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Correction - DM 7
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Exercice 1
1. (a) Supposons Ly injective. Soit (z,y) € E? tel que f(z) = f(y).
Posons ¢ : E — E la fonction constante égale a x et ¢ : E — E la fonction constante
égale a y. Alors pour tout a € F :

(fop)a) = f(pla)) = f(x) = fy) = f(d(a)) = (f o d)(a).

Ainsi fop = fo¢, c'est-a-dire L¢(p) = Ly(¢). Comme Ly est injective, on en déduit
que ¢ = ¢ et donc, pour a € F !

Donc ‘ f est injective.‘
Supposons f injective. Montrons que Ly est aussi injective. Soit pour cela (¢, ¢) €
F(E,E)? tel que Lf(p) = L¢(¢). Alors fogp = fo¢, dolt pour tout = € E :

(fop)(x) = (foo)(x), donc f(p(x)) = f(d(x)).

Comme f est injective, ceci donne p(x) = ¢(x). Ainsi ¢ = ¢ et ‘Lf est injective.‘

En conclusion, ‘L ¢ est injective si et seulement si f est injective.‘

(b) Supposons L surjective. Montrons que f est surjective.
Soit pour cela y € E. Notons ¢ : E — E I'application constante égale a y. Comme Ly
est surjective, il existe ¢ € F(E, E) tel que fo¢ = Ls(¢) = ¢. Mais alors, pour a € F
quelconque :
(fog)la) =¢(a) =y, Ccest-a-dire f(¢(a)) =y.
Ainsi, y admet au moins un antécédent par f, a savoir ¢(a). Donc ‘ f est surjective.‘
Supposons [ surjective. Montrons qu’alors Ly est surjective.

Soit ¢ € F(E, E). Pour tout y € E, ¢(y) € E admet un antécédent par f dans E (par
surjectivité de f) que I'on note x,. Posons alors :

EFE —» F
Yy o Ty

¢ :
Par définition, pour tout y € E :

(fod)y) = f(d(y) = f(zy) = @(y).

Donc fo¢ =y, soit Lf(¢p) = ¢. Ainsi ‘Lf est surjective.‘

En conclusion, ‘L ¢ est surjective si et seulement si f est surjective.‘

2. (a) On raisonne par contraposition. Supposons que g n’est pas surjectivﬂ Considérons
alors a, b deux éléments distincts de E et :

. . E — E

— .

o P2 F e fa sizem) .
b sixz¢Im(g)

LCela implique notamment que E n’est pas réduit & un élément, car sinon g serait l'identité qui est surjective. Cela
nous servira dans la suite du raisonnement.
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Alors @1 # o (on utilise ici que Im(g) # FE), et pour tout = € E :

prog(x) =a=p20g(x)

de sorte que Ry(p1) = Ry(p2). Ainsi, Ry n’est pas injective.

On a donc montré que si ‘Rg injective, alors g est surjective. ‘

<1 Supposons g surjective. Montrons que R, est injective.
g surj g y
Soient pour cela ¢; et ps des applications de E dans F telles que :

p1og = Ry(p1) = Ry(p2) = w209.

Montrons que @1 = 9. Soit pour cela y € E. Par surjectivité de g, il existe z € E tel
que y = g(z). Mais alors :

e1(y) = 1(9(x)) = p109(x) = 2 0 g(x) = Pa(g(x)) = w2(y).

Donc 1 = o et ‘Rg est injective.‘

En conclusion, ‘Rg est injective si et seulement si g est surjective.‘

(b) Supposons R, surjective. Montrons que g est injective.
Par hypothese, il existe ¢ : E — E telle que :

pog= Rg(go) =idg.

Puisque idg est injective,

g est donc injective. ‘

Supposons g injective. Montrons que R, est surjective.
Soit pour cela v : E — FE une application. On cherche a construire une application
p: B — E telle que :
Ve e E, ¢(z)=pog(x).
Pour cela, notons § = g™ . Cette application est injective (car g ’est) et est surjective
(car corestreinte a Im(g)). Elle est donc bijective de E sur Im(g). On définit alors :
E — E

AP {wo@—l(x) siw € Imlg) .
x si z ¢ Im(g)

Vérifions que ¢ convient. Prenons pour cela z € E et calculons :

Yo (9) N g(x) = P(x)
(9)

pog(x)=p(g()

~—
g(x)€Im

car x est l'unique antécédent de g(x) par g. Ainsi ¢ = Ry(p), et ‘Rg est surjective.

