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Correction - DM 7

Exercice 1
1. (a) ⇒ Supposons Lf injective. Soit (x, y) ∈ E2 tel que f(x) = f(y).

Posons φ : E → E la fonction constante égale à x et ϕ : E → E la fonction constante
égale à y. Alors pour tout a ∈ E :

(f ◦ φ)(a) = f(φ(a)) = f(x) = f(y) = f(ϕ(a)) = (f ◦ ϕ)(a).

Ainsi f ◦ φ = f ◦ ϕ, c’est-à-dire Lf (φ) = Lf (ϕ). Comme Lf est injective, on en déduit
que φ = ϕ et donc, pour a ∈ E !

x = φ(a) = ϕ(a) = y.

Donc f est injective.

⇐ Supposons f injective. Montrons que Lf est aussi injective. Soit pour cela (φ, ϕ) ∈
F (E,E)2 tel que Lf (φ) = Lf (ϕ). Alors f ◦ φ = f ◦ ϕ, d’où pour tout x ∈ E :

(f ◦ φ)(x) = (f ◦ ϕ)(x), donc f(φ(x)) = f(ϕ(x)).

Comme f est injective, ceci donne φ(x) = ϕ(x). Ainsi φ = ϕ et Lf est injective.

En conclusion, Lf est injective si et seulement si f est injective.

(b) ⇒ Supposons Lf surjective. Montrons que f est surjective.

Soit pour cela y ∈ E. Notons φ : E → E l’application constante égale à y. Comme Lf

est surjective, il existe ϕ ∈ F (E,E) tel que f ◦ϕ = Lf (ϕ) = φ. Mais alors, pour a ∈ E
quelconque :

(f ◦ ϕ)(a) = φ(a) = y, c’est-à-dire f(ϕ(a)) = y.

Ainsi, y admet au moins un antécédent par f , à savoir ϕ(a). Donc f est surjective.

⇐ Supposons f surjective. Montrons qu’alors Lf est surjective.

Soit φ ∈ F (E,E). Pour tout y ∈ E, φ(y) ∈ E admet un antécédent par f dans E (par
surjectivité de f) que l’on note xy. Posons alors :

ϕ :
E → E
y 7→ xy

.

Par définition, pour tout y ∈ E :

(f ◦ ϕ)(y) = f(ϕ(y)) = f(xy) = φ(y).

Donc f ◦ ϕ = φ, soit Lf (ϕ) = φ. Ainsi Lf est surjective.

En conclusion, Lf est surjective si et seulement si f est surjective.

2. (a) ⇒ On raisonne par contraposition. Supposons que g n’est pas surjective1. Considérons
alors a, b deux éléments distincts de E et :

φ1 :
E → E
x 7→ a

et φ2 :

E → E

x 7→

{
a si x ∈ Im(g)

b si x /∈ Im(g)

.

1Cela implique notamment que E n’est pas réduit à un élément, car sinon g serait l’identité qui est surjective. Cela
nous servira dans la suite du raisonnement.

1



MP2I Lycée Roosevelt

Alors φ1 ̸= φ2 (on utilise ici que Im(g) ̸= E), et pour tout x ∈ E :

φ1 ◦ g(x) = a = φ2 ◦ g(x)

de sorte que Rg(φ1) = Rg(φ2). Ainsi, Rg n’est pas injective.

On a donc montré que si Rg injective, alors g est surjective.

⇐ Supposons g surjective. Montrons que Rg est injective.

Soient pour cela φ1 et φ2 des applications de E dans E telles que :

φ1 ◦ g = Rg(φ1) = Rg(φ2) = φ2 ◦ g.

Montrons que φ1 = φ2. Soit pour cela y ∈ E. Par surjectivité de g, il existe x ∈ E tel
que y = g(x). Mais alors :

φ1(y) = φ1(g(x)) = φ1 ◦ g(x) = φ2 ◦ g(x) = φ2(g(x)) = φ2(y).

Donc φ1 = φ2 et Rg est injective.

En conclusion, Rg est injective si et seulement si g est surjective.

(b) ⇒ Supposons Rg surjective. Montrons que g est injective.

Par hypothèse, il existe φ : E → E telle que :

φ ◦ g = Rg(φ) = idE .

Puisque idE est injective, g est donc injective.

⇐ Supposons g injective. Montrons que Rg est surjective.

Soit pour cela ψ : E → E une application. On cherche à construire une application
φ : E → E telle que :

∀x ∈ E, ψ(x) = φ ◦ g(x).

