et de même pour les lignes en considérant l’application
ψg : x 7→ g ∗ x.

2.2 Sous-groupes
Définition.

Soit (G, ∗) un groupe, et soit H une partie non vide de G.
On dit que H est un sous-groupe de G si H est stable par ∗ et que (H, ∗) est un groupe.

Exemple. Pour tout groupe G, G et {eG} sont des sous-groupes de G, appelés sous-groupes triviaux de G. À
l’inverse, on appelle sous-groupe propre de G tout sous-groupe non trivial de G.
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Soit (G, ∗) un groupe, et H ⊂ G. H est un sous-groupe de G si, et seulement si :

(1) eG ∈ H ; (2) ∀(x, y) ∈ H2, x ∗ y ∈ H ; (3) ∀x ∈ H, x−1 ∈ H.

Propriété 10 (Première caractérisation d’un sous-groupe)

Soit G un groupe, et H ⊂ G. H est un sous-groupe de G si, et seulement si :

(1) eG ∈ H ; (2) ∀(x, y) ∈ H2, x ∗ y−1 ∈ H.

Corollaire 11 (Deuxième caractérisation d’un sous-groupe)

Exemples.

• (R∗
+,×) est un sous-groupe de (R∗,×). En revanche, (R∗

−,×) n’est pas un sous-groupe de (R∗,×).

• L’ensemble U des nombres complexes de module 1 est un sous-groupe de (C∗,×).

• Pour tout n ∈ N∗, l’ensemble Un des racines n-èmes de l’unité est un sous-groupe de (C∗,×) (et de (U,×)
aussi).

• Soit n ∈ N∗. Notons D∗
n(K) (resp. T ∗

n (K)) l’ensemble des matrices de taille n× n diagonales inversibles
(resp. triangulaires supérieures inversibles). Alors D∗

n(K) et T ∗
n (K) sont des sous-groupes de (GLn(K),×).

Pour montrer qu’un ensemble est un groupe, on commencera par se demander s’il ne serait pas un sous-
groupe d’un groupe déjà connu. En effet, il sera alors bien plus rapide de prouver les points qui caractérisent
un sous-groupe que ceux qui caractérisent un groupe.

Méthode. Comment montrer qu’un ensemble est un groupe ?

Exercice 3. Montrer que U =
{(

1 a
0 1

)
, a ∈ K

}
muni du produit matriciel est un groupe.

Soit (Hi)i∈I une famille de sous-groupes de (G, ∗). Alors
⋂
i∈I

Hi est un sous-groupe de G.

Propriété 12

Soient (G, ∗) un groupe, et g ∈ G. Alors :

⟨g⟩ = {gn, n ∈ Z}

est un sous-groupe de G, appelé sous-groupe engendré par g.
De plus, ⟨g⟩ est le plus petit sous-groupe (au sens de l’inclusion) qui contient g : si H est un
sous-groupe de G contenant g, alors ⟨g⟩ ⊂ H.

Propriété 13

Définition.
On dit qu’un groupe (G, ∗) est monogène s’il existe g ∈ G tel que G = ⟨g⟩. S’il est de plus fini, on dit que
(G, ∗) est cyclique.
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Exemples.

• (Z,+) est monogène, engendré par 1 (ou −1).

• Pour tout n ≥ 1, Un est un groupe cyclique, engendré par ξn = e
2iπ

n .

Un groupe monogène est abélien.

Propriété 14

Exercice 4. Les groupes (R,+) et (Sn, ◦) sont-ils monogènes ?

2.3 Morphismes de groupes
Définition.

Soient (G1, ∗1) et (G2, ∗2) deux groupes. On appelle morphisme (de groupes) de G1 dans G2 toute application
φ : G1 → G2 telle que :

∀x, y ∈ G, φ(x ∗1 y) = φ(x) ∗2 φ(y).

Exemples.

• Pour tout groupe G, idG est un morphisme de G dans lui-même.

• Si G1 et G2 sont deux groupes, l’application constante égale à eG2 est un morphisme de G1 dans G2.

• Le module z 7→ |z| est un morphisme de (C∗,×) dans (R∗
+,×).

