MP21 Lycée Roosevelt

Complément 3

Une bréve introduction a Z/nZ

Soit n € N\ {0, 1}. Rappelons que I’on dispose d’une relation d’équivalence sur Z qui est la relation de congruence
modulo n :

a=bn] & FkeZ a—b=kn & n|(a—0D).
Si a € Z, on note a sa classe d’équivalence, de sorte que :
a={becZ|3keZ b=a+kn}=a+nlZ

Notons Z/nZ lensemble quotient, c’est-a-dire 'ensemble des classes d’équivalence pour la relation de congru-
ence. Nous avions montré qu’il y a exactement n classes d’équivalence pour la congruence modulo n, qui sont
0,1,...,n— 1. Ainsi :

Z/nZ ={0,1,...,n—1}.

Nous allons & présent définir deux lois de compositions internes sur Z/nZ.

— Propriété 1 (LCI sur 'ensemble quotient Z/nZ)

On définit deux lois de compositions internes @ et ® sur Z/nZ en posant, pour tous a,b € Z :
Gadb=a+b et a®b=a xb.

Le triplet (Z/nZ,®,®) est un anneau commutatif d’éléments neutres 0 pour & et 1 pour ®.

Preuve. On commence par vérifier que les définitions des opérations @ et ® ne dépendent pas des représentants
choisis dans les classes d’équivalence :

e la congruence modulo n est compatible avec ’addition :
Va,a',b,b) €Z, o =anjetd =b[n] =d +V =a+bln].
Donc @@ b = a + b est bien définie.
¢ la congruence modulo n est compatible avec la multiplication :
Va,a' bt € Z, d =an]etb =b[n] =d xb =axbln]

Donc @ ®b = a x b est bien définie.

On montre que I'addition est une loi de groupe commutatif :

o elle est commutative car pour tout couple (a,b) € Z? :

a®b=a+b=b+a=>bda.

o elle est associative car pour tout triplet (a,b,c) € Z3 :

(@aeb)@c=a+bdec=(a+b)+c=a+(b+c)=aDbt+c=ad (bD?).

e elle admet 0 pour élément neutre car pour tout a € Z :

a®0=a+0=a et 0@a=0+a=nua.

e tout élément @ a pour opposé —a car pour tout a € Z :

I
l

ad—a=a+(—a) et —a®a=(—a)+a=0.
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De la méme fagon, on vérifie que la multiplication est commutative, associative et qu’elle a pour élément neutre
1, qui est distinct de I’élément neutre 0 de I’addition.

Enfin, la multiplication ® est distributive sur addition @. En effet, pour tout triplet (a,b,c) € Z?,

(@eb)@c=a+bxc=(a+b)xc=(axc)+(bxc)=axc®bxc=(a®c)®(bRT).

Ainsi, (Z/nZ,®,®) est un anneau commutatif d’éléments neutres 0 pour @ et 1 pour ®.

% Notation.
On pourra noter plus simplement + et X ces deux lois @ et ®, mais on veillera a ne pas les confondre

avec les opérations dans Z.

Exemples.

o Tables des opérations de Z/2Z.
Voici les tables de Z/27Z, dressées a partir de la définition des lois @ et ®, compte tenu du fait que la
classe d’un entier modulo 2 est la classe de son reste dans la division par 2 (et c’est 0 si cet entier est pair

et 1 si cet entier est impair) :

® | 0| 1 ® | 0| 1
0|0 |1 ; 0| 0|0
1| 1] 0 1|0 |1

o Tables des opérations de Z/6Z.
Voici les tables de Z/67Z, dressées a partir de la définition des lois @ et ®, compte tenu du fait que la
classe d’un entier modulo 2 est la classe de son reste dans la division par 6.