Pour cela, notons g̃ = g|Im(g). Cette application est injective (car g l’est) et est surjective
(car corestreinte à Im(g)). Elle est donc bijective de E sur Im(g). On définit alors :

φ :

E → E

x 7→

{
ψ ◦ (g̃)−1(x) si x ∈ Im(g)

x si x /∈ Im(g)

.

Vérifions que φ convient. Prenons pour cela x ∈ E et calculons :

φ ◦ g(x) = φ(g(x) =︸︷︷︸
g(x)∈Im(g)

ψ ◦ (g̃)−1(g(x)) = ψ(x)

car x est l’unique antécédent de g(x) par g. Ainsi ψ = Rg(φ), et Rg est surjective.

En conclusion, Rg est surjective si et seulement si g est injective.

3. D’après les deux questions précédentes, Lf et Rf−1 sont bijectives car f et f−1 sont bijectives.
Plus précisément, on vérifie aisément que :

Lf ◦ Lf−1 = Lf−1 ◦ Lf = idF (E,E) et que Rf ◦Rf−1 = Rf−1 ◦Rf = idF (E,E).

Ainsi, (Lf )
−1 = Lf−1 et (Rf−1)−1 = Rf . Donc Φf = Lf ◦Rf−1 est bijective et

(Φf )
−1 = (Lf ◦Rf−1)−1 = (Rf−1)−1 ◦ (Lf )

−1 = Rf ◦ Lf−1 = Φf−1 .
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Exercice 2
Partie I. Exemples d’ensembles dénombrables.

1. Montrons que l’ensemble N∗ est dénombrable. Il s’agit de trouver une bijection de N sur N∗.
Prenons :

f :
N → N∗

n 7→ n+ 1
.

On vérifie sans peine que f est bijective en montrant par exemple qu’avec g :
N∗ → N
n 7→ n− 1

,

on obtient :
g ◦ f = idN et f ◦ g = idN∗ .

Donc N∗ est dénombrable.

Montrons que P = {2k, k ∈ N} est dénombrable. Considérons pour cela l’application

h :
N → P
k 7→ 2k

.

On vérifie de même que h est bijective, en montrant par exemple que pour i :
P → N
n 7→ n/2

,

on obtient :
i ◦ h = idN et h ◦ i = idP .

Donc P est dénombrable.

2. (a) Pour tout n ∈ N, deux cas sont possibles :

• soit n est pair, et dans ce cas
n

2
est bien un entier ;

• soit n est impair, et dans ce cas
n+ 1

2
est bien un entier également.

Dans tous les cas, φ(n) appartient à Z, et φ est bien définie.

(b) Montrons que φ est bijective.

• Injectivité. Soient n1, n2 ∈ N tels que φ(n1) = φ(n2). Deux cas sont possibles :

– si φ(n1) = φ(n2) ≤ 0, alors n1 et n2 sont tous les deux pair par définition de φ, et
:

n1
2

= φ(n1) = φ(n2) =
n2
2

d’où n1 = n2.

– si φ(n1) = φ(n2) < 0, alors n1 et n2 sont tous les deux impair, et donc :

−n1 + 1

2
= φ(n1) = φ(n2) = −n2 + 1

2
, d’où n1 = n2.

Dans tous les cas, on obtient bien que n1 = n2. Donc φ est bien injective.

• Surjectivité. Soit k ∈ Z. Deux cas sont là aussi à envisager :

– si k ≥ 0, alors n = 2k convient puisque φ(2k) =
2k

2
= k ;

– si k < 0, alors n = −2k−1 ∈ N convient puisque φ(−2k−1) = −−2k − 1 + 1

2
= k.

Ainsi, φ est bien surjective.

L’application φ est injective et surjective, donc bijective.

Il existe donc bien une bijection entre N et Z : Z est dénombrable.
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3. (a) Montrons que l’application ψ est injective. Soient pour cela (p1, q1) et (p2, q2) ∈ N2 tels
que ψ(p1, q1) = ψ(p2, q2). Alors :

2p1(2q1 + 1) = 2p2(2q2 + 1).

Quitte à renuméroter, on peut supposer par exemple que p1 ≥ p2. On obtient l’égalité
d’entiers

2p1−p2(2q1 + 1) = (2q2 + 1).

Ainsi 2p1−p2(2q1 + 1) est un entier impair. Donc nécessairement p1 − p2 = 0, et donc
p1 = p2. En reprenant l’égalité ci-dessus, on obtient alors en substituant que q1 = q2. Donc
ψ est bien injective.

(b) Montrons par récurrence la propriété P(n) : ¡¡ il existe (p, q) ∈ N tel que n = 2p(2q+1) ¿¿
pour tout n ≥ 1.

