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MP21 Lycée Roosevelt

1 Loi de composition interne
1.1 Définitions
Définition.

Soit F un ensemble. On appelle loi de composition interne sur E toute application de E x E dans E.

% Notation.
Une telle loi sera en général notée sous 'une des formes suivantes :

e + en notation additive ; e %, %, - O, ... en notation multiplicative.

Au lieu d’utiliser la notation standard +(z,y) pour I'image du couple (x,y) par 'application +, on note
plutdt x +y (ou x *xy, z*y, -y, x oy, ...).

Exemples.

e La somme (z,y) — x + y et le produit (z,y) — = x y sont des lois de composition internes sur R, mais
aussi sur C, sur Z, sur Q ou sur N.

o La différence (z,y) — x — y est une loi de composition interne sur C, R, Q et Z, mais pas sur N puisque
la différence de deux entiers naturel peut étre négative.

o Sur lensemble Z(E) des parties de F, on a deux lois de composition internes qui sont (4,B) — AN B
et (A4,B) — AUB.

o L’ensemble ., (K) est muni de deux lois de composition internes, qui sont la somme et le produit.

e Sur ’ensemble .Z (R, R) des fonctions de R dans R, la somme (f, g) — f+g¢g et la composition (f,g) — fog
sont deux lois de composition internes.

Définition.
Soit F un ensemble muni d’une loi de composition interne *. On dit que la loi * est :

o commutative si pour tout (z,y) € E?, xxy=yx*z ;

e associative si pour tout (z,y,2) € B3, o (y*2) = (x % y) * 2.

Exemples.
o Sur C (et donc sur R, Q, Z et N), la somme et le produit sont & la fois associatifs et commutatifs.

e La différence n’est pas commutative sur Z car 2 — 3 # 3 — 2. Elle n’est pas non plus associative car

1-1-1)#4£(1-1)-1.
e L’union et l'intersection sont commutatives et associatives sur Z(FE).
o Sur .Z(R,R) la composition est associative, mais elle n’est pas commutative.
o La somme de matrices est associative et commutative, le produit est associatif mais n’est pas commutatif
sin > 2.
Définition.
Soit F un ensemble muni d’une loi de composition interne x*, et soit A C E.

On dit que A est stable par * si pour tout (z,y) € A%, x * y appartient a A.

Dauns ce cas, on appelle restriction de la loi x d A laloi de composition interne définie sur A par (z,y) — x*y.

Remarque. Si * est associative (resp. commutative), alors sa restriction a A 'est également.
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Définition.
Soit £ un ensemble muni de deux lois de composition internes @ et . On dit que * est distributive par
rapport a @ si

V(z,y,2) EE3 aox(y®2) = (x*xy) @ (xx2) et (xDy)*z=(z*2)D (y*2).

Exemples.
o Dans R ou C, le produit est distributif par rapport & la somme. De méme dans ./, (R) ou ., (C).

e Dans Z(FE), U est distributif par rapport a N et N est distributif par rapport a U.

1.2 Elément neutre, inversibilité
Définition.
Soit F un ensemble muni d’une loi de composition interne *. On dit que e € E est un élément neutre pour
* si :
VreE, rxe=exx =1.

Propriété 1

Soit E' un ensemble muni d’une loi de composition interne *. Si un élément neutre existe, alors il est
unique.

Exemples.
e Dans C, R, Q ou Z, 0 est ’élément neutre pour 'addition et 1 est ’élément neutre pour la multiplication.
o idg est ’élément neutre de .Z (R, R) pour la composition o.
o I, est Iélément neutre de .#,(K) pour la multiplication, et la matrice nulle est 1’élément neutre pour

I’addition.

S Notation.

L’élément neutre de F, s’il existe, sera plutot noté Og ou 0 en notation additive, 1z ou 1 en notation
multiplicative.

Définition.

Soit E' un ensemble muni d’une loi de composition interne * possédant un élément neutre e.

Un élément x € E est dit symétrisable ou inversible s’il existe y € E tel que x xy =y *xz = e.

