Correction - DM 2

A rendre le 01/10/25

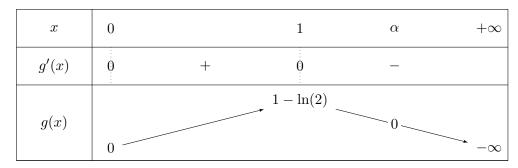
Exercice 1

Première partie.

- 1. Soit g l'application définie sur \mathbb{R}_+ par $g(x) = \frac{2x^2}{x^2 + 1} \ln(x^2 + 1)$.
 - (a) Puisque $x^2 + 1 > 0$ pour tout $x \in \mathbb{R}_+$, la fonction g est bien définie sur \mathbb{R}_+ . Elle est de plus continue et dérivable sur cet intervalle comme composée de fonctions qui le sont. Pour tout $x \in \mathbb{R}_+$, on a :

$$g'(x) = \frac{4x(x^2+1) - (2x)(2x^2)}{(x^2+1)^2} - \frac{2x}{x^2+1} = \frac{4x^3 + 4x - 4x^3}{(x^2+1)^2} - \frac{2x}{x^2+1}$$
$$= \frac{4x - 2x(x^2+1)}{(x^2+1)^2} = \frac{-2x^3 + 2x}{(x^2+1)^2}$$
$$= \frac{-2x(x^2-1)}{(x^2+1)^2} = \frac{-2x(x-1)(x+1)}{(x^2+1)^2}$$

Puisque $x^2 + 1 > 0$ pour tout $x \in \mathbb{R}_+$, g'(x) est du signe de son numérateur. On construit le tableau de variation de g.



Comme $\frac{2x^2}{x^2+1}=\frac{1}{1+\frac{1}{x^2}},$ on en déduit que $\lim_{x\to+\infty}\frac{2x^2}{x^2+1}=1.$

D'autre part, $\lim_{x \to +\infty} x^2 + 1 = +\infty$, donc par composition $\lim_{x \to +\infty} \ln(x^2 + 1) = +\infty$.

Ainsi, $\lim_{x \to +\infty} g(x) = -\infty$.

On peut compléter le tableau de variation avec les valeurs remarquables suivantes :

$$g(0) = 0$$
 ; $g(1) = 1 - \ln(2) > 0$.

- (b) La fonction g est continue sur $[1, +\infty[$ et strictement décroissante sur cet intervalle. Elle réalise donc une bijection de $[1, +\infty[$ sur l'intervalle $g([1, +\infty[) =] -\infty, 1 \ln(2)]$. Puisque $0 \in]-\infty, 1 \ln(2)]$, on en déduit qu'il existe un unique réel α dans l'intervalle $[1, +\infty[$ tel que $g(\alpha) = 0$.
- (c) Les réels $\frac{7}{4}$ et 2 sont dans l'intervalle $[1,+\infty[,$ et on a :

$$g(7/4) \approx 0.11$$
 ; $g(2) \approx -0.009$.

Puisque g est décroissante sur $[1, +\infty[$, on en déduit que $7/4 < \alpha < 2$.

1

MP2I Lycée Roosevelt

2. (a) L'équation de la tangente T à Γ au point d'abscisse 2 est donnée par l'équation :

$$y = g'(2)(x-2) + g(2) = -\frac{12}{25}(x-2) + \frac{8}{5} - \ln(5).$$

L'abscisse x_0 du point d'intersection de T et de x'Ox est solution de l'équation :

$$0 = -\frac{12}{25}(x-2) + \frac{8}{5} - \ln(5).$$

On obtient après résolution :

$$x_0 = \frac{16}{3} - \frac{25}{12} \ln(5) \approx 1,98034...$$

On note ν_1 et ν_2 respectivement les valeurs approchées par défaut et par excès de x_0 à 10^{-3} près. On a donc :

$$\nu_1 = 1,980$$
 ; $\nu_2 = 1,981$.

Après calcul, on a:

$$g(\nu_1) = 1,39 \cdot 10^{-4} \text{ et } g(\nu_2) = -3,39 \cdot 10^{-4}.$$

Ainsi $g(\nu_1) > g(\alpha) > g(\nu_2)$. Et puisque g est strictement décroissante sur $[1, +\infty[$, on obtient

$$1,980 < \alpha < 1,981.$$

(b) D'après le tableau de variation, on en déduit que $g(x) \ge 0$ pour $x \in [0, \alpha]$ et g(x) < 0 pour $x \in]\alpha, +\infty[$.

