DM 4

A rendre le Mardi 4 Novembre

Vous traiterez au choix:

• les exercices 1 et 2 ;

• l'exercice 3 (plus difficile).

Exercice 1 (Contruction du pentagone régulier à la règle et au compas)

Le but de cet exercice est de construire un pentagone régulier à la règle et au compas. Plus précisément, on cherchera à établir des formules permettant de calculer $\cos\left(\frac{\pi}{5}\right)$ à l'aide de combinaisons finies de radicaux carrés (c'est-à-dire à l'aide de racines carrées, par exemple $\sqrt{a+\sqrt{b-\sqrt{c}}+d+\sqrt{e}+\ldots}$).

Pour faire la question 4. la valeur donnée en 3.(a) suffit.

Soit l'équation :

$$z^5 - 1 = 0 \tag{1}$$

- 1. Donner les solutions de (1) dans \mathbb{C} sous forme trigonométrique.
- 2. On va chercher les solutions sous une autre forme :
 - (a) Déterminer le polynôme Q tel que, pour tout $z \in \mathbb{C}$, on ait :

$$z^5 - 1 = (z - 1)Q(z).$$

(b) Résoudre l'équation Q(z)=0 en effectuant le changement d'inconnue défini par :

$$z + \frac{1}{z} = Z.$$

Vérifier que les quatre zéros complexes de Q, que l'on calculera, s'exprime à l'aide de racines carrées, éventuellement superposés.

3. De la question précédente, déduire des expressions par radicaux de :

(a)
$$\cos\left(\frac{2\pi}{5}\right) \left(=\frac{-1+\sqrt{5}}{4}\right)$$
; $\cos\left(\frac{4\pi}{5}\right)$; $\sin\left(\frac{2\pi}{5}\right)$; $\sin\left(\frac{4\pi}{5}\right)$.

- (b) $\cos\left(\frac{\pi}{5}\right)$.
- 4. Construction d'un pentagone régulier à la règle et au compas :

On note $\omega = e^{\frac{2i\pi}{5}}$.

Dans le repère orthonormé $(O, \vec{e_1}, \vec{e_2})$, on considère les points B d'affixe i, K d'affixe $-\frac{1}{2}$.

On note A_k les points d'affixes ω^k pour k = 0, 1, 2, 3, 4.

(a) Que dire, sans justifier, du polygone $A_0A_1A_2A_3A_4$?

Soit J le point d'intersection du cercle de centre K passant par B avec la droite $(O, \vec{e_1})$ d'affixe positive.

Soit L le milieu de [OJ].

- (b) Construire sur une figure : le cercle de centre O de rayon 1 et les points O, B, K, J.
- (c) Calculer \overline{OJ} puis \overline{OL} . En déduire que L est la projection orthogonale de A_1 sur l'axe des abscisses.
- (d) Construire à la règle et au compas les points A_0, A_1, A_2, A_3, A_4 .

MP2I Lycée Roosevelt

Exercice 2 (Résolution d'une équation polynomiale)

Dans tout l'exercice, on note $P: \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longrightarrow & \frac{1}{2i} \left((z+i)^5 - (z-i)^5 \right) \end{array}$, qui est donc une fonction polynomiale de \mathbb{C} dans \mathbb{C} .

On se propose de déterminer par deux méthodes différentes les racines de P, c'est-à-dire les complexes tels que P(z) = 0.

1. Première méthode.

- (a) Soit $z \in \mathbb{C} \setminus \{i\}$. Montrer que $P(z) = 0 \Leftrightarrow \left(\frac{z+i}{z-i}\right)^5 = 1$.
- (b) En déduire toutes les racines de P, que l'on simplifiera autant que possible à l'aide de la méthode de l'angle moitié.

2. Seconde méthode.

- (a) Prouver que pour tout $z \in \mathbb{C}$, $P(z) = 5z^4 10z^2 + 1$.
- (b) À l'aide de la question précédente, déterminer les racines de P. Les expressions de ces racines ne seront pas forcément les mêmes que celles obtenues dans la première question.
- (d) En combinant les résultats des deux méthodes, déterminer la valeur de cotan $\left(\frac{\pi}{5}\right)$.

