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DM 7

Exercice 1
Soient E un ensemble et f, g deux applications de E dans E. On pose :

Lf :

{
F (E,E) −→ F (E,E)

φ 7−→ f ◦ φ et Rg :

{
F (E,E) −→ F (E,E)

φ 7−→ φ ◦ g .

1. Montrer que :

(i) Lf est injective si, et seulement si, f est injective ;

(ii) Lf est surjective si, et seulement si, f est surjective.

2. Montrer de même que :

(i) Rg est injective si, et seulement si, g est surjective ;

(ii) Rg est surjective si, et seulement si, g est injective.

3. Soit f une bijection. On appelle conjugaison par f l’application :

Φf :

{
F (E,E) −→ F (E,E)

φ 7−→ f ◦ φ ◦ f−1 .

Montrer que Φf est bijective, et déterminer sa bijection réciproque.

Exercice 2
Deux ensembles E et F sont dits équipotents s’il existe une bijection de E sur F (ou, ce qui est
équivalent, une bijection de F sur E).

L’idée derrière cette définition est que deux ensembles équipotents sont ¡¡ de la même taille ¿¿, puisqu’à
tout élément de l’un correspond un unique élément de l’autre.

Un ensemble E est dit dénombrable s’il existe une bijection entre l’ensemble N des entiers naturels et
E.

On admettra dans la suite le résultat suivant.

Théorème de Cantor-Bernstein.

Soient E et F deux ensembles tels qu’il existe une injection de E sur F et une injection de F sur
E, alors il existe une bijection de E sur F .

Partie I. Exemples d’ensembles dénombrables

1. Montrer que les ensembles N∗ et P = {2k, k ∈ N} sont dénombrables.

2. Dans cette question, on souhaite montrer que Z est dénombrable. On introduit pour cela
l’application φ : N → Z définie pour tout n ∈ N par :

φ(n) =


n

2
si n est pair,

−n+ 1

2
si n est impair.

(a) Montrer que l’application φ est bien définie.
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(b) Montrer que φ est bijective. Conclure.

3. Dans cette question, on souhaite montrer que N2 est dénombrable. Pour cela, on introduit
l’application ψ : N2 → N∗ définie par :

∀(p, q) ∈ N2, ψ(p, q) = 2p(2q + 1).

(a) Montrer que l’application ψ est injective.

(b) Montrer que pour tout n ≥ 1, il existe (p, q) ∈ N tel que n = 2p(2q + 1).

(c) Conclure que N2 est dénombrable.

4. Dans cette question, on souhaite établir que Q est dénombrable.

(a) Exhiber une injection de N dans Q.

(b) Montrer que l’application ϕ : Q → Z×N∗ qui à r ∈ Q associe le couple (p, q) ∈ Z×N∗ avec
p
q le représentant irréductible de r, est injective. Est-elle surjective ?

(c) Former une injection de Q dans N.
(d) Conclure que Q est dénombrable.

Partie II. Ensembles non dénombrables

La suite du problème est facultative.

5. (a) Soit E un ensemble. Montrer qu’il n’existe pas de surjection de E sur P(E) (Théorème de
Cantor).

On pourra raisonner par l’absurde en considérant f : E → P(E) surjective, et
A = {x ∈ E | x /∈ f(x)}.

(b) En déduire que P(N) n’est pas dénombrable.

6. On souhaite dans cette question montrer que R n’est pas dénombrable.

(a) À l’aide de la fonction th, montrer que R et ]0, 1[ sont équipotents. En déduire que pour
tous réels a < b, ]a, b[ et R sont équipotents.

(b) Supposons par l’absurde qu’il existe une bijection φ : N → ]0, 1[. On effectue la construction
suivante :

• on partitionne ]0, 1[ en trois sous-intervalles de même longueur (par exemple ]0, 1/3],
]1/3, 2/3], ]2/3, 1[). Puisque φ(0) ∈ ]0, 1[, il appartient à l’un de ces sous-intervalles et
est éventuellement une borne d’un autre. Dans tous les cas, il existe un sous-intervalle
I0 de ]0, 1[ tel que φ(0) /∈ I0 et φ(0) n’est pas une borne de I0.

• on recommence : on divise l’intervalle I0 en trois sous-intervalles de même longueur,
et on note I1 un sous-intervalle de I0 tel que φ(1) n’est pas dans I1 et n’est pas une
borne de I1. Et ainsi de suite.

On construit ainsi une suite d’intervalles (In)n∈N telle que pour tout n, φ(n) n’est pas dans
In et n’est pas une borne de In.

i. Notons, pour tout n ∈ N, an et bn les bornes de l’intervalle In. Montrer que les suites
(an) et (bn) sont adjacentes. On note ℓ leur limite commune.

ii. Justifier l’existence d’un entier m ∈ N tel que φ(m) = ℓ. En déduire une contradiction
et conclure.

On peut plus précisément montrer que R et P(N) sont équipotents.
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Partie III. Nombres irrationnels, nombres algébriques, nombres transcendants.

Un ensemble E est dit au plus dénombrable s’il existe une injection de E dans N. Par exemple, un
ensemble fini E = {x1, . . . , xn} est au plus dénombrable puisqu’à chaque élément x ∈ E, on peut
associer l’unique i ∈ J1, nK tel que x = xi.

On peut montrer, mais ce n’est pas utile dans la suite, que les ensembles au plus dénombrables sont
les ensembles finis ou équipotents à N.

7. (a) Montrer que si E1 et E2 sont deux ensembles au plus dénombrables, alors E1∪E2 est encore
au plus dénombrable. En déduire qu’une union finie d’ensembles au plus dénombrables est
au plus dénombrable.

(b) Soit E un ensemble, et soit (En)n∈N une suite de parties de E telles que pour tout n ∈ N,
En soit au plus dénombrable. Prouver que

⋃
n∈N

En est au plus dénombrable.

8. Montrer que l’ensemble R \Q des nombres irrationnels est non dénombrable.

Un réel α est dit algébrique s’il existe une fonction polynomiale non nul P : x 7→ a0+ a1x+ · · ·+ anxn

à coefficients dans Z dont α est racine. Par exemple, tout rationnel r =
a

b
est algébrique car r est

racine de bX − a.

Mais certains nombres irrationnels sont également algébriques, par exemple
√
2 est racine de P : x 7→

x2 − 2. Un nombre qui n’est pas algébrique est appelé transcendant.

9. Soit k ∈ N. Prouver que l’ensemble des polynômes de degré k à coefficients entiers est équipotent
à N.

10. On montrera bientôt qu’une fonction polynomiale non nulle admet un nombre fini de racines.
En utilisant ce résultat, prouver que l’ensemble des nombres algébriques est dénombrable.

11. En déduire qu’il existe des nombres transcendants, et que l’ensemble des nombres transcendants
n’est pas au plus dénombrable.

3


