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Méthodes pour l’étude de suites particulières
Complément 2

Étude d’une suite implicite
Une suite implicite est une suite (un) de réels dont chaque terme un est solution d’une équation du type :

fn(x) = 0 (En)

où fn : I → R est une fonction dépendante de n ∈ N. Il n’est en général pas possible de résoudre explicitement
l’équation (En). On ne connait donc pas en général la valeur de un. On dit que ces termes sont définis
implicitement.
L’étude de suites implicites est fréquente aux concours. Il est donc important d’avoir en tête les méthodes pour
y parvenir.

Existence et unicité du terme général

Pour justifier l’existence et l’unicité d’une solution un de (En), on pensera à utiliser le théorème de la bijection
dont on rappelle l’énoncé.

Soit f une fonction continue et strictement monotone sur un intervalle I de R. Alors :

• J = f(I) est un intervalle, et f réalise une bijection de I sur J = f(I) ;

• son application réciproque f−1 est elle-même continue sur J , strictement monotone et de
même sens de variation que f .

Théorème 1 (de la bijection)

En deux étapes bien distinctes :

• on démontre avec le théorème de la bijection que fn est une bijection de I dans un intervalle J = f(I)
qu’on détermine ;

• on justifie que 0 ∈ J et donc que 0 admet un unique antécédent un dans I par fn.

On a ainsi prouvé l’existence et l’unicité d’une solution un de (En).

Monotonie et convergence de (un)

Afin d’étudier la monotonie de (un), on pourra :

• comparer, pour tout n ∈ N, les réels fn+1(un) et fn+1(un+1) = 0 ;

• en déduire une inégalité entre un+1 et un à l’aide de la stricte monotonie de fn+1.

Selon le sens de variation de la suite (un), on cherche si elle est ou non majorée ou minorée, et selon les cas, elle
sera soit convergente, soit divergente vers ±∞.

Limite et équivalent de (un)

Pour déterminer la limite de (un), ou obtenir un équivalent ou un développement asymptotique, on pensera à
utiliser l’équation (En) définissant le terme un :

fn(un) = 0.
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Étude d’une suite récurrente d’ordre 1
On considère à présent une suite définie par une relation de récurrence d’ordre 1, c’est-à-dire satisfaisant :{

u0 = α ∈ I

∀n ∈ N, un+1 = f(un)

où f est une fonction définie sur un intervalle I. Bien que les exercices seront souvent détaillés, il est utile de
connaitre les différentes situations que l’on peut rencontrer, et de savoir comment mener l’étude d’une telle suite
selon les cas.

Représentation graphique
Afin d’avoir une idée du comportement de la suite, ce qui est très
utile pour ensuite mener son étude, on commencera par visualiser
graphiquement ses premiers termes. Pour cela :

(i) on étudie les variations de la fonction f , puis on trace sur un
même graphe sa courbe représentative Cf ainsi que la droite
D d’équation y = x ;

(ii) on place u0 sur l’axe des abscisses ;

(iii) à l’aide de la courbe de f , on place u1 = f(u0) sur l’axe des
ordonnées ;

(iv) grâce à la droite D , on replace u1 sur l’axe des abscisses,
puis on réitère le processus sur u1 . . .

D

Cf

u0 u1u2 u3

Existence et encadrement des termes

Une définition par récurrence n’assure pas l’existence de la suite. En effet, les termes de la suite peuvent
sortir du domaine de définition de f .
Considérons par exemple la suite (un) définie par u0 = 2 et :

∀n ∈ N, un+1 = ln(un).

Elle n’est bien définie que pour ses trois premiers termes car u1 = ln(2) ≃ 0, 69, u2 = ln(ln(2)) ≃ −0, 36,
et donc u3 n’existe pas puisque u2 est sorti du domaine de définition du logarithme.

Mise en garde.

Pour assurer l’existence de tous les termes de la suite, on choisit u0 dans un intervalle stable de f .

Définition.
On dit qu’un intervalle J ⊂ I est stable par f si f(J) ⊂ J , c’est-à-dire si :

∀x ∈ J, f(x) ∈ J.

