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Correction - DM 8

Exercice 1
1. D’une part :

un = nα −→
n→+∞


0 si α < 0

1 si α = 0

+∞ si α > 0

.

Donc lim
n→+∞

un = +∞ si, et seulement si, α > 0.

D’autre part :

un+1 − un = (n+ 1)α − nα = nα

((
1 +

1

n

)α

− 1

)
= nα−1

((
1 + 1

n

)α − 1
)

1/n
.

On reconnait un taux d’accroissement en 0 de la fonction f : x 7→ (1 + x)α. Puisque f est
dérivable en 0 et que f ′(0) = α(1 + 0)α−1 = α, on obtient :

lim
n→+∞

((
1 + 1

n

)α − 1
)

1/n
= lim

n→+∞

f(1/n)− f(0)

1/n− 0
= lim

X→0

f(X)− f(0)

X − 0
= f ′(0) = α.

Ainsi, lim
n→+∞

(un+1 − un) = 0 si, et seulement si, lim
n→+∞

nα−1 = 0. Or, ceci se réalise si, et

seulement si, α− 1 < 0, soit encore α < 1.

Finalement, une condition nécessaire et suffisante pour que lim
n→+∞

un = +∞ et lim
n→+∞

(un+1 −

un) = 0 est 0 < α < 1.

2. Rappelons qu’une partie A est dense dans R si, et seulement si, elle vérifie la propriété :

∀(a, b) ∈ R2, (a < b) ⇒ (∃z ∈ A, a ≤ z ≤ b).

On suppose ici que A n’est pas dense dans R. Il existe donc deux réels a et b tels que a < b et :

∀z ∈ A, z /∈ [a, b],

cette dernière propriété se récrivant A ∩ [a, b] = ∅. Posons alors x = b et ε = b− a > 0, de sorte
que x− ε = b− (b− a) = a et :

A ∩ ]x− ε, x] = A ∩ ]a, b] = ∅.

3. (a) Puisque lim
n→+∞

(un+1−un) = 0, par définition de la limite appliquée à ε > 0, il existe n0 ∈ N
tel que pour tout n ≥ n0, |un+1 − un| ≤ ε.

(b) Par opération sur les limites, un0 − vm −→
m→+∞

−∞, ce qui se récrit :

∀A ∈ R, ∃N ∈ N, ∀m ∈ N, (m ≥ N ⇒ un0 − vm ≤ A).

En particulier pour A = x− ε, il existe m0 ∈ N tel que un0 − vm0 ≤ x− ε .

(c) Montrons par récurrence la propriété P(n) : ¡¡ un−vn0 ≤ x−ε ¿¿ pour tout entier n ≥ n0.

I D’après la question précédente, P(n0) est vraie.

H Soit n ≥ n0. Supposons la propriété P(n) vraie.

Puisque un+1 − vn0 appartient à A et que A ∩ ]x− ε, x] = ∅, alors :
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un+1 − vn0 ≤ x− ε ou un+1 − vn0 > x.

Dans le premier cas, la propriété P(n+ 1) est bien satisfaite.

Dans le deuxième cas, puisque un+1 − vn0 > x et que un − vn0 ≤ x− ε d’après P(n),
on obtient :

un+1 − un = (un+1 − vn0) + (vn0 − un) > x− (x− ε) = ε.

Mais ceci contredirait alors que −ε ≤ un+1 − un ≤ ε puisque n ≥ n0. Ce deuxième cas
est donc impossible.

Ainsi, la propriété P(n+ 1) est bien vérifiée.

Par le principe de récurrence, la propriété P(n) est vraie pour tout n ≥ n0.

(d) Par la question précédente, pour tout n ≥ n0 :

un ≤ vn0 + x− ε.

Posons M = max(u0, . . . , un0−1, vn0 + x− ε). Pour tout n ∈ N :

• si n ≤ n0 − 1, un ≤ max(u0, . . . , un0−1) ≤ M ;

• si n ≥ n0, un ≤ vn0 + x− ε ≤ M .

Ainsi, la suite (un) est majorée.