I Pour n = 1, le couple (p, q) = (0, 0) convient. Donc P(0) est vraie.

H Soit n ≥ 1. Supposons P(k) vraie pour tout 1 ≤ k ≤ n. Montrons P(n+ 1).

Deux cas sont possibles :

– si n+ 1 est impair, il existe k ∈ N tel que n+ 1 = 2k + 1. Le coupe (p, q) = (0, k)
convient.

– si n+ 1 est pair, il existe k ∈ N tel que n+ 1 = 2k. Par hypothèse de récurrence,
il existe (p′, q′) ∈ N2 tels que k = 2p

′
(2q′ + 1). Alors n + 1 = 2p

′+1(2q′ + 1), et le
coupe (p, q) = (p′ + 1, q′) convient.

Dans tous les cas, la propriété P(n+ 1) est vraie.

Par principe de récurrence, pour tout n ≥ 1, il existe un couple (p, q) ∈ N2 tel que n =
2p(2q + 1).

En particulier, ψ est surjective.

(c) L’application ψ est injective et surjective. C’est donc une bijection de N2 dans N∗. Et on
a donné à la question 1 une bijection g de N∗ dans N. Par composition, Ψ = ψ ◦ g est une

bijection de N2 dans N. Ainsi N2 est bien dénombrable.

4. (a) L’application j :
N → Q
n 7→ n

est clairement une injection de N dans Q.

(b) Montrons que ϕ est injective : soient pour cela r1, r2 ∈ Q, et r1 =
p1
q1

, r2 =
p2
q2

leurs

représentants irréductibles. Supposons que ϕ(r1) = ϕ(r2). Alors :

(p1, q1) = (p2, q2), d’où p1 = p2 et q1 = q2 et donc r1 =
p1
q1

=
p2
q2

= r2.

Donc ϕ est injective.

ϕ n’est pas surjective : par exemple (2, 2) ∈ Z×N∗, mais (2, 2) n’a pas d’antécédent par ϕ
: sinon il existerait r tel que ϕ(r) = (2, 2), et alors r = 2

2 = 1. Or l’écriture irréductible de
1 est 1

1 , de sorte que ϕ(1) = (1, 1) ̸= (2, 2), d’où une contradiction.

(c) On a déjà une injection de Q dans Z× N∗. Il nous suffit donc de déterminer une injection
de Z× N∗ dans N : on aura alors une injection de Q dans N en composant.

On a explicité dans les questions précédentes :

• une bijection g de N∗ dans N ;

• une bijection φ de Z dans N ;

• une bijection Ψ de N2 dans N.
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Considérons alors l’application Φ :
Z× N∗ → N2

(k, n) 7→ (φ(k), g(n))
. Montrons que Φ est bijec-

tive. Soient pour cela (n1, n2) ∈ N2 et (k1, k2) ∈ Z× N∗. Alors :

Φ(k1, k2) = (n1, n2) ⇔ (φ(k1), g(k2)) = (n1, n2)

⇔ φ(k1) = n1 et g(k2) = n2

⇔ k1 = φ−1(n1) et k2 = g−1(n2).

Ainsi tout élément de l’ensemble N2 admet un unique antécédent dans Z×N∗ par Φ. Donc
Φ est bijective.

Finalement, on dispose des applications suivantes :

Q ϕ−→ Z× N∗ Φ−→ N2 Ψ−→ N

et toutes ces applications sont injectives. Par composition, on obtient une injection de Q dans N.
(d) On a donc construit une injection de N dans Q, puis une injection de Q dans N. Par le

théorème de Cantor-Bernstein, il existe une bijection entre N etQ. Donc Q est dénombrable.

Il est assez facile de prouver que (et on l’a constaté sur les questions précédentes) :

• tout ensemble est équipotent à lui-même ;

• si E est équipotent à F , alors F est équipotent à E ;

• si E est équipotent à F et si F est équipotent à G, alors E est équipotent à G.

Nous sommes donc tentés de dire que l’équipotence est une relation d’équivalence. Mais sur quel
ensemble ? Sur l’ensemble de tous les ensembles ? Le problème est qu’un tel ensemble n’existe
pas : c’est le paradoxe de Russel évoqué au chapitre 11 sur les ensembles.

Bref, l’équipotence possède toutes les propriétés d’une relation d’équivalence, mais on n’a pas
le droit de dire que c’en est une. Notons que la classe d’équivalence d’un ensemble E, si elle
existait, ne serait rien d’autre que l’ensemble des ensembles équipotents à E. Autrement dit, de
même ¡¡ taille ¿¿ que E. Par exemple :

• pour E fini, la classe de E contiendrait tous les ensembles de même cardinal que E.