Exemples.

e Dans (Z,4), (Q,+), (R,+), (C,+), tout élément est symétrisable, car on a toujours z+(—x) = (—z)+z =
0. Dans (N, +), seul 0 est symétrisable.
e Dans (N, x), seul 1 est symétrisable. Dans (Z, x) seuls 1 et —1 sont symétrisables.

Dans (Q, x), (R, x), (C, x), tout élément non nul est symétrisable. En revanche, 0 n’est pas symétrisable
car pour tout élément y, 0 x y =y x 0 =0 # 1.

Exercice 1. On considére &(E) muni de Uintersection N. Existe-t-il un élément neutre 7 Quels éléments sont
symétrisables 7 Mémes questions pour (Z(E),U).
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— Propriété 2

Soit F un ensemble muni d’une loi associative * possédant un élément neutre e.
Si z € E est symétrisable, alors il existe un unique y € F tel que zxy =y *xx =e.

Cet élément est appelé le symétrique de x.

% Notation.

On note le symétrique de z (sil existe) :
¢ —x en notation additive, et on parle plutot de 1’opposé de x dans ce cas ;

o 7! en notation multiplicative, et on parle alors plutot de ’inverse de x.

Remarque. L’élément neutre e est toujours symétrisable, et égal a son propre symétrique puisque e x e = e.
Exemples.

o Dans .7 (R,R), un élément f est symétrisable pour o si, et seulement si, f est une bijection, et alors son
symétrique est la bijection réciproque f~! de f.

o Dans .#,(K) muni de la multiplication, on retrouve exactement la définition d’une matrice inversible.

— Propriété 3

Soit E' un ensemble muni d’une loi associative x, d’élément neutre e.

(1) Si z est symétrisable, alors x=1 l'est aussi, et (z71)~! =

(2) Si x et y sont symétrisables, alors z * y I'est aussi, et (xxy) ™t =y L x L

— Propriété 4 (Simplification par un élément inversible)

Soit F un ensemble muni d’une loi de composition interne associative *, et soit = un élément symétris-

able. Alors :
e Y(y,2) EE?, xxy=x%x2 = y=2. e Y(y,2) €EE? yxx=z%1x = y=2.

On dit alors que x est un élément régulier.

,g‘ Danger.

Dans (Q, x), (R, x) ou (C, x), tout élément non nul est inversible, et on peut donc « simplifier » par tout
élément non nul. Attention, cela n’est pas aussi simple dans d’autres situations :

o dans (Z(R,R),0) par exemple, si f:2— 0, g:2x— et h:a— |x|, alors :
fog=/foh et gof=hof

mais g # h. L’élément f n’est donc pas régulier, et on ne peut pas « simplifier » par f. Il est
cependant possible de « simplifier » par une fonction si celle-ci est bijective.
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« autre exemple dans (4, (K), x) :

1 0 « 0 0y (10 o 0 0 ot 0 0 « 1 0y (0 0 o 10
0 0 0 1) \0 O 0 2 0 1 0 0/ \0 2 0 0
10
0 1 0 2 0 0

peut cependant « simplifier » par toute matrice inversible.

mais (O 0) #* (O O>. On ne peut donc pas « simplifier » par ( ) qui n’est pas régulier. On

1.3 Itérés d’un élément

Dans cette section, E désigne un ensemble muni d’une loi interne associative % et d’élément neutre e.
Béﬁnition.

Soit € E. On définit les puissances de x en posant z° = e et pour tout n € N :

wn+1 = 2" x 1.

Ainsi, pour tout n € N*: 2" =g sz *---x1x.
——

n fois

% Notation.

Si la loi de E est notée additivement +, on note 0z = 0 et pour tout n € N* :

nr=xrx+x+---+z,
N—————

n fois

et on parle plutét des multiples de x.

— Propriété 5

(1) Soit x € E. Alors pour tout (m,n) € N2, 2™ % g" = g™+n,

(2) Soient x,y € F des éléments qui commutent, c’est-a-dire tels que = *x y = y * .