®@ | 0| 1| 2| 3| 4| 5 ® | 0| 1| 2| 3| 4| 5
0| 0| T |2 |3 |4]75 00|00 ||O0O|0]O0
1 | 1|23 |4|5]|0 1|01 ]2 |3 |4]35
2 |2 3|4 |5 |01 ; 2 | 0| 2|4 |02 14
3 | 3|4 |50 |1]2 3 /0 (3 ]0/|30]3
4 |4 ] 5|0 |1 /|2]3 4 | 0| 4|2 0| 4]2
5|50 /|12 |3]14 50|54 3|21

Propriété 2 (Etude du groupe abélien (Z/nZ,&))

Le groupe (Z/nZ,®) est cyclique, isomorphe & (U, X).

Preuve. Le groupe (Z/nZ,+) est cyclique car il est fini et monogene engendré par 1.

Montrons que 'application

2ikm

k = oe n

{ Z/nZ — U,

est un isomorphisme de (Z/nZ,®) dans (U,, x).

« Elle est bien définie : si @ = b, alors il existe k € Z tel que a = b + kn et donc

2iam 2i(bt+kn)m 2ibm ; 2ibm -
n = e n +2”T = Sp(b).

Sp(a):e n = e

« C’est un morphisme de groupe : si @,b € Z/nZ,

2i(atb)m 2iam 2ibm —

p@db) =pla+b)=e =er xen =pa)xepb).
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¢ On détermine son noyau :

2iam

aeKer(p) & pa)=1 < e

=1 acnZ & a=0.
Donc Ker(p) = {0} et ¢ est injective.
o Comme Card(Z/nZ) = Card(U,,) = n et ¢ injective, on en déduit que ¢ est bijective.
Ainsi, (Z/nZ,®) est isomorphe & (U, x). O

Propriété 3 (Morphisme canonique d’anneaux de Z dans Z/nZ)

Z—>Z/pZ
k = k

L’application  : { est un morphisme d’anneaux surjectif, de noyau nZ.

Preuve. L’application 7 est un morphisme d’anneaux car pour tout a,b € Z,

mla+b)=a+b=adb=rn(a)Pdn(b) et mlaxb)=axb=a®b=mn(a)® ().
Elle est surjective par définition. On détermine enfin son noyau :

a€Ker(r) © m(a)=0 & @a=0 < a=0[n|] & aen’

— Propriété 4 (Inversibles de anneau Z/nZ)

(1) Soit a € Z. Alors @ est inversible dans Z/nZ si, et seulement si, a An = 1.

(2) Les assertions suivantes sont équivalentes :

(i) Z/nZ est un corps ; (ii) Z/nZ est inteégre ; (iii) n est premier.

Preuve.

(1) On raisonne directement par équivalence :

@ est inversible < Ju € Z/nZ, u®a =1
S JueZ, uxa=1]n]
S JuveZ, uxa—vxn=1

SaAn=1 (avec le théoréme de Bézout)

(2) Pour montrer I’équivalence des assertions, on montre (i) = (ii), (ii) = (iii) et (iii) = (i).

(i) = (ii) : Supposons que Z/nZ est un corps. Soient @, b € Z/nZ tels que a®@b = 0. Sia =0, ¢’
Sinon, @ est inversible (car Z/nZ est un corps) et en multipliant par @ ! I'égalité @ @ b = 0, on obtient
b=10. Donc Z/nZ est integre.

est terminé.

(ii) = (iii) : Si n n’est pas premier, il existe deux entiers p et ¢ tels que n = p x g avec 1 < p,q < n et on
en déduit donc que p® g =pg = 0 avec D # 0 et § # 0. Dans ce cas, Z/nZ n’est pas inteégre.

(iif) = (i) : Sin est premier, il est premier avec ses prédécesseurs 1,2,...,n—1 et d’apres le (1), on en déduit
que 1,2,...,n — 1 sont inversibles dans Z/nZ. Ainsi, tous les éléments non nuls de Z/nZ sont inversibles

et c’est donc un corps.
O

Exemple. L’anneau Z/10Z n’est pas intégre car 10 n’est pas premier. L’élément 7 est inversible dans Z/10Z

car 7 A 10 = 1. Comme
3x7—-2x10=1 etdonc 3®7=1,

I'inverse dans Z/10Z de 7 est 3.