4. On vient de démontrer que (un) est majorée. Or lim
n→+∞

un = +∞ par hypothèse, d’où une contra-

diction. L’hypothèseA n’est pas dense dans R est donc fausse. Autrement dit, A est dense dans R.

5. (a) On pose pour tout n ∈ N, un =
√
n et vn = 2πn. Remarquons que :

• (un) et (vn) divergent vers +∞ ;

• lim
n→+∞

(un+1 − un) = 0 en utilisant la première question avec α = 1/2.

D’après ce qui précède, la partie A =
{√

n− 2πm, (m,n) ∈ N2
}
est dense dans R.

(b) La fonction sin réalise une bijection strictement croissante de
[
−π

2 ,
π
2

]
sur [−1, 1], avec

pour bijection réciproque la fonction arcsin elle-même strictement croissante de [−1, 1] sur[
−π

2 ,
π
2

]
.

Posons x = arcsin(a) et y = arcsin(b). Puisque −1 ≤ a < b ≤ 1, alors −π
2 ≤ x < y ≤ π

2 par
stricte croissance de arcsin.

Par densité de la partie A dans R, il existe des entiers n0 ∈ N et m0 ∈ N tels que :

−π

2
≤ x <

√
n0 − 2πm0 < y ≤ π

2
.

Puisque sin est strictement croissante sur [−π
2 ,

π
2 ] :

sin(x) < sin(
√
n0 − 2πm0) < sin(y), qui se récrit a < sin(

√
n0) < b.

D’où l’existence d’un entier n0 ∈ N tel que a < xn0 < b.

(c) Traitons déjà du cas ℓ ∈ ]− 1, 1[. On effectue la construction suivante :

• on définit a0 = −1+ℓ
2 et b0 = ℓ+1

2 si bien que a0 < ℓ < b0 et (a0, b0) ∈ [−1, 1]2. D’après
la question précédente, il existe un entier φ(0) = n0 tel que xφ(0) ∈ ]a0, b0[.

• on définit a1 =
a0+ℓ
2 et b1 =

ℓ+b0
2 , de sorte que a0 ≤ a1 < ℓ < b1 ≤ b0.

On considère alors la partie A1 = {
√
n+ φ(0) + 1 − 2πm, (m,n) ∈ N2}. On vérifie

comme dans les questions précédentes que A1 est dense dans R, et l’existence d’un
entier n1 ∈ N tel que :

a1 < xn1+φ(0)+1 < b1.

On pose alors φ(1) = n1 + φ(0) + 1. On notera que φ(1) > φ(0).
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En poursuivant cette construction, on définit des suites (an) et (bn) et une suite extraite
(xφ(n)) de (xn) vérifiant :

• (an) est croissante, (bn) est décroissante, et elles convergent toutes deux vers ℓ ;

• pour tout n ∈ N, xφ(n) appartient à l’intervalle ]an, bn[.

Par le théorème des gendarmes, la suite (xφ(n)) converge vers ℓ.

Si ℓ = −1, on procède de manière analogue en prenant cette fois (an) constante égale à −1
et (bn) définie pour tout n ∈ N par bn = −1 + 1

n+1 . Et de même lorsque ℓ = 1.

Remarque. Inversement, toute valeur d’adhérence de la suite (xn) est comprise dans
[−1, 1] par passage à la limite dans les inégalités. Ainsi, l’ensemble des valeurs d’adhérence
de la suite (xn) est [−1, 1].

Exercice 2
1. Soient x, y ∈ R+. Le problème étant symétrique en x et en y, on supposera que x ≤ y. Alors

min(x, y) = x et max(x, y) = y, et :

x =
√
x× x ≤

√
x× y = m(x, y)

par croissance de la fonction racine carrée sur R+. D’autre part :

M(x, y) =
x+ y

2
≤ y + y

2
= y = max(x, y).

Enfin :

M(x, y)−m(x, y) =
1

2
(x+ y − 2

√
xy) =

(
√
x−√

y)2

2
≥ 0.

D’où finalement les inégalités voulues.