En conclusion, | R, est surjective si et seulement si g est injective.‘

3. D’apres les deux questions précédentes, Ly et Ry—1 sont bijectives car f et f~! sont bijectives.
Plus précisément, on vérifie aisément que :

LfOLf—l :Lffl OLf:idy(E,E) et que RfORf—l :Rf—l ORf:idy(E,E).
Ainsi, (Lg)™' = Ly-1 et (Ry-1)"! = Ry. Donc @y = Ly o Rp—1 est bijective et

(@)~ =(LyoRp-1)" = (Rp-1) "o (Ly) "' = RpoLp1=pr.
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Exercice 2
Partie I. Exemples d’ensembles dénombrables.

1. Montrons que ’ensemble N* est dénombrable. Il s’agit de trouver une bijection de N sur N*.

Prenons :
N —» N*

n — n+1"

f:
L. . e , N* —- N
On vérifie sans peine que f est bijective en montrant par exemple qu’avec g : N on—1

on obtient :
gof=idy et [fog=idy-.

Donc |N* est dénombrable. |

Montrons que & = {2k, k € N} est dénombrable. Considérons pour cela ’application

. N —» &
Tk o= 2k
- . N . Y —- N
On vérifie de méme que h est bijective, en montrant par exemple que pour 7 : noe n2’

on obtient :
ioh=1idy et hoi=1idg.

Donc | 2 est dénombrable. |

2. (a) Pour tout n € N, deux cas sont possibles :

e Soit m est pair, et dans ce cas 5 est bien un entier ;

. . . n . . ,
e soit n est impair, et dans ce cas est bien un entier également.

Dans tous les cas, ¢(n) appartient a Z, et ‘go est bien définie. ‘

(b) Montrons que ¢ est bijective.

e Injectivité. Soient ni,n2 € N tels que ¢(n1) = p(n2). Deux cas sont possibles :
— si p(n1) = p(n2) <0, alors ny et ny sont tous les deux pair par définition de ¢, et

n n N
71 =p(n1) = p(n2) = 72 d’out  n; = no.

— si p(n1) = @(n2) < 0, alors n; et ny sont tous les deux impair, et donc :

77114-1
2

ng +1 R
=¢(n1) = p(ng) = — 5 d’ot  ni = ns.

Dans tous les cas, on obtient bien que n; = ng. Donc ¢ est bien injective.

e Surjectivité. Soit k € Z. Deux cas sont la aussi a envisager :

2k
— si k >0, alors n = 2k convient puisque ¢(2k) = 5 = k;

—2k—1+1
> -

— si k <0, alors n = —2k —1 € N convient puisque ¢(—2k—1) = — k.

Ainsi, ¢ est bien surjective.

L’application | ¢ est injective et surjective, donc bijective.‘

Il existe donc bien une bijection entre N et Z : [Z est dénombrable. |
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Montrons que Papplication 1 est injective. Soient pour cela (p1,q1) et (p2,q2) € N2 tels
que Y (p1,q1) = ¥(p2,q2). Alors :

P1(2q 4 1) = 272(2gp + 1).

Quitte a renuméroter, on peut supposer par exemple que p; > ps. On obtient 1’égalité
d’entiers
2P17P2(2g; + 1) = (2g2 + 1).

Ainsi 2P17P2(2g; 4+ 1) est un entier impair. Donc nécessairement p; — po = 0, et donc
p1 = p2. En reprenant 1’égalité ci-dessus, on obtient alors en substituant que ¢ = g2. Donc
‘@Z) est bien injective.‘

Montrons par récurrence la propriété £2(n) : jj il existe (p,q) € N tel que n = 2P(2¢+1) ¢,
pour tout n > 1.
Pour n =1, le couple (p,q) = (0,0) convient. Donc Z(0) est vraie.
Soit n > 1. Supposons Z(k) vraie pour tout 1 < k < n. Montrons &(n + 1).
Deux cas sont possibles :

— si n+ 1 est impair, il existe k € N tel que n+ 1 = 2k + 1. Le coupe (p,q) = (0, k)
convient.