Alors pour tout n € N :

amxy” =y " xa™ et (xxy)t =a"xy".

— Propriété 6

Soit z € E un élément inversible. Alors pour tout n € N, 2" est inversible, et (x”)fl = (x_l)n.

On note alors z—™ au lieu de (x_l)”

— Propriété 7

Soit # € E un élément inversible. Alors pour tout (m,n) € Z2, ™" = g™ % 2",

Remarque. Toutes les puissances de x commutent entre elles puisque m +n =n + m.
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2 Groupes

2.1 Définitions et exemples

Définition.

Soit G’ un ensemble muni d’une loi de composition interne .

On dit que (G, x) est un groupe si :
o laloi * est associative : V(z,y,2) € G3, xx(y*z)= (x*xy)*2;
e la loi x possede un élément neutre : Je € G, Vr € G, xxe=e*xxr =1 ;
o tout élément de G est symétrisable pour x : Ve G, Jy e G, zxy=y*xx =e.

Si de plus la loi * est commutative, on dira que (G, *) est un groupe commutatif ou abélien.
Si G est fini, son cardinal Card(G) s’appelle l'ordre de G.

Rappel. D’apres les résultats précédemment obtenus, I’élément neutre d’un groupe (G, *) est unique, de méme
que le symétrique d’un élément.

S Notation.
Par convention, on note généralement multiplicativement x * y la loi d’'un groupe non commutatif, et on
note alors 1¢ ou plus simplement 1 son élément neutre.

Pour les groupes abéliens, on note plutot la loi additivement x +y. Dans ce cas, on note O ou 0 I’élément
neutre, —z le symétrique de = et nx au lieu de x™.

Exemples.
e (Z,4), (Q,+4), (R,+), (C,+) sont des groupes abéliens. (N, +) n’est pas un groupe.
e (Q* x), (R*, x) et (C*, x) sont des groupes abéliens.

e Pour tout n > 1, (U,, x) est un groupe abélien fini d’ordre n.

(A, p(K),+) est un groupe abélien.

o (GL,(K), x) est un groupe, non abélien dés que n > 2.

— Propriété 8

Soit X un ensemble. On note &(X) (ou S(X)) 'ensemble des bijections de X dans X.

Alors (6(X), o) est un groupe, non commutatif dés que X contient au moins trois éléments distincts.
Si de plus X est fini de cardinal n, alors G(X) est un groupe fini d’ordre n!.

Ce groupe est appelé groupe symétrique de X, et ses éléments sont nommés permutations de X.

% Notation.

Si X = [1,n] avec n > 1, on notera le groupe symétrique de X plus simplement &,,, et on l'appellera
groupe symétrique d’indice n. Un élément o € G,, se représente communément sous forme d’un tableau :
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-
Le saviez-vous 7

Il est fréquent de trouver des propriétés communes dans des situations qui au départ semblent totalement
sans rapport. Une des grandes découvertes (et réussites) des mathématiques du 19°™¢ siecle a été de parvenir
a unifier ces problemes en apparence distincts, en faisant ressortir de ces différents problémes des structures
ensemblistes et opératoires ayant des propriétés similaires.

C’est Evariste Galois le premier & mettre en avant ces études de structures & 'occasion de ses travaux visant
a étudier la résolubilité des équations polynomiales par radicaux. Il y parle de groupes de permutations des
solutions d’une équation, et est amené a étudier des propriétés de certains sous-ensembles de ces groupes de
permutations. C’est lui qui introduit la terminologie de « groupe », méme si la formalisation précise de cette

notion est beaucoup plus tardive.
S J

— Propriété 9

Soient (G1,*1) et (Ga,*2) deux groupes. On définit sur le produit cartésien G; x Gz la loi de
composition interne x suivante :

Y(91,92), (91, 95) € G1 x Ga, (91,92) * (91, 95) = (91 *1 91, g2 *2 g5)

Alors (G1 x Ga,*) est un groupe, appelé le produit direct des groupes Gy et Gs.

