
MP2I Lycée Roosevelt

Une brève introduction à Z/nZ
Complément 3

Soit n ∈ N\{0, 1}. Rappelons que l’on dispose d’une relation d’équivalence sur Z qui est la relation de congruence
modulo n :

a ≡ b [n] ⇔ ∃k ∈ Z, a − b = kn ⇔ n | (a − b).

Si a ∈ Z, on note a sa classe d’équivalence, de sorte que :

a = {b ∈ Z | ∃k ∈ Z, b = a + kn} = a + nZ.

Notons Z/nZ l’ensemble quotient, c’est-à-dire l’ensemble des classes d’équivalence pour la relation de congru-
ence. Nous avions montré qu’il y a exactement n classes d’équivalence pour la congruence modulo n, qui sont
0, 1, . . . , n − 1. Ainsi :

Z/nZ = {0, 1, . . . , n − 1}.

Nous allons à présent définir deux lois de compositions internes sur Z/nZ.

On définit deux lois de compositions internes ⊕ et ⊗ sur Z/nZ en posant, pour tous a, b ∈ Z :

a ⊕ b = a + b et a ⊗ b = a × b.

Le triplet (Z/nZ, ⊕, ⊗) est un anneau commutatif d’éléments neutres 0 pour ⊕ et 1 pour ⊗.

Propriété 1 (LCI sur l’ensemble quotient Z/nZ)

Preuve. On commence par vérifier que les définitions des opérations ⊕ et ⊗ ne dépendent pas des représentants
choisis dans les classes d’équivalence :

• la congruence modulo n est compatible avec l’addition :

∀a, a′, b, b′ ∈ Z, a′ ≡ a [n] et b′ ≡ b [n] ⇒ a′ + b′ ≡ a + b [n].

Donc a ⊕ b = a + b est bien définie.

• la congruence modulo n est compatible avec la multiplication :

∀a, a′, b, b′ ∈ Z, a′ ≡ a [n] et b′ ≡ b [n] ⇒ a′ × b′ ≡ a × b [n].

Donc a ⊗ b = a × b est bien définie.

On montre que l’addition est une loi de groupe commutatif :

• elle est commutative car pour tout couple (a, b) ∈ Z2 :

a ⊕ b = a + b = b + a = b ⊕ a.

• elle est associative car pour tout triplet (a, b, c) ∈ Z3 :

(a ⊕ b) ⊕ c = a + b ⊕ c = (a + b) + c = a + (b + c) = a ⊕ b + c = a ⊕ (b ⊕ c).

• elle admet 0 pour élément neutre car pour tout a ∈ Z :

a ⊕ 0 = a + 0 = a et 0 ⊕ a = 0 + a = a.

• tout élément a a pour opposé −a car pour tout a ∈ Z :

a ⊕ −a = a + (−a) = 0 et −a ⊕ a = (−a) + a = 0.
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De la même façon, on vérifie que la multiplication est commutative, associative et qu’elle a pour élément neutre
1, qui est distinct de l’élément neutre 0 de l’addition.
Enfin, la multiplication ⊗ est distributive sur l’addition ⊕. En effet, pour tout triplet (a, b, c) ∈ Z3,

(a ⊕ b) ⊗ c = a + b ⊗ c = (a + b) × c = (a × c) + (b × c) = a × c ⊕ b × c = (a ⊗ c) ⊕ (b ⊗ c).

Ainsi, (Z/nZ, ⊕, ⊗) est un anneau commutatif d’éléments neutres 0 pour ⊕ et 1 pour ⊗. □

On pourra noter plus simplement + et × ces deux lois ⊕ et ⊗, mais on veillera à ne pas les confondre
avec les opérations dans Z.

� Notation.

Exemples.

• Tables des opérations de Z/2Z.
Voici les tables de Z/2Z, dressées à partir de la définition des lois ⊕ et ⊗, compte tenu du fait que la
classe d’un entier modulo 2 est la classe de son reste dans la division par 2 (et c’est 0 si cet entier est pair
et 1 si cet entier est impair) :

⊕ 0 1

0 0 1

1 1 0

;
⊗ 0 1

0 0 0

1 0 1

• Tables des opérations de Z/6Z.
Voici les tables de Z/6Z, dressées à partir de la définition des lois ⊕ et ⊗, compte tenu du fait que la
classe d’un entier modulo 2 est la classe de son reste dans la division par 6.