— si n+ 1 est pair, il existe k£ € N tel que n + 1 = 2k. Par hypothese de récurrence,
il existe (p,q') € N? tels que k = 2/ (2¢' + 1). Alors n+ 1 = 20't1(2¢ + 1), et le
coupe (p,q) = (p' + 1,¢’) convient.
Dans tous les cas, la propriété &(n + 1) est vraie.
Par principe de récurrence, pour tout n > 1, il existe un couple (p,q) € N? tel que n =
2P(2q +1).

En particulier, ‘1/1 est surjective. ‘

L’application 1) est injective et surjective. C’est donc une bijection de N2 dans N*. Et on
a donné a la question 1 une bijection g de N* dans N. Par composition, ¥ = 1) o g est une

bijection de N? dans N. Ainsi ‘NQ est bien dénombrable. ‘

L’application j : (g est clairement une ’injection de N dans Q.‘
e . p1 P2
Montrons que ¢ est injective : soient pour cela 71,79 € Q, et 11 = —, ro = == leurs
qn a2
représentants irréductibles. Supposons que ¢(r1) = ¢(r2). Alors :
N P1 P2
(p1,q1) = (P2, q2), d’olt p1 = p2 et ¢1 = g2 et donc 1y = ]

Donc ‘ ¢ est injective. ‘

¢ n’est pas surjective : par exemple (2,2) € Z x N*, mais (2,2) n’a pas d’antécédent par ¢
: sinon il existerait r tel que ¢(r) = (2,2), et alors r = % = 1. Or D’écriture irréductible de
1 est I, de sorte que ¢(1) = (1,1) # (2,2), d’olt une contradiction.

On a déja une injection de Q dans Z x N*. Il nous suffit donc de déterminer une injection
de Z x N* dans N : on aura alors une injection de Q dans N en composant.
On a explicité dans les questions précédentes :

e une bijection g de N* dans N ;

e une bijection ¢ de Z dans N ;

e une bijection ¥ de N? dans N.
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7 x N* — N2

(k,n) = (e(k),g(n))
tive. Soient pour cela (n1,ns) € N? et (k1, ko) € Z x N*. Alors :

Considérons alors 'application @ : . Montrons que ® est bijec-

®(k1, k2) = (n1,m2) < (@(k1), g(k2)) = (n1,n2)
< (k1) =ny et g(ks) = no
Sk =@ Hn) et ko =g H(no).

Ainsi tout élément de I’ensemble N? admet un unique antécédent dans Z x N* par ®. Donc
d est bijective.

Finalement, on dispose des applications suivantes :

Q- LzxN LN LN

et toutes ces applications sont injectives. Par composition, on obtient une ‘ injection de Q dans N. ‘

(d) On a donc construit une injection de N dans Q, puis une injection de Q dans N. Par le
théoreme de Cantor-Bernstein, il existe une bijection entre N et Q. Donc ’ Q est dénombrable. ‘

Pour aller plus loin.

Il est assez facile de prouver que (et on ’a constaté sur les questions précédentes) :
e tout ensemble est équipotent a lui-méme ;
e si F est équipotent a [, alors F' est équipotent a F ;
e si E est équipotent a F' et si F est équipotent a G, alors F est équipotent a G.

Nous sommes donc tentés de dire que I’équipotence est une relation d’équivalence. Mais sur quel
ensemble 7 Sur I'ensemble de tous les ensembles 7 Le probleme est qu’'un tel ensemble n’existe
pas : c’est le paradoxe de Russel évoqué au chapitre 11 sur les ensembles.

Bref, ’équipotence possede toutes les propriétés d’une relation d’équivalence, mais on n’a pas
le droit de dire que c’en est une. Notons que la classe d’équivalence d’un ensemble FE, si elle
existait, ne serait rien d’autre que ’ensemble des ensembles équipotents & E. Autrement dit, de
méme jj taille ;; que E. Par exemple :

e pour F fini, la classe de E contiendrait tous les ensembles de méme cardinal que FE.

e la classe de N serait celle de tous les ensembles dénombrables. Elle contiendrait notamment
N, N*, 22, N2, Q d’apres la premiere partie.

Une notion plus rigoureusement définie, qu’on peut interpréter comme ces classes d’équivalence,
est la notion de cardinal. Mais il faut un cours avancé de théorie des ensembles pour bien
I’appréhender.