De plus, (G1 x Ga,x) est abélien si, et seulement si, (G, *1) et (Ga,*2) le sont.

Table de Cayley d’un groupe fini.

Lorsque G est un groupe fini dont on note a1, as, ..., a, les éléments, on peut résumer la loi * dans un tableau
a mn lignes et m colonnes dans lequel on fait figurer a 'intersection de la ligne i et de la colonne j le résultat
Qi * Qj.

* H ay ‘ ‘ Qj ‘ ‘ Qp

aq al x aj ay * a; al * Qp
a; ay * a; a; * aj a; * Ap
(e7% Qp * a1 Ay * Aj Ap * Ap,

Exercice 2. Dresser la table des groupes Us, Uy x Uy et G3.

Remarque. Dans la table d’'un groupe fini, chaque élément apparait une et une seule fois sur chaque ligne et
chaque colonne. On peut le justifier pour les colonnes en notant que pour tout g € G, I'application ¢4 : x —
x * g est une bijection de G sur G, d’inverse p,-1. Et de méme pour les lignes en considérant I’application
Pg 1T g*T.

2.2 Sous-groupes
Définition.
Soit (G, *) un groupe, et soit H une partie non vide de G.

On dit que H est un sous-groupe de G si H est stable par * et que (H, *) est un groupe.

Exemple. Pour tout groupe G, G et {eg} sont des sous-groupes de G, appelés sous-groupes triviauz de G. A
I'inverse, on appelle sous-groupe propre de G tout sous-groupe non trivial de G.
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— Propriété 10 (Premiére caractérisation d’un sous-groupe)
Soit (G, %) un groupe, et H C G. H est un sous-groupe de G si, et seulement si :

(1) eq € H ; (2) V(z,y) € H*, xxy € H ; (B)Vee H, 2~ € H.

— Corollaire 11 (Deuxiéme caractérisation d’un sous-groupe)

Soit G un groupe, et H C GG. H est un sous-groupe de G si, et seulement si :

(1) eq € H; (2) V(z,y) € H*, zxy~ ' € H.

Exemples.

o (R%, x) est un sous-groupe de (R*, x). En revanche, (R* , x) n’est pas un sous-groupe de (R*, x).
o L’ensemble U des nombres complexes de module 1 est un sous-groupe de (C*, x).

o Pour tout n € N*, 'ensemble U,, des racines n-émes de 'unité est un sous-groupe de (C*, x) (et de (U, x)

aussi).

o Soit n € N*. Notons 2;:(K) (resp. 7,"(K)) I'ensemble des matrices de taille n x n diagonales inversibles
(resp. triangulaires supérieures inversibles). Alors 2;5(K) et .7.*(K) sont des sous-groupes de (GL, (K), x).

% Méthode. Comment montrer qu’un ensemble est un groupe 7

Pour montrer qu’un ensemble est un groupe, on commencera par se demander s’il ne serait pas un sous-
groupe d’un groupe déja connu. En effet, il sera alors bien plus rapide de prouver les points qui caractérisent

un Sous-groupe que ceur qui caractérisent un groupe.

Exercice 3. Montrer que U = { ((1) (1L> ,a € K} muni du produit matriciel est un groupe.

— Propriété 12

Soit (H;);es une famille de sous-groupes de (G, x). Alors m H; est un sous-groupe de G.
iel

— Propriété 13
Soient (G, *) un groupe, et g € G. Alors :
(9) ={g", neZ}

est un sous-groupe de G, appelé sous-groupe engendré par g.
De plus, (g) est le plus petit sous-groupe (au sens de l'inclusion) qui contient g : si H est un

sous-groupe de G contenant g, alors {(g) C H.

Définition.
On dit qu'un groupe (G, *) est monogene s'il existe g € G tel que G = (g). S’il est de plus fini, on dit que

(G, *) est cyclique.
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Exemples.

e (Z,4) est monogene, engendré par 1 (ou —1).

e Pour tout n > 1, U,, est un groupe cyclique, engendré par &, =e™» .

Propriété 14

Un groupe monogene est abélien.