Si J est un intervalle stable par f et si u0 appartient à J , on montre par récurrence immédiate (à rédiger si
demandé) que :

pour tout n ∈ N, un existe et un appartient à J .

Si de plus J est majorée, minorée ou bornée, il en sera de même pour la suite (un).

Monotonie de la suite

Deux cas sont à distinguer selon la monotonie de f .
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• Si la fonction f est croissante sur un intervalle stable J :

La suite (un) est monotone, de monotonie donnée par le signe de u1 − u0 = f(u0) − u0. En effet :

– si u1 ≤ u0, alors un+1 ≤ un pour tout n (par récurrence en composant par f) et la suite est
décroissante ;

– de même, si u1 ≥ u0, alors la suite est croissante.

On pourra introduire la fonction g : x 7→ f(x) − x et en dresser son tableau de signe afin d’obtenir le signe
de u1 − u0.

Si la fonction f est croissante sur J , la suite (un) ne l’est pas forcément : elle peut être croissante
ou décroissante.

On peut par exemple le constater sur l’exemple ci-dessous : la suite (un) est décroissante si u0 ∈ ]0, 6[,
croissante si u0 ∈ ]6, +∞[, et constante si u0 = 6.

Mise en garde.

D

Cf

u0 u1 u2u0u1u2u3

• Si la fonction f est décroissante sur un intervalle stable J :

Dans ce cas, la suite (un) n’est plus monotone.

En revanche, la fonction f ◦ f étant croissante de J dans J , les deux suites (u2n) et (u2n+1) définies par
les relations de récurrence

u2n+2 = f ◦ f(u2n) et u2n+3 = f ◦ f(u2n+1)

sont monotones. Et elles sont de monotonies contraires puisque si par exemple u2n+2 ≤ u2n pour tout
n ∈ N, alors u2n+3 ≥ u2n+1 par composition par f décroissante.

D

Cf

u0 u1u2 u3u4
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Limites finies possibles
Définition.

On appelle point fixe de f toute solution de l’équation f(x) = x.
Graphiquement, il s’agit de l’abscisse des points d’intersection de Cf avec la droite D : y = x.

Supposons f continue sur I et que la suite (un) converge vers une limite finie ℓ. En passant à la limite dans
l’égalité un+1 = f(un), on obtient ℓ = f(ℓ). D’où le :

Supposons f continue sur un intervalle stable I.
Si la suite (un) converge dans I, c’est nécessairement vers un point fixe de f .

Théorème 2

Pour déterminer les limites finies possibles de la suite (un), on pourra chercher les points fixes de f , qui sont
aussi les points d’annulation de la fonction g : x 7→ f(x) − x sur J

Convergence de la suite

• Cas où f est croissante.
Lorsque f est croissante, la suite (un) est monotone et on pourra donc appliquer le théorème des suites
monotones :

– soit pour montrer la convergence de (un) (nécessairement vers un point fixe de f) ;
– soit pour montrer la divergence de (un) vers l’infini (en faisant généralement un raisonnement par

l’absurde).

• Cas où f est décroissante.
Lorsque f est décroissante, on pourra étudier la convergence des suites (u2n) et (u2n+1). Notons que :

– si (u2n) ou (u2n+1) convergent, c’est nécessairement vers un point fixe de f ◦ f . Notons au passage
que si ℓ est un point fixe de f , alors ℓ est un point fixe de f ◦ f , ce qui peut faciliter leur recherche.

– si (u2n) et (u2n+1) convergent vers une même limite ℓ, alors (un) converge vers ℓ.

• Cas où f est contractante.
Supposons f de classe C 1 sur un intervalle J stable par f avec f ′ bornée par k ∈ [0, 1[. Alors1 pour tout
a, b ∈ J :

|f(b) − f(a)| =
∣∣∣∣∣
∫ b

a

f ′(t) dt

∣∣∣∣∣ ≤

∣∣∣∣∣
∫ b

a

|f ′(t)| dt

∣∣∣∣∣ ≤

∣∣∣∣∣
∫ b

a

k dt

∣∣∣∣∣ = k|b − a|.