• la classe de N serait celle de tous les ensembles dénombrables. Elle contiendrait notamment
N, N∗, P, N2, Q d’après la première partie.

Une notion plus rigoureusement définie, qu’on peut interpréter comme ces classes d’équivalence,
est la notion de cardinal. Mais il faut un cours avancé de théorie des ensembles pour bien
l’appréhender.

Pour aller plus loin.

Partie II. Exemples d’ensembles non dénombrables.

5. (a) Raisonnons par l’absurde et supposons qu’il existe un ensemble E et une surjection f : E →
P(E). Soit alors A = {x ∈ E, x /∈ f(x)}. Alors A ne peut pas posséder d’antécédent par
f . En effet, s’il existe x ∈ E tel que f(x) = A, alors :

• soit x ∈ A, et donc x ∈ f(x), donc x /∈ A : absurde ;

• soit x /∈ A, et donc x /∈ f(x), donc x ∈ A : absurde.

Ainsi, il n’existe pas de surjection de E sur P(E).
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(b) Par la question précédente, il n’existe pas de surjection de N sur P(N), et a fortiori pas de

bijection non plus. Ainsi, P(N) n’est pas dénombrable.

Une autre conséquence de ce résultat est l’existence d’une infinité de cardinaux infinis.
En effet, E s’injecte dans P(E) par l’application x ∈ E 7→ {x} ∈ P(E). Mais on
vient de voir qu’il n’existe pas de surjection de E sur P(E). Ainsi, P(E) a un cardinal
¡¡ strictement plus grand ¿¿ que celui de E. En partant de E = N et par itération de
ce procédé, on peut alors construire une suite d’ensembles dont les cardinaux croissent
strictement.

Pour aller plus loin.

6. (a) Rappelons que la fonction th est continue et strictement croissante sur R (elle est dérivable

sur R et pour tout x ∈ R, th′(x) =
1

ch(x)2
> 0), et lim

x→±∞
th(x) = ±1. Elle réalise donc une

bijection de R sur ]− 1, 1[.

−1

1 Cth

Considérons alors f :
R → R

x 7→ 1

2
(th(x) + 1)

. On vérifie à partir des propriétés connues sur

th que f est strictement croissante, continue et que lim
x→−∞

f(x) = 0 et lim
x→+∞

f(x) = 1. Elle

réalise donc une bijection de R sur ]0, 1[. Ainsi, R et ]0, 1[ sont équipotents.

D’une part, ]0, 1[ s’injecte dans [0, 1] par l’application x 7→ x. Par composition, R s’injecte
donc dans [0, 1]. Et inversement, l’application x 7→ x définie une injection de [0, 1] dans R.
Par le théorème de Cantor-Bernstein, R et [0, 1] sont équipotents.

(b) i. Montrons que les suites (an) et (bn) sont adjacentes :

• Pour tout n ∈ N, In+1 ⊂ In par construction, de sorte que an+1, bn+1 ∈ In dont les
bornes sont an et bn. D’où an+1 ≥ an et bn+1 ≤ bn. Les suites (an) et (bn) sont
donc croissantes et décroissantes respectivement.

• Si on note ℓn = bn − an la longueur de l’intervalle In, alors ℓn+1 =
ℓn
3

pour tout

n ∈ N. D’où pour tout n ∈ N :

bn − an = ℓn =
ℓ0
3n

=
1

3n+1
−→

n→+∞
0.

Les suites (an) et (bn) sont donc adjacentes.

ii. Par théorème des suites adjacentes, les suites (an) et (bn) convergent vers une même
limite ℓ qui satisfait 0 ≤ a0 ≤ ℓ ≤ b0 ≤ 1. Comme par hypothèse, φ : N → [0, 1] est
bijective, il existe un entier m ∈ N tel que φ(m) = ℓ. Mais par construction, φ(m)
n’est pas dans Im et n’est pas une borne de Im, alors que am ≤ ℓ ≤ bm. D’où une
contradiction.

Ainsi, il n’existe pas de bijection de N sur [0, 1]. Puisque [0, 1] est équipotent à R, il
n’existe pas non plus de bijection de N sur R : R n’est donc pas dénombrable.
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Bien évidemment, N s’injecte dans R par l’application n 7→ n. Puisque N et R ne sont pas en
bijection, R a donc un cardinal ¡¡ strictement plus grand ¿¿ que N. On peut plus précisément
montrer que R et P(N) sont équipotents, et donc de même cardinal.

