MP2I Lycée Roosevelt

Correction - DM 8
A rendre le 06/01/26

Exercice 1
1. D’une part :

0 sia<0

Uy =n® — 1 sia=0.
n—-+o0o
+o00 sia>0

Donc lim wu, = +oc si, et seulement si, a > 0.
n—-4o0o

D’autre part :
1\* 14+ )1
un+1_un:(n+1)a—na:na<<1+> —1> :na_lw‘
n 1/n

On reconnait un taux d’accroissement en 0 de la fonction f : x — (1 4+ x)®*. Puisque f est
dérivable en 0 et que f/(0) = a(1+ 0)*"! = a, on obtient :

(D) =) fa/m) =) X)) = FO) L
Jw e s i Ty i Ty 0=«

Ainsi, lim (uny1 — up) = 0 si, et seulement si, lim n®"' = 0. Or, ceci se réalise si, et
n—-+o0o n—-4o00

seulement si, « — 1 < 0, soit encore a < 1.

Finalement, une condition nécessaire et suffisante pour que lim wu, = +oo et lim (upy1 —

n—-4o00 n—4o0o
up) =0est |0 <<l

2. Rappelons qu’'une partie A est dense dans R si, et seulement si, elle vérifie la propriété :
V(a,b) €R? (a<b) = (F3z€ A, a<z<D).
On suppose ici que A n’est pas dense dans R. Il existe donc deux réels a et b tels que a < b et :
Vz e A, z ¢ a,b],

cette derniere propriété se récrivant A N [a, b] = (). Posons alors . =b et e = b —a > 0, de sorte
quex—e=b—(b—a)=aet:

’Aﬁ]x—a,x]:Aﬂ]a,b] :(Z).‘

3. (a) Puisque liI}_l (Un4+1—uyn) = 0, par définition de la limite appliquée a € > 0, il existe ng € N
n—-+0oo
tel que pour tout n > ng, |up+1 — up| < €.

(b) Par opération sur les limites, up, — U o, 00 e qui se récrit :

VAeR,IN e N, VmeN, (m>N = up, — vy, < A).

En particulier pour A = x — ¢, il existe mg € N tel que ‘uno — Uy ST —€ ‘

(c) Montrons par récurrence la propriété Z(n) : jj up —vn, < T —¢ i pour tout entier n > nyg.
D’apres la question précédente, & (ng) est vraie.
Soit n > ng. Supposons la propriété Z(n) vraie.

Puisque uy+1 — vy, appartient & A et que ANz —¢e,z] = 0, alors :
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Up+1l — VUpg ST —E OU Upq]l — Upy > L.
Dans le premier cas, la propriété &?(n + 1) est bien satisfaite.

Dans le deuxieme cas, puisque up 41 — Up, > T €t que U, — vy, < © — ¢ d’apres & (n),
on obtient :

Upgl — Up = (Unt1 — Ung) + (Vg —Up) >z — (x —¢) =¢.
Mais ceci contredirait alors que —¢ < u, 41 — uy, < € puisque n > ng. Ce deuxieéme cas
est donc impossible.
Ainsi, la propriété & (n + 1) est bien vérifiée.
Par le principe de récurrence, la propriété Z2(n) est vraie pour tout n > ng.

(d) Par la question précédente, pour tout n > ny :
Up < Vpy +T — €.

Posons M = max(ug, ..., Uny—1,Vn, + & — €). Pour tout n € N :
o sin <ny—1, u, <max(ug,...,Uny—1) < M ;
® sin>ng, Uy KUy, +x— < M.

Ainsi,

la suite (u,) est majorée.‘

4. On vient de démontrer que (uy,,) est majorée. Or lirf up = 400 par hypothese, d’ott une contra-
n—-+0oo

diction. L’hypothése A n’est pas dense dans R est donc fausse. Autrement dit, \ A est dense dans R. \

5. (a) On pose pour tout n € N, u,, = \/n et v, = 27n. Remarquons que :
e (uy) et (vy,) divergent vers +oo ;

o lim (upt1 —uyn) =0 en utilisant la premiére question avec a = 1/2.
n——+00

D’apres ce qui précede, la partie | A = {f — 2mm, (m,n) € N2} est dense dans R.

