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Complément 2

Méthodes pour I’étude de suites particulieres

Etude d’une suite implicite
Une suite implicite est une suite (u,) de réels dont chaque terme u,, est solution d’une équation du type :

fn(z) =0 (En)

ou f, : I — R est une fonction dépendante de n € N. Il n’est en général pas possible de résoudre explicitement
léquation (F,). On ne connait donc pas en général la valeur de u,. On dit que ces termes sont définis
implicitement.

L’étude de suites implicites est fréquente aux concours. Il est donc important d’avoir en téte les méthodes pour
y parvenir.
Existence et unicité du terme général

Pour justifier 'existence et 'unicité d’une solution u,, de (F, ), on pensera a utiliser le théoréme de la bijection
dont on rappelle I’énoncé.

Théoréme 1 (de la bijection)

Soit f une fonction continue et strictement monotone sur un intervalle I de R. Alors :
e J = f(I) est un intervalle, et f réalise une bijection de I sur J = f(I) ;

« son application réciproque f~! est elle-méme continue sur J, strictement monotone et de
méme sens de variation que f.

En deux étapes bien distinctes :

o on démontre avec le théoréme de la bijection que f,, est une bijection de I dans un intervalle J = f(I)
qu’on détermine ;

e on justifie que 0 € J et donc que 0 admet un unique antécédent u,, dans I par f,.

On a ainsi prouvé Pexistence et I'unicité d’une solution u,, de (E,).

Monotonie et convergence de (u,)

Afin d’étudier la monotonie de (u,,), on pourra :
e comparer, pour tout n € N, les réels f,11(un) et frnt1(tny1) =0
e en déduire une inégalité entre u, 41 et u, a 'aide de la stricte monotonie de f, 1.

Selon le sens de variation de la suite (uy,), on cherche si elle est ou non majorée ou minorée, et selon les cas, elle
sera soit convergente, soit divergente vers +oo.

Limite et équivalent de (uy,)

Pour déterminer la limite de (u,), ou obtenir un équivalent ou un développement asymptotique, on pensera &
utiliser ’équation (FE,,) définissant le terme wu,, :

frn(uy) = 0.
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Etude d’une suite récurrente d’ordre 1

On considere a présent une suite définie par une relation de récurrence d’ordre 1, c’est-a-dire satisfaisant :
1% 1% s

ug=a €l
VT’LEN, Un+1 :f(un)

ou f est une fonction définie sur un intervalle I. Bien que les exercices seront souvent détaillés, il est utile de
connaitre les différentes situations que 1’on peut rencontrer, et de savoir comment mener ’étude d’une telle suite
selon les cas.

Représentation graphique

Afin d’avoir une idée du comportement de la suite, ce qui est tres 9
utile pour ensuite mener son étude, on commencera par visualiser
graphiquement ses premiers termes. Pour cela :

(i) on étudie les variations de la fonction f, puis on trace sur un
méme graphe sa courbe représentative ¢ ainsi que la droite
2 d’équation y =z ; ]

(ii) on place ug sur ’axe des abscisses ;

(iii) a laide de la courbe de f, on place u; = f(up) sur l'axe des
ordonnées ;

[ Y
[ S -
[ -
[ Y

(iv) grace a la droite &, on replace u; sur l'axe des abscisses,
puis on réitere le processus sur u ...
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=

Existence et encadrement des termes

& Mise en garde.

Une définition par récurrence n’assure pas ’existence de la suite. En effet, les termes de la suite peuvent
sortir du domaine de définition de f.

Considérons par exemple la suite (u,) définie par ug = 2 et :
Vn €N, upt1 = In(uy,).

Elle n’est bien définie que pour ses trois premiers termes car u; = In(2) ~ 0,69, us = In(In(2)) ~ —0, 36,
et donc uz n’existe pas puisque ug est sorti du domaine de définition du logarithme.

Pour assurer 'existence de tous les termes de la suite, on choisit ug dans un intervalle stable de f.

Définition.

On dit qu’un intervalle J C I est stable par f si f(J) C J, c’est-a-dire si :

Ve e d, f(x) e J

Si J est un intervalle stable par f et si up appartient & J, on montre par récurrence immédiate (& rédiger si
demandé) que :

pour tout n € N, u,, existe et u,, appartient a J.

Si de plus J est majorée, minorée ou bornée, il en sera de méme pour la suite (uy,).

