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Méthodes pour l’étude de suites particulières
Complément 2

Étude d’une suite implicite
Une suite implicite est une suite (un) de réels dont chaque terme un est solution d’une équation du type :

fn(x) = 0 (En)

où fn : I → R est une fonction dépendante de n ∈ N. Il n’est en général pas possible de résoudre explicitement
l’équation (En). On ne connait donc pas en général la valeur de un. On dit que ces termes sont définis
implicitement.
L’étude de suites implicites est fréquente aux concours. Il est donc important d’avoir en tête les méthodes pour
y parvenir.

Existence et unicité du terme général

Pour justifier l’existence et l’unicité d’une solution un de (En), on pensera à utiliser le théorème de la bijection
dont on rappelle l’énoncé.

Soit f une fonction continue et strictement monotone sur un intervalle I de R. Alors :

• J = f(I) est un intervalle, et f réalise une bijection de I sur J = f(I) ;

• son application réciproque f−1 est elle-même continue sur J , strictement monotone et de
même sens de variation que f .

Théorème 1 (de la bijection)

En deux étapes bien distinctes :

• on démontre avec le théorème de la bijection que fn est une bijection de I dans un intervalle J = f(I)
qu’on détermine ;

• on justifie que 0 ∈ J et donc que 0 admet un unique antécédent un dans I par fn.

On a ainsi prouvé l’existence et l’unicité d’une solution un de (En).

Monotonie et convergence de (un)

Afin d’étudier la monotonie de (un), on pourra :

• comparer, pour tout n ∈ N, les réels fn+1(un) et fn+1(un+1) = 0 ;

• en déduire une inégalité entre un+1 et un à l’aide de la stricte monotonie de fn+1.

Selon le sens de variation de la suite (un), on cherche si elle est ou non majorée ou minorée, et selon les cas, elle
sera soit convergente, soit divergente vers ±∞.

Limite et équivalent de (un)

Pour déterminer la limite de (un), ou obtenir un équivalent ou un développement asymptotique, on pensera à
utiliser l’équation (En) définissant le terme un :

fn(un) = 0.
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Étude d’une suite récurrente d’ordre 1
On considère à présent une suite définie par une relation de récurrence d’ordre 1, c’est-à-dire satisfaisant :{

u0 = α ∈ I

∀n ∈ N, un+1 = f(un)

où f est une fonction définie sur un intervalle I. Bien que les exercices seront souvent détaillés, il est utile de
connaitre les différentes situations que l’on peut rencontrer, et de savoir comment mener l’étude d’une telle suite
selon les cas.

Représentation graphique
Afin d’avoir une idée du comportement de la suite, ce qui est très
utile pour ensuite mener son étude, on commencera par visualiser
graphiquement ses premiers termes. Pour cela :

(i) on étudie les variations de la fonction f , puis on trace sur un
même graphe sa courbe représentative Cf ainsi que la droite
D d’équation y = x ;

(ii) on place u0 sur l’axe des abscisses ;

(iii) à l’aide de la courbe de f , on place u1 = f(u0) sur l’axe des
ordonnées ;

(iv) grâce à la droite D , on replace u1 sur l’axe des abscisses,
puis on réitère le processus sur u1 . . .

D

Cf

u0 u1u2 u3

Existence et encadrement des termes

Une définition par récurrence n’assure pas l’existence de la suite. En effet, les termes de la suite peuvent
sortir du domaine de définition de f .
Considérons par exemple la suite (un) définie par u0 = 2 et :

∀n ∈ N, un+1 = ln(un).

Elle n’est bien définie que pour ses trois premiers termes car u1 = ln(2) ≃ 0, 69, u2 = ln(ln(2)) ≃ −0, 36,
et donc u3 n’existe pas puisque u2 est sorti du domaine de définition du logarithme.

Mise en garde.

Pour assurer l’existence de tous les termes de la suite, on choisit u0 dans un intervalle stable de f .