(b) La fonction sin réalise une bijection strictement croissante de [—%,%] sur [—1,1], avec

pour bijection réciproque la fonction arcsin elle-méme strictement croissante de [—1,1] sur
™ T

[-3:3]-

Posons = = arcsin(a) et y = arcsin(b). Puisque —1 <a <b <1, alors —5 <2 <y < 7 par

stricte croissance de arcsin.

Par densité de la partie A dans R, il existe des entiers ng € N et mg € N tels que :

™

T
5 :

<z < /N —27rm0<y§2

Puisque sin est strictement croissante sur [-F, 7] :

sin(z) < sin(y/ng — 2mmyg) < sin(y), qui se récrit a < sin(y/ng) < b.

D’ou lexistence d’un entier ‘no € N tel que a < zp, < b. ‘

(c) Traitons déja du cas £ € | — 1,1[. On effectue la construction suivante :
e on définit ag = %H et bg = “?1 si bien que ag < £ < by et (ag,bo) € [~1,1]?. D’apres
la question précédente, il existe un entier p(0) = ng tel que z, o) € Jao, bol.
e on définit a1 = “02‘*'4 et by = “2{’0, de sorte que ag < a1 < £ < by < bg.
On considere alors la partie A7 = {y/n + ¢(0) + 1 — 27wm, (m,n) € N?}. On vérifie

comme dans les questions précédentes que A; est dense dans R, et I'existence d’un
entier n; € N tel que :

a1 < Tpy4p0)+1 < b1.

On pose alors ¢(1) = n1 + ¢(0) + 1. On notera que ¢(1) > ¢(0).
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En poursuivant cette construction, on définit des suites (a,) et (b,) et une suite extraite
(x¢(n)) de (z,) vérifiant :

e (ay,) est croissante, (b,) est décroissante, et elles convergent toutes deux vers ¢ ;

e pour tout n € N, z,(,,) appartient a U'intervalle ]ay, by|.

Par le théoreme des gendarmes, |la suite (x,,)) converge vers £.

Si ¢ = —1, on procede de maniere analogue en prenant cette fois (a,) constante égale a —1
et (by) définie pour tout n € N par b, = —1+ %H Et de méme lorsque ¢ = 1.

Remarque. Inversement, toute valeur d’adhérence de la suite (z,) est comprise dans
[—1, 1] par passage a la limite dans les inégalités. Ainsi, 'ensemble des valeurs d’adhérence
de la suite (zy,) est [—1,1].

Exercice 2

1.

Soient x,y € Ry. Le probléeme étant symétrique en x et en y, on supposera que x < y. Alors
min(z,y) = z et max(z,y) =y, et :

r=vVzrxz<Vrxy=m(zy)

par croissance de la fonction racine carrée sur Ry. D’autre part :

M(z,y) = :U;—y < L;y =y = max(z,y).
Enfin : (Vi 2
1 T — /Y
M(z,y) —m(z,y) = 5z +y - 2y/zy) = % > 0.
D’ou finalement les inégalités voulues.
. Montrons par récurrence sur n € N la propriété & (n) : ij ag, - . ., an et by, . .., b, sont bien définis

etag<...<a, <b, <...< by i

2(0) est vraie car ag = a et by = b avec a < b.

Soit n € N. Supposons & (n) vraie, c’est-a-dire ag, ..., an et bo, ..., b, sont bien définies et
O0<ap<...<a, <b, <...<by. Alors apy1 = % est bien défini et est positif, donc

bp+1 = v/ an+1by est bien défini également.
D’autre part, en appliquant la question 1 avec x = a,, et y = b, (qui appartiennent bien a
R+) :
an, = min(an, by) < m(an, by) < M(ay,b,) < max(ap,b,) = by, et donc a, < apy1 < by.
———
An+41
En appliquant cette fois la question 1 & x = an41 et y = by, :
Ap+1 = min(an+17 bn) < m(an—l—l; bn) < M(an—l—h bn) < max(an—l-l; bn) =by
—_———
bnt1

et donc
ant1 < bpg1 < by

Ainsi, ap < ... < ap < apy1 <bpyr < b, < ... <bg et donc Z(n+ 1) vraie.