Dans cette situation, si f admet un point fixe ℓ, celui-ci est unique et c’est la limite de (un) :

– pour l’unicité, supposons que ℓ1 et ℓ2 soient des points fixes de f , alors :

|ℓ2 − ℓ1| = |f(ℓ2) − f(ℓ1)| ≤ k|ℓ2 − ℓ1|.

Si ℓ1 ̸= ℓ2, on obtient en simplifiant par |ℓ2 − ℓ1| > 0 que 1 ≤ k, ce qui est contradictoire.
– si f admet un point fixe ℓ dans J , alors pour tout n ∈ N :

|un+1 − ℓ| = |f(un) − f(ℓ)| ≤ k|un − ℓ|.

On en déduit par récurrence |un − ℓ| ≤ kn|u0 − ℓ|, d’où lim un = ℓ par théorème d’encadrement.

1L’inégalité ainsi obtenue pourra se déduire de l’inégalité des accroissements finis lorsque celle-ci aura été établie.

4



MP2I Lycée Roosevelt

Exercices
Exercice 1
Dans cet exercice, on étudie la suite (un) définie par :{

u0 = 1
∀n ∈ N, un+1 =

√
1 + un

.

1. Soit f : [1, 2] → R définie par f(x) =
√

1 + x.
Étudier les variations de f , puis représenter sur un même graphique la courbe représentative de f , la
droite y = x, ainsi que les quatre premiers termes de la suite (un).

2. Étude de la suite (un).

(a) Montrer que [1, 2] est un intervalle stable pour f , c’est-à-dire f([1, 2]) ⊂ [1, 2].
(b) En déduire que la suite (un) est bien définie et que pour tout n ∈ N, un ∈ [1, 2].
(c) Montrer que l’équation f(x) = x admet une unique solution dans [1, 2]. On note α cette solution

qu’on n’essaiera pas de déterminer.
(d) Déterminer le sens de variation de la suite (un).
(e) Montrer que (un) converge et déterminer sa limite.

3. Approximation de α.

(a) Montrer que pour tous x, y ∈ [1, 2], |f(x) − f(y)| ≤ 1
2
√

2
|x − y|.

(b) Montrer que pour tout n ∈ N, |un+1 − α| ≤ 1
2
√

2
|un − α|.

(c) En déduire que ∀n ∈ N, |un − α| ≤
(

1
2
√

2

)n

.

(d) Déterminer une valeur approchée de α à 10−3 près.

1. La fonction f est définie et continue sur le segment [1, 2]. Elle est de plus dérivable sur [1, 2], de
dérivée :

f ′(x) = 1
2
√

1 + x
.

On en déduit que f est croissante sur [1, 2]. On trace sa représentation graphique (on utilise que
f(1) =

√
2, f(2) =

√
3) :

1. 2. 3.

1.

2.

0

Cf

D : y = x

u0 u1 u2

2. Étude de la suite u.

(a) On a vu que f est continue, croissante, et que f(1) =
√

2, f(2) =
√

3. Ainsi pour tout 1 ≤ x ≤ 2,
on a :

1 ≤ f(1) =
√

2 ≤ f(x) ≤ f(2) =
√

3 ≤ 2.
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On en déduit que [1, 2] est un intervalle stable pour f , c’est-à-dire f([1, 2]) ⊂ [1, 2].
(b) Montrons par récurrence que la suite u est bien définie et que : ∀n ∈ N, un ∈ [1, 2].

I u0 = 1 est bien défini et appartient au segment [1, 2]. D’où la propriété au rang n = 0.
H Soit n ∈ N. On suppose la propriété vraie au rang n. Montrons la propriété au rang n + 1.

Par hypothèse de récurrence, un est bien défini et appartient à [1, 2]. Puisque f est définie
sur [1, 2], on en déduit que le terme un+1 = f(un) est bien défini. De plus le segment [1, 2]
étant stable par f et un ∈ [1, 2], on a un+1 ∈ [1, 2]. D’où la propriété au rang n + 1.