Monotonie de la suite

Deux cas sont a distinguer selon la monotonie de f.



MP2I

Lycée Roosevelt

St la fonction f est croissante sur un intervalle stable J :
La suite (u,) est monotone, de monotonie donnée par le signe de u; — ug = f(ug) — up. En effet :

—si u3 < wug, alors upq1 < w, pour tout n (par récurrence en composant par f) et la suite est
décroissante ;
— de méme, si u; > ug, alors la suite est croissante.

On pourra introduire la fonction g :  — f(z) — x et en dresser son tableau de signe afin d’obtenir le signe
de up — ug.

& Mise en garde.

Si la fonction f est croissante sur J, la suite (u,) ne ’est pas forcément : elle peut étre croissante
ou décroissante.

On peut par exemple le constater sur 'exemple ci-dessous : la suite (u,,) est décroissante si ug € |0, 6],
croissante si ug € |6, 4o00[, et constante si ug = 6.

us Uz UL U Ug Uy U2

Si la fonction f est décroissante sur un intervalle stable J :

Dans ce cas, la suite (u,) n’est plus monotone.

En revanche, la fonction f o f étant croissante de J dans J, les deux suites (ua,) et (uan41) définies par
les relations de récurrence

Uont2 = f o f(uan) et uonis = f o fuanir)

sont monotones. Et elles sont de monotonies contraires puisque si par exemple ug,4+2 < ug, pour tout
n € N, alors ugpy3 > ugpy1 par composition par f décroissante.

2

P m e —————-
"\YER R R SRR P
"R R SRR P
P m e —————-

Uo U2 Ug U3

<
=
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Limites finies possibles
Définition.
On appelle point fize de f toute solution de I’équation f(z) = x.

Graphiquement, il s’agit de I’abscisse des points d’intersection de € avec la droite 7 : y = x.

Supposons f continue sur I et que la suite (u,) converge vers une limite finie /. En passant a la limite dans
légalité u, 1 = f(un), on obtient £ = f(£). D’ou le :

Théoreme 2

Supposons f continue sur un intervalle stable I.

Si la suite (u,) converge dans I, c’est nécessairement vers un point fixe de f.

Pour déterminer les limites finies possibles de la suite (u,), on pourra chercher les points fixes de f, qui sont
aussi les points d’annulation de la fonction g : @ — f(x) — z sur J

Convergence de la suite

e Cas ou f est croissante.
Lorsque f est croissante, la suite (u,) est monotone et on pourra donc appliquer le théoréme des suites
monotones :
— soit pour montrer la convergence de (u,) (nécessairement vers un point fixe de f) ;

— soit pour montrer la divergence de (u,) vers l'infini (en faisant généralement un raisonnement par

Pabsurde).

e Cas ou f est décroissante.

Lorsque f est décroissante, on pourra étudier la convergence des suites (ugy,) et (ua2n+1). Notons que :

— si (u2n) ou (u2,41) convergent, c’est nécessairement vers un point fixe de f o f. Notons au passage
que si £ est un point fixe de f, alors £ est un point fixe de f o f, ce qui peut faciliter leur recherche.

— si (ugp) et (ugp41) convergent vers une méme limite /¢, alors (u,) converge vers /.

e Cas ou f est contractante.

Supposons f de classe ¢! sur un intervalle J stable par f avec f’ bornée par k € [0, 1[. Alors' pour tout

abe
LZ«@& Lﬂf@na L%ﬂt

Dans cette situation, si f admet un point fixe ¢, celui-ci est unique et c’est la limite de (uy,) :

|f(b) = f(a)| = < < = klb—al.

— pour l'unicité, supposons que ¢ et ¢ soient des points fixes de f, alors :
[z = b1] = |f(l2) — f(&1)] < K|la — 4.

Si f1 # {5, on obtient en simplifiant par [¢o — ¢1] > 0 que 1 < k, ce qui est contradictoire.

— si f admet un point fixe ¢ dans J, alors pour tout n € N :
[unt1 — £ = [fun) — f(O)] < Klun — £].

On en déduit par récurrence |u, — €| < k™|ug — ¢|, d’out lim u,, = ¢ par théoréme d’encadrement.

11’inégalité ainsi obtenue pourra se déduire de I'inégalité des accroissements finis lorsque celle-ci aura été établie.
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Exercices

Exercice 1
Dans cet exercice, on étudie la suite (u,) définie par :

Uug = 1
VneN, upp1 =vI+u,
1. Soit f:[1,2] — R définie par f(z) =1+ x.