Par le principe de récurrence, |la propriété F(n) est vraie pour tout n € N. ‘
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3. (a) Soit n € N. Calculons :

bn+1 721+1 = any1bp — aiﬂ = an+1(bn — ant1)
an—l—bn( an—i—bn) an +b, b, —an
= ba - = x

2 2 2 2

Ainsi, |la suite (b2 — a2) est géométrique de raison 4

(b) Soit n € N. Par la question précédente :

1 n
(by, — an)(bn + an) = bTZl — ai = (4> (bg — a%).

Mais par la question 2, a,, + b, > ag + ag = 2a > 0 et b, —a, > 0. D’ou :

b2 — a? b2 — a2

0<b, — = < .
= T (a4 bn) © 47 X 2a

b2_ 2

4. Comme lim =0, lalimite lim (b,—a,) existe et vaut 0 par théoréme des gendarmes.
n—+oo 4™ X 2a n—+o0

D’autre part, on a démontré que (a,) est croissante et que (b,,) est décroissante a la question 2.

Donc ‘les suites (a,) et (by,) sont adjacentes ‘ Par le théoreme des suites adjacentes,

‘elles convergent vers une limite commune notée .# (a,b). ‘

5. Toujours par le théoreme des suites adjacentes, pour tous m,n € N :
am < M (a,b) < by.

Pour m =1 et n = 0, on obtient :

| M(a,b) = a1 < .#(a,b) < by =]

a
6. (a) Puisque 0 < a < b, alors 3 € ]0,1]. Puisque la fonction cos réalise une bijection strictement

a

décroissante de [O, g[ sur ]0, 1], il existe un unique réel 0 € [0, g[ tel que |cos(f) = .

(b) Montrons par récurrence sur n € N la propriété &(n) suivante :
0 - 0
ii an = by cos (2”) et b,=0b H cos (2k> Liv
k=1

0
0
Pour n =0, by =b=1>5 x H cos (k) (le produit se faisant sur un ensemble vide).

D’autre part, aozaetbocos( ) bco =bx %:a.
Donc la propriété Z2(0) est vraie.

Soit n € N. Supposons Z(n) vraie. Par hypothese de récurrence :

an + by bcos( )+b bl+cos(2in)

ntl =" 2 T
1 2t
Puisque cos?(t) = +C;)S() pour tout t € R :
1+ cos (&)

5 = cos? (2,[%) et donc  anp+1 = by cos? (275%)
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Par hypothese de récurrence :

0 ,, 0 n 0 0
an+1—bHcos ok X COS (2n+1 *bHcos ok X COS onil

k=1

) bHcos( ) —bﬁcos<2k>

car cos (5%) > 0 pour tout k € [1,n + 1]. Finalement :

n+1 0
bny1 =10 H cos ( > et donc any1 = byt cos <2n+1>

La propriété & (n+ 1) est donc vraie.

Ainsi, toujours par hypothese de récurrence :

n+1
bnt1 = Vantiby = 4| b H cos ( > X COS <

Par le principe de récurrence, (n) est vraie pour tout n € N. ‘

(¢) On déduit du résultat précédent que pour tout n € N :

A s oN| ./ 0
bp41 - sin <2n+1> =b [H cos <2k>] sin <2n+1>
k=1

0

La suite ‘ (b sin (2971)) est donc géométrique de raison 5. ‘

(d) D’apres la question précédente, pour tout n € N :

. (0 0 1 bsin(h)
b, sin <2n> = by sin <20> X = om

Deux cas sont possibles :

e si § = 0, ce qui correspond au cas a = b, alors cos (%) = 1 pour tout k € [1,n], et
donc | b, = b et an:b.‘

e si 0 <6 < 7§, qui correspond au cas 0 < a < b, alors Sln( ) >0et:

b — bs%n(ee) ot |a, = bsin(6) cose(;;)
2" sin( 57 ) 27 sin( 57 )

2n 29n n—+00
0
car lim — =0et lim sin(z) = 1. Ainsi
n——+oo 2N z—0 T
_ sin ()
b) = 1 b,=05- .
A = D 0

(f) Sif =0, (b,) est constante égale & b par la question 6.(d) et |.# (a,b) =b|.
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(g) Soit n € N. Par la question 3.(a) :

b2_ 2 b2_ 2
T dot 4"(bn—an):bn+zn.