Par principe de récurrence, la suite u est donc bien définie et que : ∀n ∈ N, un ∈ [1, 2].
(c)

Une telle question devrait immédiatement vous faire penser au théorème de la bijection.
Seule difficulté ici, le théorème de la bijection ne peut s’appliquer à f directement pour
obtenir une solution de l’équation f(x) = x, mais à g : x 7→ f(x) − x. On cherchera donc
à montrer qu’il existe une unique solution à l’équation g(x) = 0.

Idée.

Appliquons le théorème de la bijection à g.
• g : x 7→ f(x) − x est une fonction continue sur [1, 2] comme différence de deux fonctions

qui le sont.
• Montrons que g est strictement monotone sur [1, 2]. g est différence de deux fonctions

dérivables sur [1, 2]. Elle est donc dérivable, et on a pour tout x ∈ [1, 2] :

g′(x) = 1
2
√

1 + x
− 1 = 1 − 2

√
1 + x

2
√

1 + x
.

On a g′(x) < 0 pour tout x ∈ [1, 2] car 1−2
√

1 + x < 0. Ainsi g est strictement décroissante
sur cet intervalle.

• Enfin g(1) =
√

2 − 1 > 0 et g(2) =
√

3 − 2 < 0, donc 0 appartient à l’intervalle image
g([1, 2]).

On déduit de ces trois points et du théorème de la bijection que l’équation g(x) = 0 (ou
f(x) = x) admet une unique solution sur l’intervalle [1, 2]. On note α cette solution.

(d) Montrons par récurrence que pour tout n ∈ N, un+1 ≥ un.
I u0 = 1 et u1 =

√
2. D’où la propriété au rang n = 0.

H Soit n ∈ N. On suppose la propriété vraie au rang n. Montrons la propriété au rang n + 1.
On a par hypothèse de récurrence, 2 ≥ un+1 ≥ un ≥ 1. f étant croissante sur [1, 2], on en
déduit que :

f(un+1) ≥ f(un) soit encore un+2 ≥ un+1.

D’où la propriété au rang n + 1.
Par principe de récurrence, on a donc montré que la suite u est croissante.

(e) La suite u est croissante et majorée par 2. Elle converge donc vers une limite finie ℓ ∈ [1, 2].
De plus cette limite est nécessairement un point fixe de f . En effet on a :

un+1 = f(un) pour tout n ∈ N.

Puisque f est continue, on obtient en passant à la limite quand n → +∞ :

ℓ = f(ℓ).

Or cette équation, on l’a vu, admet une unique solution sur [1, 2] qui est α. On peut donc
conclure que u converge vers α.

3. Approximation de α.

(a)
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Une telle inégalité devrait vous faire immédiatement penser à l’inégalité des accroisse-
ments finis. On l’applique donc ici.

Idée.

La fonction f est continue sur [1, 2], dérivable sur ]1, 2[, et on a :

f ′(x) = 1
2
√

1 + x
.

Pour tout x ∈]1, 2[, on a :
|f ′(x)| ≤ 1

2
√

2
.

À l’aide de l’inégalité des accroissements finis, on peut donc conclure que :

∀(x, y) ∈ [1, 2], |f(x) − f(y)| ≤ 1
2
√

2
|x − y|.

(b) Soit n ∈ N. On applique l’inégalité précédente avec x = un et y = α :

|f(un) − f(α)| ≤ 1
2
√

2
|un − α|

ce qui donne, puisque α = f(α) et que un+1 = f(un) :

|un+1 − α| ≤ 1
2
√

2
|un − α|.

(c) Montrons par récurrence que pour tout n ∈ N, |un − α| ≤
(

1
2
√

2

)n

|u0 − α|.

I On a bien |u0 − α| ≤
(

1
2
√

2

)0
|u0 − α|. D’où la propriété au rang n = 0.