Définition.
On dit qu’un intervalle J ⊂ I est stable par f si f(J) ⊂ J , c’est-à-dire si :

∀x ∈ J, f(x) ∈ J.

Si J est un intervalle stable par f et si u0 appartient à J , on montre par récurrence immédiate (à rédiger si
demandé) que :

pour tout n ∈ N, un existe et un appartient à J .

Si de plus J est majorée, minorée ou bornée, il en sera de même pour la suite (un).

Monotonie de la suite

Deux cas sont à distinguer selon la monotonie de f .

2



MP2I Lycée Roosevelt

• Si la fonction f est croissante sur un intervalle stable J :

La suite (un) est monotone, de monotonie donnée par le signe de u1 − u0 = f(u0) − u0. En effet :

– si u1 ≤ u0, alors un+1 ≤ un pour tout n (par récurrence en composant par f) et la suite est
décroissante ;

– de même, si u1 ≥ u0, alors la suite est croissante.

On pourra introduire la fonction g : x 7→ f(x) − x et en dresser son tableau de signe afin d’obtenir le signe
de u1 − u0.

Si la fonction f est croissante sur J , la suite (un) ne l’est pas forcément : elle peut être croissante
ou décroissante.

On peut par exemple le constater sur l’exemple ci-dessous : la suite (un) est décroissante si u0 ∈ ]0, 6[,
croissante si u0 ∈ ]6, +∞[, et constante si u0 = 6.

Mise en garde.

D

Cf

u0 u1 u2u0u1u2u3

• Si la fonction f est décroissante sur un intervalle stable J :

Dans ce cas, la suite (un) n’est plus monotone.

En revanche, la fonction f ◦ f étant croissante de J dans J , les deux suites (u2n) et (u2n+1) définies par
les relations de récurrence

u2n+2 = f ◦ f(u2n) et u2n+3 = f ◦ f(u2n+1)

sont monotones. Et elles sont de monotonies contraires puisque si par exemple u2n+2 ≤ u2n pour tout
n ∈ N, alors u2n+3 ≥ u2n+1 par composition par f décroissante.

D

Cf

u0 u1u2 u3u4
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Limites finies possibles
Définition.

On appelle point fixe de f toute solution de l’équation f(x) = x.
Graphiquement, il s’agit de l’abscisse des points d’intersection de Cf avec la droite D : y = x.

Supposons f continue sur I et que la suite (un) converge vers une limite finie ℓ. En passant à la limite dans
l’égalité un+1 = f(un), on obtient ℓ = f(ℓ). D’où le :

Supposons f continue sur un intervalle stable I.
Si la suite (un) converge dans I, c’est nécessairement vers un point fixe de f .

Théorème 2

Pour déterminer les limites finies possibles de la suite (un), on pourra chercher les points fixes de f , qui sont
aussi les points d’annulation de la fonction g : x 7→ f(x) − x sur J

Convergence de la suite

• Cas où f est croissante.
Lorsque f est croissante, la suite (un) est monotone et on pourra donc appliquer le théorème des suites
monotones :

– soit pour montrer la convergence de (un) (nécessairement vers un point fixe de f) ;
– soit pour montrer la divergence de (un) vers l’infini (en faisant généralement un raisonnement par

l’absurde).

• Cas où f est décroissante.
Lorsque f est décroissante, on pourra étudier la convergence des suites (u2n) et (u2n+1). Notons que :

– si (u2n) ou (u2n+1) convergent, c’est nécessairement vers un point fixe de f ◦ f . Notons au passage
que si ℓ est un point fixe de f , alors ℓ est un point fixe de f ◦ f , ce qui peut faciliter leur recherche.

– si (u2n) et (u2n+1) convergent vers une même limite ℓ, alors (un) converge vers ℓ.