• L’exponentielle complexe est un morphisme de (C,+) dans (C∗,×).

• Pour tout groupe (G, ∗) et pour tout g ∈ G, φg :
{

Z → G
n 7→ gn est un morphisme de (Z,+) dans (G, ∗).

Soient (G1, ∗1) et (G2, ∗2) deux groupes, et soit φ : G1 → G2 un morphisme de groupes. Alors :

(1) φ(eG1) = eG2 ; (2) ∀x ∈ G1, φ(x−1) = φ(x)−1.

Propriété 15

Soient (G1, ∗1), (G2, ∗2) et (G3, ∗3) trois groupes.
Si φ : G1 → G2 et ψ : G2 → G3 sont deux morphismes de groupes, alors ψ ◦ φ est un morphisme de
groupes de G1 dans G3.

Propriété 16

Soit φ un morphisme de groupes entre (G1, ∗1) et (G2, ∗2).

(1) Pour tout sous-groupe H1 de G1, φ(H1) = {φ(h), h ∈ H1} est un sous-groupe de G2.

(2) Pour tout sous-groupe H2 de G2, φ−1(H2) = {h ∈ G1 | φ(h) ∈ H2} est un sous-groupe de G1.

Propriété 17
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Définition.
Soit φ un morphisme de groupes entre (G1, ∗1) et (G2, ∗2).

• On appelle noyau de φ, et on note Ker(φ) (provient de l’allemand Kern) le sous-groupe de G1 défini
par :

Ker(φ) = φ−1({eG2}) = {g ∈ G1 | φ(g) = eG2}.

• On appelle image de φ, et on note Im(φ) le sous-groupe de G2 défini par :

Im(φ) = φ(G1) = {φ(g), g ∈ G1} = {h ∈ G2 | ∃g ∈ G1, φ(g) = h}.

Soit φ un morphisme de groupes entre (G1, ∗1) et (G2, ∗2).

(1) φ est injective si, et seulement si, Ker(φ) = {eG1}.

(2) φ est surjective si, et seulement si, Im(φ) = G2.

Propriété 18 (Caractérisations de l’injectivité et de la surjectivité)

Exemples.

• Le module z 7→ |z| est un morphisme surjectif de C∗ dans R∗
+, de noyau {z ∈ C∗ | |z| = 1} = U.

• L’exponentielle complexe est un morphisme surjectif de C dans C∗, de noyau {z ∈ C | ez = 1} = 2iπZ.

Définition.
On appelle isomorphisme (de groupes) de G1 sur G2 tout morphisme de groupes bijectif de G1 sur G2.
Lorsque G1 = G2, on parle d’automorphisme (de groupe) de G1.
On dit que deux groupes G1 et G2 sont isomorphes lorsqu’il existe un isomorphisme de G1 sur G2.

Exemple. Les groupes (R∗
+,×) et (R,+) sont isomorphes, et le logarithme est un isomorphisme de (R∗

+,×)
sur (R,+).

Exercice 5. Montrer que φ : a 7→
(

1 a
0 1

)
est un isomorphisme de (K,+) sur (U,×).

(1) Soient G1 et G2 deux groupes et φ : G1 → G2 un isomorphisme de groupes de G1 sur G2. Alors
φ−1 est un isomorphisme de groupes de G2 sur G1.

(2) Soit G un groupe. L’ensemble Aut(G) des automorphismes de groupe de G est un groupe pour
la composition.

Propriété 19

Remarque. Deux groupes finis G1 et G2 sont isomorphes si, et seulement si, la table du groupe G2 est identique
à celle du groupe G1 à « renumérotation » près des éléments de G2 à l’aide des éléments de G1.