Exercice 4. Les groupes (R, +) et (&,,,0) sont-ils monogenes ?

2.3 Morphismes de groupes
Définition.
] Soient (G, *1) et (G, *2) deux groupes. On appelle morphisme (de groupes) de G1 dans G2 toute application
¢ : G — Gs telle que :
Yo,y € G, gz y) = p(x)*2 ().

Exemples.
e Pour tout groupe G, idg est un morphisme de G dans lui-méme.
e Si Gy et Gy sont deux groupes, ’application constante égale a eg, est un morphisme de G; dans Go.
o Le module z — |z| est un morphisme de (C*, x) dans (R%, x).
o L’exponentielle complexe est un morphisme de (C,+) dans (C*, x).

7Z — G

N gn est un morphisme de (Z, +) dans (G, *).

o Pour tout groupe (G, %) et pour tout g € G, ¢, : {

— Propriété 15

Soient (G, *1) et (Ga,*2) deux groupes, et soit ¢ : G; — G5 un morphisme de groupes. Alors :

(1) plea,) =eq, ; (2) Ve e G1, p(z™!) =p(z)~"

— Propriété 16

Soient (G1,%*1), (G2, *2) et (G3,*3) trois groupes.
Sip:Gy — Gy et p: Gy — G5 sont deux morphismes de groupes, alors ¥ o ¢ est un morphisme de
groupes de Gy dans G3.

— Propriété 17

Soit ¢ un morphisme de groupes entre (G, *1) et (Ga,*2).
(1) Pour tout sous-groupe H; de G1, p(Hy) = {¢(h), h € H1} est un sous-groupe de Gs.
(2) Pour tout sous-groupe Hy de Ga, ¢ '(Hz) = {h € G1 | p(h) € Ha} est un sous-groupe de G.
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Définition.
Soit ¢ un morphisme de groupes entre (G, *1) et (Ga,*2).

e On appelle noyau de p, et on note Ker(y) (provient de l'allemand Kern) le sous-groupe de G défini
par :
Ker(p) = ¢~ '({ec,}) = {9 € Gi | ¢(9) = ec. }-

e On appelle image de ¢, et on note Im(p) le sous-groupe de G défini par :

Im(p) = p(G1) ={p(9), g € G1} ={h € G2 | Jg € G1, p(g) = h}.

— Propriété 18 (Caractérisations de 'injectivité et de la surjectivité)

Soit ¢ un morphisme de groupes entre (G, *1) et (Ga, *2).
(1)  est injective si, et seulement si, Ker(¢) = {eg, }-

(2)  est surjective si, et seulement si, Im(p) = Ga.

Exemples.

o Le module z + |z| est un morphisme surjectif de C* dans R, de noyau {z € C* | |z| =1} = U.

o L’exponentielle complexe est un morphisme surjectif de C dans C*, de noyau {z € C | e* = 1} = 2inZ.
Définition.
On appelle isomorphisme (de groupes) de Gy sur G tout morphisme de groupes bijectif de G sur Gs.

Lorsque G1 = G, on parle d’automorphisme (de groupe) de G1.

On dit que deux groupes G et G2 sont isomorphes lorsqu’il existe un isomorphisme de G sur Gs.

Exemple. Les groupes (R, x) et (R, +) sont isomorphes, et le logarithme est un isomorphisme de (R*, x)
sur (R, +).

Exercice 5. Montrer que ¢ : a — <(1) ?) est un isomorphisme de (K, +) sur (U, x).

— Propriété 19
(1) Soient G et Go deux groupes et ¢ : G; — G4 un isomorphisme de groupes de G; sur Ga. Alors
¢! est un isomorphisme de groupes de G sur G.

(2) Soit G un groupe. L’ensemble Aut(G) des automorphismes de groupe de G est un groupe pour
la composition.

Remarque. Deux groupes finis G; et G5 sont isomorphes si, et seulement si, la table du groupe G5 est identique
a celle du groupe Gy a « renumérotation » pres des éléments de G5 a l'aide des éléments de G;.