⊕ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

;

⊗ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

Le groupe (Z/nZ, ⊕) est cyclique, isomorphe à (Un, ×).

Propriété 2 (Étude du groupe abélien (Z/nZ, ⊕))

Preuve. Le groupe (Z/nZ, +) est cyclique car il est fini et monogène engendré par 1.
Montrons que l’application

φ :
{

Z/nZ → Un

k 7→ e
2ikπ

n

est un isomorphisme de (Z/nZ, ⊕) dans (Un, ×).

• Elle est bien définie : si a = b, alors il existe k ∈ Z tel que a = b + kn et donc

φ(a) = e
2iaπ

n = e
2i(b+kn)π

n = e
2ibπ

n +2iπ = e
2ibπ

n = φ(b).

• C’est un morphisme de groupe : si a, b ∈ Z/nZ,

φ(a ⊕ b) = φ(a + b) = e
2i(a+b)π

n = e
2iaπ

n × e
2ibπ

n = φ(a) × φ(b).
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• On détermine son noyau :

a ∈ Ker(φ) ⇔ φ(a) = 1 ⇔ e
2iaπ

n = 1 ⇔ a ∈ nZ ⇔ a = 0.

Donc Ker(φ) = {0} et φ est injective.

• Comme Card(Z/nZ) = Card(Un) = n et φ injective, on en déduit que φ est bijective.

Ainsi, (Z/nZ, ⊕) est isomorphe à (Un, ×). □

L’application π :
{

Z → Z/nZ
k 7→ k

est un morphisme d’anneaux surjectif, de noyau nZ.

Propriété 3 (Morphisme canonique d’anneaux de Z dans Z/nZ)

Preuve. L’application π est un morphisme d’anneaux car pour tout a, b ∈ Z,

π(a + b) = a + b = a ⊕ b = π(a) ⊕ π(b) et π(a × b) = a × b = a ⊗ b = π(a) ⊗ π(b).

Elle est surjective par définition. On détermine enfin son noyau :

a ∈ Ker(π) ⇔ π(a) = 0 ⇔ a = 0 ⇔ a ≡ 0 [n] ⇔ a ∈ nZ.

□

(1) Soit a ∈ Z. Alors a est inversible dans Z/nZ si, et seulement si, a ∧ n = 1.

(2) Les assertions suivantes sont équivalentes :

(i) Z/nZ est un corps ; (ii) Z/nZ est intègre ; (iii) n est premier.

Propriété 4 (Inversibles de l’anneau Z/nZ)

Preuve.

(1) On raisonne directement par équivalence :

a est inversible ⇔ ∃u ∈ Z/nZ, u ⊗ a = 1
⇔ ∃u ∈ Z, u × a ≡ 1 [n]
⇔ ∃u, v ∈ Z, u × a − v × n = 1
⇔ a ∧ n = 1 (avec le théorème de Bézout)

(2) Pour montrer l’équivalence des assertions, on montre (i) ⇒ (ii), (ii) ⇒ (iii) et (iii) ⇒ (i).

(i) ⇒ (ii) : Supposons que Z/nZ est un corps. Soient a, b ∈ Z/nZ tels que a⊗b = 0. Si a = 0, c’est terminé.
Sinon, a est inversible (car Z/nZ est un corps) et en multipliant par a−1 l’égalité a ⊗ b = 0, on obtient
b = 0. Donc Z/nZ est intègre.

(ii) ⇒ (iii) : Si n n’est pas premier, il existe deux entiers p et q tels que n = p × q avec 1 < p, q < n et on
en déduit donc que p ⊗ q = pq = 0 avec p ̸= 0 et q ̸= 0. Dans ce cas, Z/nZ n’est pas intègre.

(iii) ⇒ (i) : Si n est premier, il est premier avec ses prédécesseurs 1, 2, . . . , n−1 et d’après le (1), on en déduit
que 1, 2, . . . , n − 1 sont inversibles dans Z/nZ. Ainsi, tous les éléments non nuls de Z/nZ sont inversibles
et c’est donc un corps.

□

Exemple. L’anneau Z/10Z n’est pas intègre car 10 n’est pas premier. L’élément 7 est inversible dans Z/10Z
car 7 ∧ 10 = 1. Comme

3 × 7 − 2 × 10 = 1 et donc 3 ⊗ 7 = 1,

l’inverse dans Z/10Z de 7 est 3.
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