Exercice 3 (Puissances d'un complexe de module 1)

On note:

- $\mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$ l'ensemble des nombres complexes de module 1 ;
- pour $n \in \mathbb{N}^*$, on note $\mathbb{U}_n = \{z \in \mathbb{C} \mid z^n = 1\}$ l'ensemble des racines $n^{\text{èmes}}$ de l'unité ;
- pour $z, z' \in \mathbb{C}$, d(z, z') := |z z'| est la distance entre les points d'affixes z et z';
- pour $z \in \mathbb{C}^*$, on note $\arg(z)$ l'unique argument de z qui est dans $[0, 2\pi]$.

Dans tout l'exercice, θ est un réel fixé de $[0, 2\pi[$, et pour $n \in \mathbb{Z}$, on note $z_n = (e^{i\theta})^n$. On note alors $V = \{z_n, n \in \mathbb{Z}\}$, l'ensemble des puissances de $e^{i\theta}$.

1. Soient $\alpha, \beta \in \mathbb{R}$. Exprimer $d\left(e^{i\alpha}, e^{i\beta}\right)$ en fonction de $\frac{\beta - \alpha}{2}$.

Partie I. Le cas où $\frac{\theta}{\pi} \in \mathbb{Q}$

Dans cette partie, on suppose que $\frac{\theta}{\pi} \in \mathbb{Q}$. On note alors $A = \{n \in \mathbb{N}^* \mid z_n = 1\}$.

2. Montrer que $A \neq \emptyset$. On admet alors que, comme toute partie non vide de $\mathbb{N},$ A admet un plus petit élément.

Dans la suite de cette partie, on note m le plus petit élément de A, c'est-à-dire un entier $m \in A$ tel que pour tout $n \in A$, $m \le n$

- 3. (a) Justifier qu'il existe $p \in \mathbb{N}$ tel que $\frac{1}{e^{i\theta}} = z_p$. En déduire que $V = \{z_n, n \in \mathbb{N}\}$.
 - (b) Prouver que $V = \mathbb{U}_m$. Indication : on pourra utiliser une division euclidienne par m. Ceci prouve donc que V est un ensemble fini.

2

Partie II. Le cas où $\frac{\theta}{\pi} \notin \mathbb{Q}$

Dans cette partie, on suppose que $\frac{\theta}{\pi}$ est irrationnel.

4. Justifier que les z_n , $n \in \mathbb{Z}$ sont deux à deux distincts.

Dans toute la suite, on se donne $Z \in \mathbb{U}$ et $\varepsilon > 0$ fixés. On souhaite prouver qu'il existe $m \in \mathbb{Z}$ tel que $d(Z, z_m) \leq \varepsilon$. Autrement dit, on souhaite prouver qu'il existe des points de V ;; aussi proches qu'on veut $\xi \xi$ de tout point de \mathbb{U} .

5. Prouver qu'il existe $n \in \mathbb{N} \setminus \{0, 1\}$ tel que $\frac{2\pi}{n} \leq \varepsilon$.

Dans la suite, on se fixe un tel entier n. On note alors, pour $k \in [0, n-1]$,

$$A_k = \left\{ z \in \mathbb{U} \mid \frac{2k\pi}{n} \le \arg(z) < \frac{2(k+1)\pi}{n} \right\}.$$

- 6. Prouver que $\{A_k, k \in [0, n-1]\}$ est une partition de \mathbb{U} .
- 7. (a) Montrer qu'il existe $(p,q) \in [0,n]^2$ et $k \in [0,n-1]$ tels que $p \neq q$ et $\{z_p,z_q\} \subset A_k$. On note alors p,q deux tels entiers, et on note $\varphi = \arg(z_p)$ et $\psi = \arg(z_q)$. Quitte à les échanger, on suppose de plus que $\varphi \leq \psi$.
 - (b) Montrer que arg $(z_{q-p}) \in \left]0, \frac{2\pi}{n}\right[$.
 - (c) On note $\alpha = \arg(Z)$ et $k = \left\lfloor \frac{\alpha}{\psi \varphi} \right\rfloor$. Montrer que $d\left(Z, z_{k(q-p)}\right) \leq 2\sin\left(\frac{\psi - \varphi}{2}\right)$.
 - (d) Conclure.
- 8. A-t-on $V = \mathbb{U}$?
- 9. Déduire de ce qui précède que pour tout $x \in [-1,1]$, et tout $\varepsilon > 0$, il existe $k \in \mathbb{N}$ tel que $|x \cos(k\theta)| \le \varepsilon$.