Exercice 6. Déterminer a isomorphisme pres tous les groupes de cardinal 2 et 3.

10
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Un résultat remarquable est la classification a isomorphisme pres des groupes finis dits « simples » (I’équivalent
des nombres premiers en théorie des groupes), achevée en 1981. C’est en fait un ensemble de travaux,
comprenant des dizaines de milliers de pages publiées dans 500 articles par plus de 100 auteurs. On trouve
dans cette classification des groupes qui vous sont déja familiers, les groupes cycliques U, avec p premier,
mais également des structures bien plus complexes, tel que le Monstre de Fischer, de cardinal :

246 5 320 x 5% x 76 x 112 x 13% x 17 x 19 x 23 x 29 x 31 x 41 x 47 x 59 x 71 (~ 8 x 10°®).

3 Généralités sur les anneaux

3.1 Définitions et exemples

Définition.

Soit A un ensemble muni de deux lois internes notées + et x.

On dit que (A, +, X) est un anneau (unitaire) si :
(i) (A,+) est un groupe abélien, dont ’élément neutre est noté 04 ;
(if) la loi x est associative et posséde un élément neutre 14 ;

(iii) la loi x est distributive par rapport a la loi +.

Si de plus la loi x est commutative, on dit que (A, +, X) est un anneau commutatif.

Exemples.
o (Z,4, %), (Q,+, x), (R,+, x), (C,+, x) sont des anneaux commutatifs.
o (M,(K),+, x) est un anneau non commutatif si n > 2.

e Soit (A, +, x) un anneau, et soit E un ensemble. On définit sur 'ensemble .7 (E, A) = A¥ des applications
de E dans A deux lois de compositions internes encore notées + et x en posant pour tout f,g € % (F, A) :

— Ve e E, (f+9)(x) = f(x) +9(x) ; — Ve e B, (f xg)(x) = f(x) x g().

On vérifie que % (FE, A) muni de ces deux opérations + et x est un anneau, et qu’il est commutatif si, et
seulement si, A est.

En particulier, les ensembles (% (I,R), +, X) et (F

C),+, x), ou I est un intervalle non vide, sont des
anneaux commutatifs, de méme que (RY, +, x) et (CN, +,

(4, ;
CN +, x).

— Propriété 20 (Regles de calcul dans un anneau)

Soit (A, +, X) un anneau, et soient a,b € A. Alors :
(1) axX04=04xa=04;
(2) ax (=b) =(—a)xb=—(axDb);

(3) Plus généralement, pour tout n € Z, a x (nb) = (na) x b =n(a x b).

Remarque. Dans la définition d’anneau, rien n’interdit que 14 = 04. Si c’est le cas, alors pour tout a € A,
a=ax1ly=ax0y4 =04, ct donc A={04} est "anneau nul, qui n’a pas un gros intérét.

11
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— Propriété 21

Soit (A,+, x) un anneau, et soient a,b € A deux éléments qui commutent, c’est-a-dire tels que
a X b=1>bxa. Alors pour tout n € N :

" n n—1
. (a+b)n — Z <k>akbnk : o a — b = (a . b) > Zakbnflfk.

k=0 k=0

3.2 Sous-anneaux

Définition.

Soit (A, 4+, X) un anneau et soit B une partie non vide de A. On dit que B est un sous-anneau de A si B
contient 14, B est stable a la fois pour + et pour x, et que (B, +, X) est un anneau.

— Propriété 22 (Caractérisation d’un sous-anneau)

Une partie B d’un anneau (A, +, X) est un sous-anneau de A si, et seulement si :
(1) 14 € B;
(2) B est un sous-groupe de (A4,+) : V(z,y) € B?, 2 —y€ B;

(3) B est stable par multiplication : V(z,y) € B?, z xy € B.

