Colle 1.

Question de cours. $\cos(a+b)$ et $\tan(a-b)$ + Définition et propriétés des coefficients binomiaux.

Preuve. Toute opération élémentaire transforme un système en un système qui lui est équivalent.

Exercice 1

- 1. Montrer que : $\forall x \in \mathbb{R}^+, \quad x \frac{x^3}{6} \le \sin(x) \le x$.
- 2. En déduire que : $\forall x \in \mathbb{R}^*$, $1 \frac{x^2}{6} \le \frac{\sin(x)}{x} \le 1$.
- 3. Calculer $\lim_{x\to 0} \frac{\sin(x)}{x}$ puis $\lim_{x\to 0} \frac{1-\cos(x)}{x^2}$.

Exercice 2

On pose $f(x) = \ln(\sqrt{x^2 + 1} - x)$.

- 1. Déterminer l'ensemble de définition de la fonction f.
- 2. Montrer que la fonction f est impaire.
- 3. Étudier les variations de la fonction f.

Exercice 3

Résoudre dans $\mathbb R$ l'équation suivante :

$$2\cos^2(x) + \sin(2x) - 1 = 0.$$

Exercice 4

- 1. Démontrer, en précisant le domaine de validité, la relation : $\tan(x) = \frac{1}{\tan(x)} \frac{2}{\tan(2x)}$.
- 2. En déduire la limite de $S_n = \sum_{k=0}^n \frac{1}{2^k} \tan\left(\frac{1}{2^k} \frac{\pi}{4}\right)$.

Colle 2.

Question de cours. Formules de l'arc moitié + Formules sur les sommes.

Preuve. Formules d'addiction pour cosinus, sinus et tangente.

Exercice 5

Soit $x \neq 0[2\pi]$. Montrer que :

$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n \sin(kx) = \frac{\sin(\frac{(n+1)x}{2})\sin(\frac{nx}{2})}{\sin(\frac{x}{2})}.$$

Exercice 6

On pose $f(x) = x^2 + \ln x$.

1. Montrer que f réalise une bijection de \mathbb{R}_+^* dans un ensemble à préciser.

On note g son application réciproque.

2. Montrer que g est dérivable sur son ensemble de définition et exprimer g' en fonction de g.

Exercice 7

- 1. Soit $\theta \in \mathbb{R}$. Exprimer $\cos(5\theta)$ en fonction de $\cos(\theta)$.
- 2. Déterminer la valeur de $\cos\left(\frac{\pi}{10}\right)$.

Exercice 8

On considère la fonction :

$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \sin(x)\cos^2(x) \end{array} \right.$$

Montrer qu'il suffit d'étudier f sur $[0, \frac{\pi}{2}]$ et expliquer comment obtenir toute la courbe représentative de f à partir de cette étude.

Colle 3.

Question de cours. $\sin(a-b)$ et $\tan(a-b)$ + Formule du binôme de Newton.

Preuve. Formules de l'arc moitié.

Exercice 9

- 1. Simplifier $\frac{\cos(p) \cos(q)}{\sin(p) + \sin(q)}$
- 2. En déduire la valeur de $\tan\left(\frac{\pi}{24}\right)$.

Exercice 10

Pour $n \ge 1$, on pose $u_n = \sum_{k=1}^n \sin\left(\frac{k}{n^2}\right)$.

1. Montrer que :

$$\forall x \ge 0, \quad x - \frac{x^3}{6} \le \sin(x) \le x$$

2. En déduire que la suite (u_n) converge et déterminer sa limite.

Exercice 11

On pose $f(x) = \sin(x) + \cos(\frac{x}{2})$.

- 1. Prouver que f est périodique.
- 2. Justifier : $\forall x \in \mathbb{R}, |f(x)| \leq 2$.
- 3. Peut-on en déduire que M=2 est un maximum de |f| ?