2 2 _
bn_an— qn

Or lim (an+b,) =2.#(a,b) et
n—-+o0o
b0 i gelo, T
b) = 9 2l
A (a,b) { b sif=0.

Puisque .# (a,b) > 0 dans tous les cas :

b? — a?
1 n — _ —
ngr-ro-loo 4 <bn an) 2%(0,, b) ’
Deux cas sont alors possibles :

e Sif=0,alorsa=0bet:

b2 —a? 0= b0 sin(6)
2.4 (a,b) 2
e Sife0,5[:
b2 —a® b2 —bicos?(f) @sinQ(G) _ bOsin(0)
2.4 (a,b) Qb% - 2sin(0) 2
bl sin(6
Dans tous les cas, | lim 4"(b, — ay) = 81711()
n——+o0o 2

7. On procede de méme qu’a la question 2, je vous laisse le soin de le rédiger.

8. La suite (a,) est croissante et majorée par by. Par le théoreme des suites monotones, elle converge
vers une limite finie /.

De méme, la suite (b,) est donc décroissante et majorée par ag. Par le théoreme des suites
monotones, (a,) converge vers une limite finie ¢'.

b
On + " on obtient ¢ =

9. En passant a la limite quand n — +oo dans 'égalité b,+1 = %ﬁl, et

donc .

10. Par définition des suites (ay,) et (by), m(a,b) = a1 et M(a,b) = b;. Et par la question 7, pour
tout n > 1, a1 < a, < by.

Par passage a la limite dans les inégalités, on obtient a; < ¢ < by, c’est-a-dire ’ m(a,b) < A (a,b) < M(a,b). ‘

11. (a) Soit n € N. Calculons :

an+0b
bpi1 — Gpi1 = n2 . ann_ ‘/ — /by

Puisque +/a, + v/b, > v/a + y/a > 0, on obtient :

_ o (van + vbn)? 1 (b — an)?
bt = anis = 5~ VB (Van + V62?2 (v/an+ b2

(b) Soit n € N. Puisque /a, + b, > 2/a >0 :
1 _o1 1
2(y/an + Vba)? ~ 2(2v/a)?  8a’

D’ou avec la question précédente :

1
bpi1 —ans1 < é(bn - an)Q-
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—ap

(c) Puisque lim = 0, par définition de la limite :

n—+oo  8a

bn, —a
Ve >0,dng €N, n>nyg = n8 n§€
a
Pour € = % > 0, il existe un rang ng € N tel que :
b, —a, 1
Vn >mng, 0< < -,
=0 - 8a T 2
(d) On sait déja que pour tout n > ng, 0 < b, — ay,.
Montrons par récurrence sur n > ng la propriété Z(n) : ij b, — a, < 8a (%)anno Li-

Pour n = ng, par la question la question précédente :

1 1\
bpg — any < 8a§ =8a <2) .

Donc Z(ng) est vraie.
Soit n > ng. Supposons & (n) vraie. Par la question 11.(b) :

n—n 2 n+1—mn,
1 1 1\ 1\
bn+1 — An+1 S %(bn — an)z S % (8& <2> > = 8a <2> .

Donc Z(n + 1) vraie.
Par le principe de récurrence, &(n) vraie pour tout n > ng.

(e) Soit ¢ €]0,1] et n > ng. Puisque a,, < #(a,b) < by, :

jan — A (@) _ by —ay _ Sa(3)

qr -oqa q

O —— B N
— exp (2 In(1/2) — nln(q)) exp(2 ( In(2)2 2nln(q))>.

q
1 27L*7LO
. . n . , . . 2

Puisque lim — = 0 par croissances comparées, on obtient lim L =0.

n—+oo 21 n—-+00 qm

Lo . an — M (a,b ,
Par théoreme des gendarmes, | lim M existe et vaut 0.
n——+o0 q”