Exemples.

e (Z,4+, x) est un sous-anneau de (Q, +, x), qui est lui-méme un sous-anneau de (R, +, x), qui est lui-méme
un sous-anneau de (C, 4, x).

o L’ensemble 2Z des entiers pairs n’est pas un sous-anneau de (Z, 4+, X) : bien qu’il en soit un sous-groupe
et qu’il soit stable par multiplication, il ne contient pas le neutre multiplicatif 1 de Z.

e Soit n € N* L’ensemble 7, (K) des matrices triangulaires supérieures de ., (K) est un sous-anneau de
(A (K), +, %)

o L’ensemble € (R, R) est un sous-anneau de (% (R,R), +, x).

& Mise en garde.

Ne pas oublier la condition 14 € B dans la caractérisation des sous-anneaux : par exemple,
B = {(g 8) , T € R} est un sous-groupe additif de .#5(R), stable par produit et admet <é 8>

pour élément neutre multiplicatif. Ainsi, (B, 4+, X) est un anneau, mais ce n’est pas un sous-anneau de
(M>(R),+, x) : ils n’ont pas le méme élément neutre, et leurs inversibles (qu’on définit dans la section
suivante) n’ont aucun rapport.

Exercice 7. Montrer que I'ensemble Z[i] = {a + ib, (a,b) € Z?} est un sous-anneau de (C, +, ).

3.3 Diviseurs de zéro

Définition.

Soit (A, 4+, x) un anneau et a € A différent de 04. On dit que a est un diviseur de zéro s'il existe b € A
différent de 04 tel que a x b=04 ou b x a=104.

Exemple. L’anneau non commutatif (& (R,R),+,0) posséde des diviseurs de zéro, par exemple la fonction
f 2~ max(z,0), puisque si g : z — —x?, alors pour tout z € R :

fog(z) = max(—x20) = 0.

12
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Exercice 8. Montrer que si A € .#,,(K) n’est pas inversible, alors A est un diviseur de zéro.
Définition.

Un anneau commutatif (A, +, x) est dit intégre §’il est non nul et ne posséde pas de diviseurs de zéro.
Autrement dit, (A, +, X) est intégre si A # {04} et si

Y(a,b) € A%, axb=04 = (a=040ub=04).

Exemples.
e Si(A,+, x) est un anneau inteégre, alors tout sous-anneau de A est un anneau intégre.
e (C,+, x) est integre, de méme que (R, +, x), (Q,+, %), (Z,+, x).

Exercice 9. Soient (A, 4+, X) un anneau intégre et E un ensemble non vide. Donner une condition nécessaire
et suffisante sur E pour que (F (F, A),+, X) soit un anneau intégre.

3.4 Eléments inversibles

Définition.

Soit (4,4, X) un anneau. On dit qu’'un élément a € A est inversible s’il posséde un inverse pour la loi X,
c’est-a-dire s’il existe b € A tel que a x b=>bxa=14.

@ Notation.
Si a € A est inversible, son inverse est unique par associativité de x. On le note 1.

L’ensemble des éléments inversibles de A se note A*, ou encore % (A) (on parle parfois d’unités au lieu
d’inversibles).

Exemples.

o 14 est toujours inversible, de sorte que 14 € % (A).
En revanche, si A n’est pas 'anneau nul, 04 n’est pas inversible (car a X 04 = 04 ne peut jamais étre égal
aly), et donc Z(A) C A\ {0}.

« %(2)={-1,1}, #(Q) = Q\ {0}, Z(R) = R\ {0}, #(C) = C\ {0}.

o Dans (#,(K),+, x) les éléments inversibles sont bien les matrices que nous avons appelées inversibles.
Et nous avons alors noté GL, (K) ensemble % (4, (K)).

& Mise en garde.

Ne pas confondre A*, ensemble des inversibles de (4, +, x), et A\ {04}. Comme dit précédemment,
on a linclusion A* C A\ {04}, mais l'inclusion réciproque est en générale fausse (elle sera vraie si, et
seulement si, A est un corps, ce que nous définirons ci-dessous).

Pour éviter cette confusion, on privilégiera la notation % (A) pour ’ensemble des inversibles de A.

— Propriété 23

Si a € A est inversible, alors a n’est pas un diviseur de zéro.