H Soit n ∈ N. On suppose la propriété vraie au rang n. Montrons la propriété au rang n + 1.
Par l’inégalité de la question précédente, on a :

|un+1 − α| ≤ 1
2
√

2
|un − α|,

et en utilisant l’hypothèse de récurrence :

|un − α| ≤
(

1
2
√

2

)n

|u0 − α|

on obtient bien que :

|un+1 − α| ≤
(

1
2
√

2

)n+1
|u0 − α|.

D’où la propriété au rang n + 1.

Par principe de récurrence, on a montré que pour tout n ∈ N, |un − α| ≤
(

1
2
√

2

)n

|u0 − α|.

Reste à remarquer que |u0 − α| = α − 1 ≤ 2 − 1 = 1, d’où finalement :

n ∈ N, |un − α| ≤
(

1
2
√

2

)n

.
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(d) On cherche n tel que : (
1

2
√

2

)n

≤ 10−3 soit 103 ≤ (2
√

2)n.

Prenons le logarithme de cette expression (ln est croissant) :

3 ln(10) ≤ n ln(2
√

2) = 3
2 ln(2)n.

Ainsi on a n ≥ 2 ln(10)
ln(2) ≈ 6, 64.. u7 est donc une approximation de α à 10−3 près. Avec un

programme informatique simple, on obtient α ≈ u7 = 1.6178513.

Exercice 2
On étudie la suite (un) définie par : 

u0 = 5
2

∀n ∈ N, un+1 = 1 + 4
1 + un

.

1. Montrer que pour tout n ∈ N, un est bien défini et un > 0.

2. Calculer les premiers termes de la suite. Est-elle monotone ?

3. Étudier la fonction f(x) = 1 + 4
1 + x

sur R+.

Représenter f et les premiers termes de la suite.

4. Déterminer les limites possibles de la suite (un).

5. Soient (vn) et (wn) les suites définies par : ∀n ∈ N, vn = u2n et wn = u2n+1.

(a) Déterminer la fonction g telle que : ∀n ∈ N, vn+1 = g(vn) et wn+1 = g(wn).
(b) Étudier les variations de g sur R+ et déterminer le signe de g(x) − x.

Montrer que les deux intervalles [0,
√

5[ et [
√

5, +∞[ sont stables par g.
(c) En déduire que les deux suites (vn) et (wn) sont convergentes. Vers quelle limite ?
(d) En déduire que la suite (un) est convergente.

1. Notons P(n) la propriété : "un est bien définie et un > 0". Montrons que P(n) est vraie pour tout
n ∈ N.

I u0 = 5
2 > 0 donc P(0) est vraie.

H Soit n ∈ N. Supposons que P(n) est vraie et montrons P(n + 1).
Par hypothèse de récurrence, un > 0 donc 1 + un ̸= 0 donc un+1 est bien défini. Et un+1 =
1 + 4

1 + un
> 0. Donc P(n + 1) est vraie.

Par récurrence, un est bien défini et un > 0 pour tout n ∈ N.

2. u1 = 15
7 = 30

14 < u0 = 5
2 = 35

14 .

u2 = 43
15 = 86

30 > u0 = 5
2 = 75

30 .

Donc u1 < u0 < u2 et la suite (un) n’est pas monotone.

3. f est définie, continue et dérivable sur R+ et pour tout x ∈ R+ :

f ′(x) = 4 × −1
(1 + x)2 = − 4

(1 + x)2 < 0.

Donc f est strictement décroissante sur R+ avec f(0) = 5 et lim
x→+∞

f(x) = 1 + 0 = 1 donc :
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x

f ′(x)

f(x)

0 +∞

−

55

11

4. Supposons que la suite (un) converge vers une limite finie ℓ. Comme f est continue, ℓ est un point
fixe de f . On résout donc :

f(x) = x ⇔ 1 + 4
1 + x

= x ⇔ 1 + x + 4 − x(1 − x)
1 + x

= 0 ⇔
{

5 − x2 = 0
x ̸= −1 ⇔ x = ±

√
5.

Comme un > 0 pour tout n ∈ N, ℓ ≥ 0. Donc ℓ =
√

5. Ainsi, la seule limite finie possible de la suite
(un) est

√
5.