Partie II. Exemples d’ensembles non dénombrables.

5. (a) Raisonnons par I’absurde et supposons qu’il existe un ensemble E et une surjection f : E —
P(F). Soit alors A ={z € E,x ¢ f(x)}. Alors A ne peut pas posséder d’antécédent par
f. En effet, s’il existe x € F tel que f(x) = A, alors :
e soit x € A, et donc z € f(x), donc = ¢ A : absurde ;
e soit x ¢ A, et donc z ¢ f(x), donc x € A : absurde.

Ainsi,

il n’existe pas de surjection de E sur Z(FE). ‘
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Par la question précédente, il n’existe pas de surjection de N sur Z(N), et a fortiori pas de
Z(N) n’est pas dénombrable.‘

bijection non plus. Ainsi,

Pour aller plus loin.

Une autre conséquence de ce résultat est I’existence d’une infinité de cardinaux infinis.
En effet, E s’'injecte dans &(FE) par lapplication = € E — {z} € Z(F). Mais on
vient de voir qu’il n’existe pas de surjection de E sur Z(FE). Ainsi, Z(FE) a un cardinal
ii strictement plus grand ;; que celui de F. En partant de £ = N et par itération de
ce procédé, on peut alors construire une suite d’ensembles dont les cardinaux croissent
strictement.

Rappelons que la fonction th est continue et strictement croissante sur R (elle est dérivable

sur R et pour tout x € R, th'(z) = 5 >0), et lim th(z) = £1. Elle réalise donc une
r—rF00

N
ch(x)
bijection de R sur | — 1, 1].

R — R

— %(th(:{:) +1)

th que f est strictement croissante, continue et que lim f(z) =0et lim f(x)=1. Elle
T——00 r—r+00

Considérons alors f : . On vérifie a partir des propriétés connues sur

réalise donc une bijection de R sur ]0,1[. Ainsi, ‘R et ]0, 1] sont équipotents. ‘

D’une part, |0, 1] s’injecte dans [0, 1] par 'application x — x. Par composition, R s’injecte
donc dans [0,1]. Et inversement, l’application z — x définie une injection de [0, 1] dans R.

Par le théoreme de Cantor-Bernstein, ‘R et [0, 1] sont équipotents. ‘

i. Montrons que les suites (ay) et (b,) sont adjacentes :
e Pour tout n € N, I,y C I, par construction, de sorte que an+1,bn4+1 € I, dont les
bornes sont a, et b,. D’ou ant1 > ay, et by < by,. Les suites (ay) et (b,) sont

donc croissantes et décroissantes respectivement.

12
e Si on note ¢, = b, — a, la longueur de l'intervalle I, alors £,11 = gn pour tout
n € N. D’ou pour tout n € N :

Y4 1
0 — 0.

b —Qa :g = — =
n n n 3n DS A

Les suites ‘ (an) et (by) sont donc adjacentes.‘

ii. Par théoreme des suites adjacentes, les suites (a,) et (b,) convergent vers une méme
limite ¢ qui satisfait 0 < ap < £ < by < 1. Comme par hypothese, ¢ : N — [0, 1] est
bijective, il existe un entier m € N tel que ¢(m) = ¢. Mais par construction, ¢(m)
n’est pas dans I,, et n’est pas une borne de I,,, alors que a,, < ¢ < b,,. D’ou une
contradiction.

Ainsi, il n’existe pas de bijection de N sur [0,1]. Puisque [0, 1] est équipotent & R, il
n’existe pas non plus de bijection de N sur R : ‘R n’est donc pas dénombrable. ‘
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Pour aller plus loin.

Bien évidemment, N s’injecte dans R par 'application n — n. Puisque N et R ne sont pas en
bijection, R a donc un cardinal jj strictement plus grand ;; que N. On peut plus précisément
montrer que R et Z(N) sont équipotents, et donc de méme cardinal.

Georg Cantor (1s45-1018) & tenté vainement de démontrer que tout sous-ensemble des réels était soit
dénombrable, soit de la puissance du continu, c’est-a-dire équipotent a R. Cette hypothese, dite
hypothese du continu, ne peut en fait étre ni confirmée ni infirmée dans la théorie des ensembles
ZFC (résultats de 1938 de Kurt Godel et de 1963 de Paul Cohen) : elle est indépendante des
axiomes ZFC, ou dit autrement, elle est indécidable dans cette théorie.