— Propriété 24

Soit (A, +, X) un anneau.

(% (A), x) est un groupe, appelé groupe des inversibles (ou groupe des unités) de A.
Ce groupe est commutatif si A est un anneau commutatif.

13
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3.5 Morphismes d’anneaux
Définition.
Soient (A, +4, X4) et (B,+p, xp) des anneaux d’éléments neutres multiplicatifs 14 et 15.

Une application ¢ : A — B est un morphisme d’anneauz si :
o V(@,y) € A% p(z +ay) = @) +B 9Y) ;
o V(x,y) € A% p(z xay) = @(x) xB P(Y) ;
o p(la) =1p.

Lorsque ¢ est bijective, on parle d’isomorphisme d’anneaux.

Remarques.

o On pensera a bien vérifier la condition ¢ (14) = 15. En effet, elle ne découle pas directement du second
point. Et par exemple, si B n’est pas 'anneau nul, I'application nulle vérifie les deux premiers points,
mais pas le troisieme et n’est donc pas un morphisme d’anneaux.

e Le premier point nous dit notamment que ¢ est un morphisme de groupes entre les groupes abéliens
(A,+4) et (B,+p). Et donc ¢(04) = 0p et pour tout x € A, o(—z) = —p(z). Et comme tous les
morphismes de groupes, ¢ est injectif si, et seulement si, son noyau est réduit & {04}.

e En revanche, ¢ n’est pas un morphisme de groupes pour la multiplication car A et B ne sont méme pas
des groupes pour le produit. On a cependant le résultat suivant.

— Propriété 25

Soit ¢ : A — B un morphisme d’anneaux.
©(% (A)) C % (B) et pour tout x € % (A), p(z)~! = p(z71).
Ainsi, |4 (4) est un morphisme de groupes de (% (4), x) dans (% (B), x).

Remarque. Comme dans le cas des groupes, la composée de deux morphismes d’anneaux est un morphisme
d’anneaux et 'image directe/réciproque d’un sous-anneau par un morphisme d’anneau est un sous-anneau. On
définit également les notions d’isomorphisme d’anneauz, d’automorphisme d’anneau et d’anneaux isomorphes.
Il reste vrai que la composée de deux isomorphismes est un isomorphisme et que la réciproque d’un isomorphisme
est un isomorphisme.

Exemple. La conjugaison complexe z — Z est un automorphisme d’anneau de (C, +, x).

—b
b 4 ) Montrer que f est un

Exercice 10. Soit f : C — .#5(R) lapplication qui & z = a + ib € C associe (a

morphisme d’anneaux injectif.

4 Corps commutatifs
Définition.

Un anneau commutatif (K, 4, x) est un corps si tout élément non nul de K est inversible.

Remarques.
e Un anneau commutatif (K, 4, x) est un corps si, et seulement si, 7 (K) = K\ {0x}.

e Dans un corps, tout élément non nul étant inversible, il n’y a pas de diviseur de zéro : un corps est integre.

Exemples.
e Q, R et C munis des opérations habituelles sont des corps.

e (Z,+,x) n’est pas un corps car % (Z) = {—1,1} #Z \ {0}.

14
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Définition.

Soit . C K un sous-ensemble d’un corps K. On dit que L est un sous-corps de K si L est stable par + et X,
si 1g appartient a IL, et si les lois induites sur L par celles de K le munissent d’une structure de corps.

— Propriété 26 (Caractérisation d’un sous-corps)

Une partie I d’un corps K est un sous-corps de K si, et seulement si :
(1) gk eL;
(2) pour tout (z,y) €eL?, z—yelL;

(3) pour tout (x,y) € L2 avec y #0, x x y~* € L.

Exercice 11. Montrer que 'ensemble Q(i) = {a + ib, a,b € Q} est un corps.

Remarque. Les corps seront le bon cadre pour faire de I'algébre linéaire, et par exemple, tout ce que nous
avons dit sur les matrices & coefficients dans K = R ou K = C reste valable dans un corps quelconque.
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