Georg Cantor (1845-1918) a tenté vainement de démontrer que tout sous-ensemble des réels était soit
dénombrable, soit de la puissance du continu, c’est-à-dire équipotent à R. Cette hypothèse, dite
hypothèse du continu, ne peut en fait être ni confirmée ni infirmée dans la théorie des ensembles
ZFC (résultats de 1938 de Kurt Gödel et de 1963 de Paul Cohen) : elle est indépendante des
axiomes ZFC, ou dit autrement, elle est indécidable dans cette théorie.

Pour aller plus loin.

Partie III. Nombres irrationnels, nombres algébriques, nombres transcendants.

7. (a) Notons F1 = E1 et F2 = E2 \ E1, de sorte que E1 ∪ E2 = F1 ⊔ F2 avec F1 et F2 disjoints.
Remarquons alors que :

• F1 est au plus dénombrable puisque E1 l’est ;

• F2 est également au plus dénombrable, puisque si φ : E2 → N est injective, alors
φ|F2

: F2 → N est également injective ;

• pour tout x ∈ E1 ∪ E2, on a x ∈ F1 ou x ∈ F2, les deux ne pouvant se produire
simultanément.

Notons alors φ1 : F1 → N et φ2 : F2 → N deux injections, et soit f : E1 ∪ E2 → N × N
définie par :

∀x ∈ E1 ∪ E2, φ(x) =

{
(0, φ1(x)) si x ∈ F1,
(1, φ2(x)) si x ∈ F2.

Alors φ est une injection de E1∪E2 dans N×N, qui composée par une bijection de N×N dans
N nous fournit une injection de E1∪E2 dans N, de sorte que E1 ∪ E2 est au plus dénombrable.

Pour une union finie, il suffit ensuite de faire une récurrence sur le nombre d’ensembles.

(b) Soient (En)n∈N des ensembles au plus dénombrables, et pour tout n ∈ N, soit φn : En → N
une injection.

Pour x ∈
⋃
n∈N

En, posons i(x) = min({k ∈ N | x ∈ Ek}). Définissons alors l’application :

φ :

⋃
n∈N

En → N× N

x 7→ (i(x), φi(x)(x))
.

Alors il est aisé de constater que φ est injective, et donc composée avec une bijection de N×
N → N nous fournit une injection de

⋃
n∈N

En sur N. Ainsi,
⋃
n∈N

En est au plus dénombrable.

8. Raisonnons par l’absurde en supposant R \Q au plus dénombrable. Puisque nous avons montré
que Q est (au plus) dénombrable, R = Q∪ (R \Q) serait au plus dénombrable en tant que union

finie de tels ensembles, ce qui est faux d’après la question 6. Donc R \Q est non dénombrable.

9. Choisir une fonction polynomiale de degré k à coefficients entiers, c’est choisir k + 1 éléments
de Z (par unicité de l’écriture d’une fonction polynomiale). Donc l’ensemble des fonctions
polynomiales de degré k à coefficients entiers est équipotent à Zk+1. Mais Z étant équipotent à
N, Zk+1 est équipotent à Nk+1, qui est lui-même équipotent à N.

10. Soit k ∈ N fixé. Notons i 7→ Pi,k une bijection entre N et l’ensemble des fonctions polynomiales
de degré k à coefficients entiers.
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Pour P une fonction polynomiale non nul, notons C (P ) l’ensemble des racines réelles, qui est
fini et donc au plus dénombrable.

L’ensemble des nombres algébriques peut s’écrire
⋃
k∈N

(⋃
i∈N

C (Pi,k)

)
. Mais par la question 7.(b),

à k fixé,
⋃
i∈N

C (Pi,k) est au plus dénombrable. Et donc
⋃
k∈N

(⋃
i∈N

C (Pi,k)

)
. est également au plus

dénombrable.

Ainsi, il existe une injection de l’ensemble des algébriques dans N. Puisque n 7→ n est une injec-
tion de N dans l’ensemble des algébriques, par le théorème de Cantor-Bernstein,
l’ensemble des nombres algébriques est équipotent à N.

11. Puisque R n’est lui pas équipotent à N, et qu’un réel est soit algébrique, soit transcendant, R
n’est pas égal à l’ensemble des algébriques : il existe des nombres transcendants.

De plus, l’ensemble des nombres transcendants ne saurait être au plus dénombrable, car alors
R serait l’union de deux ensembles au plus dénombrables et donc serait lui-même au plus
dénombrable d’après la question 7.(a). Ce qui est faux d’après la question 6.

� Sur la route de l’infini, Voyage au pays des maths, ARTE.

� L’infini, ScienceEtonnante.

� L’hôtel de Hilbert, Deux (deux ?) minutes pour. . . , El Jj.

Liens utiles.
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