Deuxième partie.

Soit f l'application définie sur \mathbb{R} par f(0) = 0 et

$$f(x) = \frac{\ln(x^2 + 1)}{x} \text{ si } x \neq 0,$$

et \mathscr{C} la courbe représentative de f.

3. f est bien définie sur \mathbb{R} , puisque pour $x \neq 0$, $x^2 + 1 > 0$ et donc $\frac{\ln(x^2 + 1)}{x}$ est bien définie. Montrons que f est dérivable en 0. Pour cela on doit déterminer la limite quand x tend vers 0 du taux d'accroissement de f en 0 :

$$\frac{f(x) - f(0)}{x - 0} = \frac{\ln(x^2 + 1)}{x^2} \quad (x \neq 0).$$

On a $\lim_{x\to 0} x^2 = 0$ et $\lim_{X\to 0} \frac{\ln(X+1)}{X} = 1$ (limite à connaître !), donc par composition on obtient

$$\lim_{x \to 0} \frac{\ln(x^2 + 1)}{x^2} = 1.$$

Ainsi f est dérivable en 0, et f'(0) = 1.

On a vu que f est définie sur \mathbb{R} qui est symétrique par rapport à 0. On a de plus f(-x) = -f(x) pour tout x réel. Donc f est impaire, et on restreint son domaine d'étude à $[0, +\infty[$.

La fonction f est continue et dérivable sur $]0, +\infty[$ et sur $]-\infty, 0[$ comme composée de fonctions dérivables sur ces intervalles. On vient de voir que f est dérivable en 0, elle est donc en particulier continue en 0.

Pour tout x > 0, on a en dérivant :

$$f'(x) = \frac{\frac{2x}{x^2+1}x - \ln(x^2+1)}{x^2} = \frac{g(x)}{x^2}.$$

On dresse le tableau de variation de f.

MP2I Lycée Roosevelt

x	0 α $+\infty$
f'(x)	+ 0 -
f(x)	

Enfin, on détermine la limite en $+\infty$ de f:

$$\frac{\ln(x^2+1)}{x} = \frac{\ln(x^2(1+\frac{1}{x^2}))}{x} = \frac{\ln(x^2) + \ln(1+\frac{1}{x^2})}{x} = 2\frac{\ln(x)}{x} + \frac{\ln(1+\frac{1}{x^2})}{x}.$$

Or $\lim_{x\to +\infty} \frac{\ln(x)}{x} = 0$ (par croissances comparées) et $\lim_{x\to +\infty} \frac{\ln(1+\frac{1}{x^2})}{x} = 0$.

Donc $\lim_{x\to +\infty} f(x)=0$: la courbe $\mathscr C$ admet une asymptote horizontale en $+\infty$ d'équation y=0.

4. Montrons que pour tout réel x > -1, on a $\ln(1+x) \le x$. Pour cela on introduit la fonction $h(x) = x - \ln(x+1)$. Cette fonction est définie sur $]-1, +\infty[$ puisque x+1>0, et est dérivable sur cet intervalle comme composée de fonctions dérivables. On obtient en dérivant h: pour tout x > -1,

$$h'(x) = 1 - \frac{1}{x+1} = -\frac{x}{1+x}$$

La dérivée h' est du signe de -x puisque x+1>0, elle est donc positive sur]-1,0], négative sur $[0,+\infty[$. La fonction h admet donc un maximum global en 0, avec h(0)=0.

De cette étude on en tire que $h(x) \le 0$ pour tout x > -1, et donc que $\ln(x+1) \le x$.

La tangente en 0 à \mathscr{C} est donnée par :

$$y = f'(0)x + f(0) = x.$$

Pour déterminer la position relative de $\mathscr C$ et de sa tangente, on étudie le signe de la différence f(x)-x:

$$f(x) - x = \frac{\ln(x^2 + 1)}{x} - x = \frac{\ln(x^2 + 1) - x^2}{x}.$$

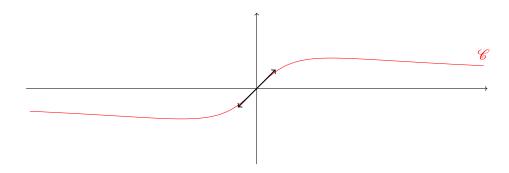
Or pour $x \in [0, +\infty[, x^2 \ge 0$ et on peut appliquer l'inégalité précédente :

$$\ln(x^2 + 1) - x^2 \le 0.$$

Ainsi $f(x) - x \le 0$ pour tout $x \ge 0$, et \mathscr{C} est en dessous de sa tangente sur $[0, +\infty[$.