Etudier les variations de f, puis représenter sur un méme graphique la courbe représentative de f, la
droite y = z, ainsi que les quatre premiers termes de la suite (uy,).
2. Etude de la suite (u,).
(a) Montrer que [1,2] est un intervalle stable pour f, c’est-a-dire f([1,2]) C [1,2].
(b) En déduire que la suite (u,) est bien définie et que pour tout n € N, u,, € [1,2].
(¢) Montrer que ’équation f(x) = x admet une unique solution dans [1,2]. On note a cette solution
qu’on n’essaiera pas de déterminer.
(d) Déterminer le sens de variation de la suite (uy,).

(e) Montrer que (u,) converge et déterminer sa limite.

3. Approximation de a.
1
(a) Montrer que pour tous x,y € [1,2], |f(z) — f(y)] < 2—\/5|x -yl

1
(b) Montrer que pour tout n € N, |up11 — af < 2—\/5|un —al.

1 n
c¢) En déduire que Vn € N, |u, —a| < | —= | .
(¢) En déduire que Vn |un — o (2\5)

d) Déterminer une valeur approchée de o & 10~2 preés.
( pp p

1. La fonction f est définie et continue sur le segment [1,2]. Elle est de plus dérivable sur [1,2], de
dérivée : 1
/
T)= ——.
@) 21+
On en déduit que f est croissante sur [1,2]. On trace sa représentation graphique (on utilise que

f)=v2,f(2)=V3):

A
2. T

o) &6 | }
0 l.uo w1 uz 2. 3.

v

2. Etude de la suite u.

(a) Onavuque f est continue, croissante, et que f(1) = /2, f(2) = v/3. Ainsi pour tout 1 < = < 2,
ona:

1< f)=v2< fle) < f2)=V3<2
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On en déduit que [1,2] est un intervalle stable pour f, c’est-a-dire f([1,2]) C [1,2].
(b) Montrons par récurrence que la suite u est bien définie et que : Vn € N, u,, € [1,2].
ug = 1 est bien défini et appartient au segment [1,2]. D’ou la propriété au rang n = 0.
Soit n € N. On suppose la propriété vraie au rang n. Montrons la propriété au rang n + 1.
Par hypothese de récurrence, u,, est bien défini et appartient & [1,2]. Puisque f est définie

sur [1,2], on en déduit que le terme wu,+1 = f(uy,) est bien défini. De plus le segment [1, 2]
étant stable par f et u, € [1,2], on a u,y1 € [1,2]. D’ou la propriété au rang n + 1.

Par principe de récurrence, la suite u est donc bien définie et que : Vn € N, u,, € [1,2].

()

Une telle question devrait immédiatement vous faire penser au théoreme de la bijection.
Seule difficulté ici, le théoreme de la bijection ne peut s’appliquer a f directement pour
obtenir une solution de ’équation f(x) = x, mais & g :  — f(z) — . On cherchera donc
a montrer qu'il existe une unique solution & ’équation g(x) = 0.

Appliquons le théoreme de la bijection a g.
e g:x+— f(x)—x est une fonction continue sur [1,2] comme différence de deux fonctions
qui le sont.

o Montrons que g est strictement monotone sur [1,2]. g est différence de deux fonctions
dérivables sur [1,2]. Elle est donc dérivable, et on a pour tout z € [1,2] :

1 1_1—2\/1—|—x
C2/1+z o2/i+z

Ona ¢'(x) < 0 pour tout z € [1,2] car 1 —24/1 + x < 0. Ainsi g est strictement décroissante
sur cet intervalle.
o Enfin g(1) =v2—-1>0et g(2) = /3 -2 <0, donc 0 appartient & I'intervalle image
9([1,2]).
On déduit de ces trois points et du théoréme de la bijection que Iéquation g(x) = 0 (ou
f(z) = z) admet une unique solution sur l'intervalle [1,2]. On note « cette solution.

g ()

(d) Montrons par récurrence que pour tout n € N, w1 > up.
up = 1 et u; = v/2. D’ott la propriété au rang n = 0.

Soit n € N. On suppose la propriété vraie au rang n. Montrons la propriété au rang n + 1.
On a par hypothése de récurrence, 2 > up41 > u, > 1. f étant croissante sur [1,2], on en
déduit que :

f(uns1) > f(u,) soit encore  Upio > Uptq-

D’otu la propriété au rang n + 1.