• Cas où f est contractante.
Supposons f de classe C 1 sur un intervalle J stable par f avec f ′ bornée par k ∈ [0, 1[. Alors1 pour tout
a, b ∈ J :

|f(b) − f(a)| =
∣∣∣∣∣
∫ b

a

f ′(t) dt

∣∣∣∣∣ ≤

∣∣∣∣∣
∫ b

a

|f ′(t)| dt

∣∣∣∣∣ ≤

∣∣∣∣∣
∫ b

a

k dt

∣∣∣∣∣ = k|b − a|.

Dans cette situation, si f admet un point fixe ℓ, celui-ci est unique et c’est la limite de (un) :

– pour l’unicité, supposons que ℓ1 et ℓ2 soient des points fixes de f , alors :

|ℓ2 − ℓ1| = |f(ℓ2) − f(ℓ1)| ≤ k|ℓ2 − ℓ1|.

Si ℓ1 ̸= ℓ2, on obtient en simplifiant par |ℓ2 − ℓ1| > 0 que 1 ≤ k, ce qui est contradictoire.
– si f admet un point fixe ℓ dans J , alors pour tout n ∈ N :

|un+1 − ℓ| = |f(un) − f(ℓ)| ≤ k|un − ℓ|.

On en déduit par récurrence |un − ℓ| ≤ kn|u0 − ℓ|, d’où lim un = ℓ par théorème d’encadrement.

1L’inégalité ainsi obtenue pourra se déduire de l’inégalité des accroissements finis lorsque celle-ci aura été établie.
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Exercices
Exercice 1
Dans cet exercice, on étudie la suite (un) définie par :{

u0 = 1
∀n ∈ N, un+1 =

√
1 + un

.

1. Soit f : [1, 2] → R définie par f(x) =
√

1 + x.
Étudier les variations de f , puis représenter sur un même graphique la courbe représentative de f , la
droite y = x, ainsi que les quatre premiers termes de la suite (un).

2. Étude de la suite (un).

(a) Montrer que [1, 2] est un intervalle stable pour f , c’est-à-dire f([1, 2]) ⊂ [1, 2].
(b) En déduire que la suite (un) est bien définie et que pour tout n ∈ N, un ∈ [1, 2].
(c) Montrer que l’équation f(x) = x admet une unique solution dans [1, 2]. On note α cette solution

qu’on n’essaiera pas de déterminer.
(d) Déterminer le sens de variation de la suite (un).
(e) Montrer que (un) converge et déterminer sa limite.

3. Approximation de α.

(a) Montrer que pour tous x, y ∈ [1, 2], |f(x) − f(y)| ≤ 1
2
√

2
|x − y|.

(b) Montrer que pour tout n ∈ N, |un+1 − α| ≤ 1
2
√

2
|un − α|.

En déduire que ∀n ∈ N, |un − α| ≤
(

1
2
√

2

)n

.

(c) Déterminer une valeur approchée de α à 10−3 près.

Exercice 2
On étudie la suite (un) définie par : 

u0 = 5
2

∀n ∈ N, un+1 = 1 + 4
1 + un

.

1. Montrer que pour tout n ∈ N, un est bien défini et un > 0.

2. Calculer les premiers termes de la suite. Est-elle monotone ?

3. Étudier la fonction f(x) = 1 + 4
1 + x

sur R+.

Représenter f et les premiers termes de la suite.

4. Déterminer les limites possibles de la suite (un).

5. Soient (vn) et (wn) les suites définies par : ∀n ∈ N, vn = u2n et wn = u2n+1.

(a) Déterminer la fonction g telle que : ∀n ∈ N, vn+1 = g(vn) et wn+1 = g(wn).
(b) Étudier les variations de g sur R+ et déterminer le signe de g(x) − x.

Montrer que les deux intervalles [0,
√

5[ et [
√

5, +∞[ sont stables par g.
(c) En déduire que les deux suites (vn) et (wn) sont convergentes. Vers quelle limite ?
(d) En déduire que la suite (un) est convergente.
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