Exercice 6. Déterminer à isomorphisme près tous les groupes de cardinal 2 et 3.
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Un résultat remarquable est la classification à isomorphisme près des groupes finis dits « simples » (l’équivalent
des nombres premiers en théorie des groupes), achevée en 1981. C’est en fait un ensemble de travaux,
comprenant des dizaines de milliers de pages publiées dans 500 articles par plus de 100 auteurs. On trouve
dans cette classification des groupes qui vous sont déjà familiers, les groupes cycliques Up avec p premier,
mais également des structures bien plus complexes, tel que le Monstre de Fischer, de cardinal :

246 × 320 × 59 × 76 × 112 × 133 × 17 × 19 × 23 × 29 × 31 × 41 × 47 × 59 × 71 (≃ 8 × 1053).

Le saviez-vous ?

3 Généralités sur les anneaux
3.1 Définitions et exemples
Définition.

Soit A un ensemble muni de deux lois internes notées + et ×.
On dit que (A,+,×) est un anneau (unitaire) si :

(i) (A,+) est un groupe abélien, dont l’élément neutre est noté 0A ;

(ii) la loi × est associative et possède un élément neutre 1A ;

(iii) la loi × est distributive par rapport à la loi +.

Si de plus la loi × est commutative, on dit que (A,+,×) est un anneau commutatif .

Exemples.

• (Z,+,×), (Q,+,×), (R,+,×), (C,+,×) sont des anneaux commutatifs.

• (Mn(K),+,×) est un anneau non commutatif si n ≥ 2.

• Soit (A,+,×) un anneau, et soit E un ensemble. On définit sur l’ensemble F (E,A) = AE des applications
de E dans A deux lois de compositions internes encore notées + et × en posant pour tout f, g ∈ F (E,A) :

– ∀x ∈ E, (f + g)(x) = f(x) + g(x) ; – ∀x ∈ E, (f × g)(x) = f(x) × g(x).

On vérifie que F (E,A) muni de ces deux opérations + et × est un anneau, et qu’il est commutatif si, et
seulement si, A l’est.

En particulier, les ensembles (F (I,R),+,×) et (F (I,C),+,×), où I est un intervalle non vide, sont des
anneaux commutatifs, de même que (RN,+,×) et (CN,+,×).

Soit (A,+,×) un anneau, et soient a, b ∈ A. Alors :

(1) a× 0A = 0A × a = 0A ;

(2) a× (−b) = (−a) × b = −(a× b) ;

(3) Plus généralement, pour tout n ∈ Z, a× (nb) = (na) × b = n(a× b).

Propriété 20 (Règles de calcul dans un anneau)

Remarque. Dans la définition d’anneau, rien n’interdit que 1A = 0A. Si c’est le cas, alors pour tout a ∈ A,
a = a× 1A = a× 0A = 0A, et donc A = {0A} est l’anneau nul, qui n’a pas un gros intérêt.

11
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Soit (A,+,×) un anneau, et soient a, b ∈ A deux éléments qui commutent, c’est-à-dire tels que
a× b = b× a. Alors pour tout n ∈ N :

• (a+ b)n =
n∑

k=0

(
n

k

)
akbn−k ; • an − bn = (a− b) ×

n−1∑
k=0

akbn−1−k.

Propriété 21

3.2 Sous-anneaux
Définition.

Soit (A,+,×) un anneau et soit B une partie non vide de A. On dit que B est un sous-anneau de A si B
contient 1A, B est stable à la fois pour + et pour ×, et que (B,+,×) est un anneau.

Une partie B d’un anneau (A,+,×) est un sous-anneau de A si, et seulement si :

(1) 1A ∈ B ;

(2) B est un sous-groupe de (A,+) : ∀(x, y) ∈ B2, x− y ∈ B ;

(3) B est stable par multiplication : ∀(x, y) ∈ B2, x× y ∈ B.

Propriété 22 (Caractérisation d’un sous-anneau)

Exemples.

• (Z,+,×) est un sous-anneau de (Q,+,×), qui est lui-même un sous-anneau de (R,+,×), qui est lui-même
un sous-anneau de (C,+,×).

• L’ensemble 2Z des entiers pairs n’est pas un sous-anneau de (Z,+,×) : bien qu’il en soit un sous-groupe
et qu’il soit stable par multiplication, il ne contient pas le neutre multiplicatif 1 de Z.

• Soit n ∈ N∗ L’ensemble Tn(K) des matrices triangulaires supérieures de Mn(K) est un sous-anneau de
(Mn(K),+,×).