Par symétrie, on déduit de notre étude que $\mathscr C$ est également au dessus de sa tangente sur $]-\infty,0]$.

5. On peut maintenant tracer la courbe \mathscr{C} (avec la symétrie par rapport à 0 et la tangente en 0).



MP2I Lycée Roosevelt

Exercice 2

1. Soit $x \in \mathbb{R}$. Alors:

$$ch^{2}(x) - sh^{2}(x) = (ch(x) + sh(x))(ch(x) - sh(x)) = e^{x}e^{-x} = 1.$$

2. La fonction sh est dérivable car somme de fonctions qui le sont, et pour tout $x \in \mathbb{R}$,

$$sh'(x) = \frac{e^x + e^{-x}}{2} = ch(x) > 0.$$

Donc sh est continue et strictement croissante sur \mathbb{R} . D'après le théorème de la bijection, sh réalise une bijection de \mathbb{R} dans $\lim_{x \to -\infty} \operatorname{sh}(x)$; $\lim_{x \to +\infty} \operatorname{sh}(x) = \mathbb{R}$.

3. Nous avons vu que sh est dérivable sur $\mathbb R$ et que sa dérivée est ch qui ne s'annule jamais sur $\mathbb R$. Donc Argsh est dérivable sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, \quad \operatorname{Argsh}'(x) = \frac{1}{\operatorname{ch}(\operatorname{Argsh}(x))}.$$

Or, pour tout $x \in \mathbb{R}$, on a avec la question 1:

$$\operatorname{ch}^{2}(\operatorname{Argsh}(x)) - \underbrace{\operatorname{sh}(\operatorname{Argsh}(x))}_{=x^{2}} = 1 \quad \Rightarrow \quad \operatorname{ch}^{2}(\operatorname{Argsh}(x)) = 1 + x^{2}.$$

Puisque $\operatorname{ch}(\operatorname{Argsh}(x)) \geq 0$, on a donc $\operatorname{ch}(\operatorname{Argsh}(x)) = \sqrt{1+x^2}$. Finalement :

$$\forall x \in \mathbb{R}, \quad \operatorname{Argsh}'(x) = \frac{1}{\sqrt{1+x^2}}.$$

4. Soit $y \in \mathbb{R}$. Cherchons l'unique antécédent $x \in \mathbb{R}$ de y par sh.

$$y = \operatorname{sh}(x) \Leftrightarrow y = \frac{e^x - e^{-x}}{2}$$

$$\Leftrightarrow 2y = e^x - e^{-x}$$

$$\Leftrightarrow (e^x)^2 - 2ye^x - 1 = 0$$

$$\Leftrightarrow e^x \text{ est solution de l'équation } X^2 - 2yX - 1 = 0 \text{ d'inconnue } X.$$

Cette dernière équation a pour discriminant $4y^2 + 4 = 4(y^2 + 1)$, et donc pour solutions :

$$X_1 = \frac{2y + 2\sqrt{y^2 + 1}}{2} = y + \sqrt{y^2 + 1}$$
 et $X_2 = \frac{2y - 2\sqrt{y^2 + 1}}{2} = y - \sqrt{y^2 + 1}$.

Par stricte croissance de la fonction racine :

$$\sqrt{y^2 + 1} > \sqrt{y^2} = |y| \ge -y \quad \Rightarrow \quad X_1 = y + \sqrt{y^2 + 1} > 0$$

 et

$$\sqrt{y^2 + 1} > \sqrt{y^2} = |y| \ge y \quad \Rightarrow \quad X_2 = y - \sqrt{y^2 + 1} < 0.$$

Ainsi,

$$y = \operatorname{sh}(x) \quad \Leftrightarrow \quad e^x = X_1 \quad \Leftrightarrow \quad x = \ln\left(y + \sqrt{y^2 + 1}\right).$$

Finalement, l'unique antécédent de y par sh est $\ln \left(y + \sqrt{y^2 + 1}\right)$ et donc

$$\operatorname{Argsh}(y) = \ln\left(y + \sqrt{y^2 + 1}\right).$$