Partie III. Nombres irrationnels, nombres algébriques, nombres transcendants.

7. (a) Notons F} = Ey et Fy» = Es \ Ej, de sorte que Ey U Ey = Fy LI Fy avec F) et Fy disjoints.
Remarquons alors que :
e [ est au plus dénombrable puisque E; l'est ;
o I est également au plus dénombrable, puisque si ¢ : Fo — N est injective, alors
YR, + Fo — N est également injective ;
e pour tout * € E1 U FEy, on a x € F} ou x € F5, les deux ne pouvant se produire
simultanément.

Notons alors 1 : F1 — N et @9 : F5 — N deux injections, et soit f : Fy U FEy - N x N
définie par :

_J 0pu(@)) sizel,
Ve e By UE,, ¢(z)= { (1, p2(x)) sixz € Fy.

Alors ¢ est une injection de F1UFs dans Nx N, qui composée par une bijection de Nx N dans

N nous fournit une injection de £1UFE5 dans N, de sorte que ‘ FE1 U E5 est au plus dénombrable.

Pour une union finie, il suffit ensuite de faire une récurrence sur le nombre d’ensembles.

(b) Soient (E),)nen des ensembles au plus dénombrables, et pour tout n € N, soit ¢, : E,, - N
une injection.

Pour z € U E,, posons i(x) = min({k € N | x € E}}). Définissons alors 'application :

neN

U E, — N x N
¥ neN . .

Alors il est aisé de constater que ¢ est injective, et donc composée avec une bijection de N x

N — N nous fournit une injection de U E,, sur N. Ainsi, U FE,, est au plus dénombrable.
neN neN

8. Raisonnons par I’absurde en supposant R\ Q au plus dénombrable. Puisque nous avons montré
que Q est (au plus) dénombrable, R = QU (R \ Q) serait au plus dénombrable en tant que union

finie de tels ensembles, ce qui est faux d’apres la question 6. Donc ’]R \ Q est non dénombrable.

9. Choisir une fonction polynomiale de degré k a coefficients entiers, c’est choisir k£ + 1 éléments
de Z (par unicité de l’écriture d’une fonction polynomiale). Donc 'ensemble des fonctions
polynomiales de degré k & coefficients entiers est équipotent & ZF+1. Mais Z étant équipotent &
N, Z*+1 est équipotent & N¥+1 qui est lui-méme équipotent & N.

10. Soit k € N fixé. Notons i — P;;, une bijection entre N et ’ensemble des fonctions polynomiales
de degré k a coeflicients entiers.
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Pour P une fonction polynomiale non nul, notons %’ (P) I’ensemble des racines réelles, qui est
fini et donc au plus dénombrable.

L’ensemble des nombres algébriques peut s’écrire U (U CK(PZ;C)) . Mais par la question 7.(b),
keN \ieN

a k fixé, U € (P, ) est au plus dénombrable. Et donc U <U ‘K(sz)> . est également au plus

€N keN \ieN
dénombrable.

Ainsi, il existe une injection de ’ensemble des algébriques dans N. Puisque n — n est une injec-
tion de N dans l’ensemble des algébriques, par le théoreme de Cantor-Bernstein,
I’ensemble des nombres algébriques est équipotent a N.

11. Puisque R n’est lui pas équipotent a N, et qu’un réel est soit algébrique, soit transcendant, R
n’est pas égal a ’ensemble des algébriques : \il existe des nombres transcendants. \

De plus, I'ensemble des nombres transcendants ne saurait étre au plus dénombrable, car alors
R serait 'union de deux ensembles au plus dénombrables et donc serait lui-méme au plus
dénombrable d’apres la question 7.(a). Ce qui est faux d’apres la question 6.

( Liens utiles. |
L Sur la route de linfini, Voyage au pays des maths, ARTE.
CJ L’infini, ScienceEtonnante.
L L’hétel de Hilbert, Deux (deux ?) minutes pour. .., El Jj.
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https://youtu.be/o79bss3Hc60?si=WDh5KP9cLglI-qS6
https://youtu.be/1YrbUBSo4Os?si=0f-LGXvcikqnajCr
https://youtu.be/N_cDA6tF-40?si=JQhHkpdtELUWNaf7