• L’ensemble C (R,R) est un sous-anneau de (F (R,R),+,×).

Ne pas oublier la condition 1A ∈ B dans la caractérisation des sous-anneaux : par exemple,

B =
{(

x 0
0 0

)
, x ∈ R

}
est un sous-groupe additif de M2(R), stable par produit et admet

(
1 0
0 0

)
pour élément neutre multiplicatif. Ainsi, (B,+,×) est un anneau, mais ce n’est pas un sous-anneau de
(M2(R),+,×) : ils n’ont pas le même élément neutre, et leurs inversibles (qu’on définit dans la section
suivante) n’ont aucun rapport.

Mise en garde.

Exercice 7. Montrer que l’ensemble Z[i] =
{
a+ ib, (a, b) ∈ Z2}

est un sous-anneau de (C,+,×).

3.3 Diviseurs de zéro
Définition.

Soit (A,+,×) un anneau et a ∈ A différent de 0A. On dit que a est un diviseur de zéro s’il existe b ∈ A
différent de 0A tel que a× b = 0A ou b× a = 0A.

Exemple. L’anneau non commutatif (F (R,R),+, ◦) possède des diviseurs de zéro, par exemple la fonction
f : x 7→ max(x, 0), puisque si g : x 7→ −x2, alors pour tout x ∈ R :

f ◦ g(x) = max(−x2, 0) = 0.

12
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Exercice 8. Montrer que si A ∈ Mn(K) n’est pas inversible, alors A est un diviseur de zéro.

Définition.
Un anneau commutatif (A,+,×) est dit intègre s’il est non nul et ne possède pas de diviseurs de zéro.
Autrement dit, (A,+,×) est intègre si A ̸= {0A} et si

∀(a, b) ∈ A2, a× b = 0A ⇒ (a = 0A ou b = 0A) .

Exemples.

• Si (A,+,×) est un anneau intègre, alors tout sous-anneau de A est un anneau intègre.

• (C,+,×) est intègre, de même que (R,+,×), (Q,+,×), (Z,+,×).

Exercice 9. Soient (A,+,×) un anneau intègre et E un ensemble non vide. Donner une condition nécessaire
et suffisante sur E pour que (F (E,A),+,×) soit un anneau intègre.

3.4 Éléments inversibles
Définition.

Soit (A,+,×) un anneau. On dit qu’un élément a ∈ A est inversible s’il possède un inverse pour la loi ×,
c’est-à-dire s’il existe b ∈ A tel que a× b = b× a = 1A.

Si a ∈ A est inversible, son inverse est unique par associativité de ×. On le note x−1.
L’ensemble des éléments inversibles de A se note A∗, ou encore U (A) (on parle parfois d’unités au lieu
d’inversibles).

� Notation.

Exemples.

• 1A est toujours inversible, de sorte que 1A ∈ U (A).
En revanche, si A n’est pas l’anneau nul, 0A n’est pas inversible (car a× 0A = 0A ne peut jamais être égal
à 1A), et donc U (A) ⊂ A \ {0}.

• U (Z) = {−1, 1}, U (Q) = Q \ {0}, U (R) = R \ {0}, U (C) = C \ {0}.

• Dans (Mn(K),+,×) les éléments inversibles sont bien les matrices que nous avons appelées inversibles.
Et nous avons alors noté GLn(K) l’ensemble U (Mn(K)).

Ne pas confondre A∗, l’ensemble des inversibles de (A,+,×), et A \ {0A}. Comme dit précédemment,
on a l’inclusion A∗ ⊂ A \ {0A}, mais l’inclusion réciproque est en générale fausse (elle sera vraie si, et
seulement si, A est un corps, ce que nous définirons ci-dessous).
Pour éviter cette confusion, on privilégiera la notation U (A) pour l’ensemble des inversibles de A.

Mise en garde.

Si a ∈ A est inversible, alors a n’est pas un diviseur de zéro.