5. (a) On exprime vn+1 et wn+1 en fonction de vn et wn :

vn+1 = u2n+2 = f(u2n+1) = f(f(u2n)) = f ◦ f(vn)
wn+1 = u2n+3 = f(u2n+2) = f(f(u2n+1)) = f ◦ f(wn).

La fonction g est donc définie par :

g(x) = f ◦ f(x) = f(f(x)) = 1 + 4
1 + f(x) = 1 + 4

1 + 1 + 4
1 + x

= 1 + 4
2(1 + x) + 4

1 + x

= 1 + 4(1 + x)
2(1 + x) + 4 = 1 + 2(1 + x)

3 + x
.

(b) g est dérivable car c’est une fonction rationnelle et :

g′(x) = 2(3 + x) − 2(1 + x)
(3 + x)2 = 4

(3 + x)2 > 0.

On en déduit que g est strictement croissante sur R+.

On cherche ensuite le signe de g(x) − x :

g(x) − x = 1 + 2(1 + x)
3 + x

− x = 3 + x + 2 + 2x − 3x − x2

3 + x
= 5 − x2

3 + x
= (

√
5 − x)(

√
5 + x)

3 + x
.

Or sur R+, on obtient immédiatement 3 + x > 0 et
√

5 + x > 0, donc g(x) − x est du signe de√
5 − x :

x

g′(x)

g(x)

g(x) − x

0
√

5 +∞

+ +

5
3
5
3

33
√

5

+ 0 −

9
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Enfin, g est continue et strictement croissante sur [0,
√

5] et sur [
√

5, +∞[ donc :

g([0,
√

5]) = [g(0), g(
√

5)] = [53 ;
√

5] ⊂ [0,
√

5]

et
g([

√
5, +∞[) =

[
g(

√
5), lim

x→+∞
g(x)

[
= [

√
5, 3[⊂ [

√
5, +∞[

donc les intervalles [0,
√

5] et [
√

5, +∞[ sont bien stables par g.

(c) La suite (vn) vérifie v0 = u0 = 5
2. Comparons le à

√
5 :

(
5
2

)2
= 25

4 >
20
4 = 5

donc, comme x 7→
√

x strictement croissante, 5
2 >

√
5.

Comme l’intervalle [
√

5, +∞[ est stable par g, on montre alors par récurrence que pour tout
n ∈ N, vn ≥

√
5. On en déduit alors que pour tout n ∈ N,

vn+1 − vn = g(vn) − vn ≤ 0

d’après la question 5.(b). La suite (vn) est donc décroissante et minorée par
√

5 donc converge.
Or le seul point fixe de g sur [

√
5, +∞[ est

√
5 (les points fixes sont les solutions de g(x)−x = 0

obtenues à la question 5.(b) dans le tableau de signe de g(x) − x) donc (vn) converge vers
√

5.

D’autre part, on a vu que w0 = u1 = 15
7 , qu’on compare à

√
5 :

(
15
7

)2
= 225

49 < 5 = 49 × 5
49 = 245

49

donc, comme x 7→
√

x est strictement croissante, 0 <
15
7 <

√
5.

Comme l’intervalle [0,
√

5] est stable par g, on montre alors par récurrence que pour tout n ∈ N,
0 ≤ wn ≤

√
5. On en déduit alors que pour tout n ∈ N,

wn+1 − wn = g(wn) − wn ≥ 0

d’après la question 5.(b). La suite (wn) est donc croissante et majorée par
√

5 donc converge.
Or le seul point fixe de g sur [0,

√
5] est

√
5 (les points fixes sont les solutions de g(x) − x = 0

obtenues à la question 5.(b) dans le tableau de signe de g(x) − x) donc (wn) converge vers
√

5.
(d) Comme les suites (u2n) (termes pairs de la suite (un)) et (u2n+1) (termes impairs de la suite

(un)) convergent vers la même limite, on en déduit que la suite (un) converge vers cette limite.
Donc (un) converge vers

√
5.
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