Par principe de récurrence, on a donc montré que la suite u est croissante.

(e) La suite u est croissante et majorée par 2. Elle converge donc vers une limite finie ¢ € [1,2].
De plus cette limite est nécessairement un point fixe de f. En effet on a :

Unt+1 = f(uy) pour tout n € N.
Puisque f est continue, on obtient en passant a la limite quand n — +o0 :
L= f(£).

Or cette équation, on I’a vu, admet une unique solution sur [1,2] qui est . On peut donc
conclure que u converge vers a.

3. Approximation de «.

(a)
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Une telle inégalité devrait vous faire immédiatement penser a l'inégalité des accroisse-
ments finis. On I’applique donc ici.

La fonction f est continue sur [1,2], dérivable sur ]1,2[, et on a :

1

f@ ==

Pour tout z €]1,2[, on a :

, 1
[f'(@)] < W

A T'aide de I'inégalité des accroissements finis, on peut donc conclure que :
Yaw) € (L2, [7(@)~ fW) < s ele -yl
x, z) — < ——lz —yl.
Y y 4] Y 92 Y
(b) Soit n € N. On applique I'inégalité précédente avec x = u,, et y = « :
7o) ~ F(@)] < ol —a
up) — f(a ——|u, — «
ce qui donne, puisque o = f(«) et que upt1 = f(uy) :
1
[un+1 — af < T\/ﬁwn —al.
1 n
(¢) Montrons par récurrence que pour tout n € N, |u,, — a| < (M) lug — .
1\°
On a bien |ug — a| < (m) |ug — . D’ou la propriété au rang n = 0.

Soit n € N. On suppose la propriété vraie au rang n. Montrons la propriété au rang n + 1.

Par I'inégalité de la question précédente, on a :

1
[tnt1 —a| < Tﬁ‘un —al,

n
) lug — «

n+1
> lug — a.

et en utilisant I’hypotheése de récurrence :

|un—a|s(
2

‘ -

S

on obtient bien que :

‘ -

v —al < (5

=

D’ou la propriété au rang n + 1.

1 n
Par principe de récurrence, on a montré que pour tout n € N, |u, — a| < (M) luo — .

Reste & remarquer que |ug — | =a—1<2—1=1, d’ou finalement :

1 n
neN, |Ju,—aof < |——%] .
| | (2¢§>




MP21 Lycée Roosevelt

(d) On cherche n tel que :

2V2

Prenons le logarithme de cette expression (In est croissant) :

1 n
( ) < 1072 soit 10% < (2v2)™.

3In(10) < nln(2v2) = gln(Q)n.

21n(10)
In(2)
programme informatique simple, on obtient o ~ u7 = 1.6178513.

Ainsi on a n > ~ 6,64.. u; est donc une approximation de o & 1073 prés. Avec un

Exercice 2
On étudie la suite (u,,) définie par :

U0:§

VneN, upp1 =1+

1+ u,
1. Montrer que pour tout n € N, u,, est bien défini et u,, > 0.

2. Calculer les premiers termes de la suite. Est-elle monotone 7

3. Etudier la fonction f(z) =1+ sur Ry.

1+
Représenter f et les premiers termes de la suite.

4. Déterminer les limites possibles de la suite (uy).
5. Soient (v,,) et (wy,) les suites définies par : Vn € N, v,, = ug, et w, = ugpi1.
(a) Déterminer la fonction g telle que : Vn € N, v, 11 = g(vp) et wpp1 = g(wy).
(b) Etudier les variations de g sur R, et déterminer le signe de g(x) — .
Montrer que les deux intervalles [0, v/5[ et [v/5, +-oo[ sont stables par g.

(¢) En déduire que les deux suites (v,,) et (w,) sont convergentes. Vers quelle limite ?

(d) En déduire que la suite (u,,) est convergente.

1. Notons (n) la propriété : "u, est bien définie et u,, > 0". Montrons que 4 (n) est vraie pour tout
n € N.
) .
uo =5 > 0 donc £2(0) est vraie.

Soit n € N. Supposons que #(n) est vraie et montrons &(n + 1).
Par hypothése de récurrence, u, > 0 donc 1 + u, # 0 donc u,4+1 est bien défini. Et u,1 =

1+

> 0. Donc &(n+ 1) est vrale.
1+ u,

Par récurrence, u,, est bien défini et u,, > 0 pour tout n € N.