Propriété 23

Soit (A,+,×) un anneau.
(U (A),×) est un groupe, appelé groupe des inversibles (ou groupe des unités) de A.
Ce groupe est commutatif si A est un anneau commutatif.

Propriété 24
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3.5 Morphismes d’anneaux
Définition.

Soient (A,+A,×A) et (B,+B ,×B) des anneaux d’éléments neutres multiplicatifs 1A et 1B .
Une application φ : A → B est un morphisme d’anneaux si :

• ∀(x, y) ∈ A2, φ(x+A y) = φ(x) +B φ(y) ;

• ∀(x, y) ∈ A2, φ(x×A y) = φ(x) ×B φ(y) ;

• φ(1A) = 1B .

Lorsque φ est bijective, on parle d’isomorphisme d’anneaux.

Remarques.

• On pensera à bien vérifier la condition φ (1A) = 1B . En effet, elle ne découle pas directement du second
point. Et par exemple, si B n’est pas l’anneau nul, l’application nulle vérifie les deux premiers points,
mais pas le troisième et n’est donc pas un morphisme d’anneaux.

• Le premier point nous dit notamment que φ est un morphisme de groupes entre les groupes abéliens
(A,+A) et (B,+B). Et donc φ (0A) = 0B et pour tout x ∈ A, φ(−x) = −φ(x). Et comme tous les
morphismes de groupes, φ est injectif si, et seulement si, son noyau est réduit à {0A}.

• En revanche, φ n’est pas un morphisme de groupes pour la multiplication car A et B ne sont même pas
des groupes pour le produit. On a cependant le résultat suivant.

Soit φ : A → B un morphisme d’anneaux.
φ(U (A)) ⊂ U (B) et pour tout x ∈ U (A), φ(x)−1 = φ(x−1).
Ainsi, φ|U (A) est un morphisme de groupes de (U (A),×) dans (U (B),×).

Propriété 25

Remarque. Comme dans le cas des groupes, la composée de deux morphismes d’anneaux est un morphisme
d’anneaux et l’image directe/réciproque d’un sous-anneau par un morphisme d’anneau est un sous-anneau. On
définit également les notions d’isomorphisme d’anneaux, d’automorphisme d’anneau et d’anneaux isomorphes.
Il reste vrai que la composée de deux isomorphismes est un isomorphisme et que la réciproque d’un isomorphisme
est un isomorphisme.

Exemple. La conjugaison complexe z 7→ z̄ est un automorphisme d’anneau de (C,+,×).

Exercice 10. Soit f : C → M2(R) l’application qui à z = a+ ib ∈ C associe
(
a −b
b a

)
. Montrer que f est un

morphisme d’anneaux injectif.

4 Corps commutatifs
Définition.

Un anneau commutatif (K,+,×) est un corps si tout élément non nul de K est inversible.

Remarques.

• Un anneau commutatif (K,+,×) est un corps si, et seulement si, U (K) = K \ {0K}.

• Dans un corps, tout élément non nul étant inversible, il n’y a pas de diviseur de zéro : un corps est intègre.

Exemples.

• Q, R et C munis des opérations habituelles sont des corps.

• (Z,+,×) n’est pas un corps car U (Z) = {−1, 1} ≠ Z \ {0}.

14
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Définition.
Soit L ⊂ K un sous-ensemble d’un corps K. On dit que L est un sous-corps de K si L est stable par + et ×,
si 1K appartient à L, et si les lois induites sur L par celles de K le munissent d’une structure de corps.

Une partie L d’un corps K est un sous-corps de K si, et seulement si :

(1) 1K ∈ L ;

(2) pour tout (x, y) ∈ L2, x− y ∈ L ;

(3) pour tout (x, y) ∈ L2 avec y ̸= 0, x× y−1 ∈ L.

Propriété 26 (Caractérisation d’un sous-corps)

Exercice 11. Montrer que l’ensemble Q(i) = {a+ ib, a, b ∈ Q} est un corps.

Remarque. Les corps seront le bon cadre pour faire de l’algèbre linéaire, et par exemple, tout ce que nous
avons dit sur les matrices à coefficients dans K = R ou K = C reste valable dans un corps quelconque.
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