2u—§—@<u—§—§
SR SR VI RV

43 86 5 75
(5] —_— = =

15 30 " 2 30
Donc u; < ug < ug et la suite (u,) n’est pas monotone.

3. f est définie, continue et dérivable sur R, et pour tout z € Ry :

, 1 4
fi(@) =4 x TTof = (raP <0.

Donc f est strictement décroissante sur Ry avec f(0) =5 et lirf f(z)=1+0=1 donc :
T—r+00
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4. Supposons que la suite (u,) converge vers une limite finie £. Comme f est continue, ¢ est un point
fixe de f. On résout donc :

4 1+z+4—2(1—x) 5—22=0
= ]_ = = ::t .
flz)=z< +1—|—a: r & T 0@{3375—1 S V5

Comme u,, > 0 pour tout n € N, £ > 0. Donc ¢ = /5. Ainsi, la seule limite finie possible de la suite

(un) est /5.

5. (a) On exprime v,41 et w,41 en fonction de v, et w,, :

Upnt1 = Ugpge = f(uons1) = f(f(u2n)) = fo
W1 = Uznys = f(uznt2) = f(f(u2nt1)) = fo f(wn).

La fonction g est donc définie par :

4 4
g(x) fof(x)=f(f(z)) =1+ =1+ T
L+ f(@) 1414 ——
1+z
4 4(1
2(1+x) +4 2(14+x)+4 3+
1+
(b) g est dérivable car c’est une fonction rationnelle et :
2(3+z) —2(1+x) 4
"(z) = = > 0.
gz (3+x)? (3+2)?
On en déduit que g est strictement croissante sur R .
On cherche ensuite le signe de g(z) — z :
o@) -z =1+ 2(1+ ) e 3+2+2+ 20— 3z — 22 _ 5— a2 _ (\/’3—96)(\/5—}—96)
3+ 3+ 3+ 3+
Or sur R, on obtient immédiatement 3 + x > 0 et /5 + = > 0, donc g(x) — = est du signe de
V5 —x:
x 0 V5 +o0
g'(x) + +

w| Tt
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Enfin, g est continue et strictement croissante sur [0, /5] et sur [v/5, +oo[ donc :

9(10, V) = [9(0). 9(V5)] = [2: V5] [0, V3]

3
et
o(1V5.+ox]) = [o(V5). lim_g(o)| = [V5.31c [V, +
donc les intervalles [0, /5] et [v/5, +oo[ sont bien stables par g.

M\OT

. Comparons le & /5 :

5\'_25 20 _,
2) 47 4

5
donc, comme z — /x strictement croissante, 5 > /5.

La suite (vy,) vérifie vg = up =

Comme l'intervalle [\/5, +oo] est stable par g, on montre alors par récurrence que pour tout
n €N, v, > /5. On en déduit alors que pour tout n € N,

Unt1 — Un = g(vp) —vn <0

d’apreés la question 5.(b). La suite (v,) est donc décroissante et minorée par /5 donc converge.
Or le seul point fixe de g sur [v/5, +oo| est v/5 (les points fixes sont les solutions de g(x) —x = 0
obtenues & la question 5.(b) dans le tableau de signe de g(z) — z) donc (v,,) converge vers /5.

—, qu'on compare & /5 :

D’autre part, on a vu que wg = uy = 7

15\ 225 49 x5 245
7 49 49 49

15
donc, comme x — /x est strictement croissante, 0 < - < /5.

Comme l'intervalle [0, /5] est stable par g, on montre alors par récurrence que pour tout n € N,
0 < w, < /5. On en déduit alors que pour tout n € N,

Wnt1 — Wy, = g(wy) — wy, >0

d’aprés la question 5.(b). La suite (w,) est donc croissante et majorée par v/5 donc converge.
Or le seul point fixe de g sur [0,1/5] est v/5 (les points fixes sont les solutions de g(z) —x = 0
obtenues & la question 5.(b) dans le tableau de signe de g(z) — z) donc (w,,) converge vers /5.

Comme les suites (u2,) (termes pairs de la suite (uy)) et (uzn41) (termes impairs de la suite
(un)) convergent vers la méme limite, on en déduit que la suite (u,,) converge vers cette limite.
Donc (u,) converge vers v/5.

10