2. Montrons par récurrence sur n ∈ N la propriété P(n) : ¡¡ a0, . . . , an et b0, . . . , bn sont bien définis
et a0 ≤ . . . ≤ an ≤ bn ≤ . . . ≤ b0 ¿¿.

I P(0) est vraie car a0 = a et b0 = b avec a ≤ b.

H Soit n ∈ N. Supposons P(n) vraie, c’est-à-dire a0, . . . , an et b0, . . . , bn sont bien définies et
0 < a0 ≤ . . . ≤ an ≤ bn ≤ . . . ≤ b0. Alors an+1 = an+bn

2 est bien défini et est positif, donc

bn+1 =
√
an+1bn est bien défini également.

D’autre part, en appliquant la question 1 avec x = an et y = bn (qui appartiennent bien à
R+) :

an = min(an, bn) ≤ m(an, bn) ≤ M(an, bn)︸ ︷︷ ︸
an+1

≤ max(an, bn) = bn, et donc an ≤ an+1 ≤ bn.

En appliquant cette fois la question 1 à x = an+1 et y = bn :

an+1 = min(an+1, bn) ≤ m(an+1, bn)︸ ︷︷ ︸
bn+1

≤ M(an+1, bn) ≤ max(an+1, bn) = bn

et donc
an+1 ≤ bn+1 ≤ bn.

Ainsi, a0 ≤ . . . ≤ an ≤ an+1 ≤ bn+1 ≤ bn ≤ . . . ≤ b0 et donc P(n+ 1) vraie.

Par le principe de récurrence, la propriété P(n) est vraie pour tout n ∈ N.
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3. (a) Soit n ∈ N. Calculons :

b2n+1 − a2n+1 = an+1bn − a2n+1 = an+1(bn − an+1)

=
an + bn

2

(
bn − an + bn

2

)
=

an + bn
2

× bn − an
2

=
b2n − a2n

4
=

1

4
(b2n − a2n).

Ainsi, la suite (b2n − a2n) est géométrique de raison 1
4 .

(b) Soit n ∈ N. Par la question précédente :

(bn − an)(bn + an) = b2n − a2n =

(
1

4

)n

(b20 − a20).

Mais par la question 2, an + bn ≥ a0 + a0 = 2a > 0 et bn − an ≥ 0. D’où :

0 ≤ bn − an =
b2 − a2

4n(an + bn)
≤ b2 − a2

4n × 2a
.

4. Comme lim
n→+∞

b2 − a2

4n × 2a
= 0, la limite lim

n→+∞
(bn−an) existe et vaut 0 par théorème des gendarmes.

D’autre part, on a démontré que (an) est croissante et que (bn) est décroissante à la question 2.

Donc les suites (an) et (bn) sont adjacentes . Par le théorème des suites adjacentes,

elles convergent vers une limite commune notée M (a, b).

5. Toujours par le théorème des suites adjacentes, pour tous m,n ∈ N :

am ≤ M (a, b) ≤ bn.

Pour m = 1 et n = 0, on obtient :

M(a, b) = a1 ≤ M (a, b) ≤ b0 = b.

6. (a) Puisque 0 < a ≤ b, alors
a

b
∈ ]0, 1]. Puisque la fonction cos réalise une bijection strictement

décroissante de
[
0, π2

[
sur ]0, 1], il existe un unique réel θ ∈

[
0, π2

[
tel que cos(θ) = a

b .

(b) Montrons par récurrence sur n ∈ N la propriété P(n) suivante :

¡¡ an = bn cos

(
θ

2n

)
et bn = b

n∏
k=1

cos

(
θ

2k

)
¿¿.

I Pour n = 0, b0 = b = b×
0∏

k=1

cos

(
θ

2k

)
(le produit se faisant sur un ensemble vide).

D’autre part, a0 = a et b0 cos
(

θ
20

)
= b cos(θ) = b× a

b = a.
Donc la propriété P(0) est vraie.

H Soit n ∈ N. Supposons P(n) vraie. Par hypothèse de récurrence :

an+1 =
an + bn

2
=

bn cos
(

θ
2n

)
+ bn

2
= bn

1 + cos
(

θ
2n

)
2

.

Puisque cos2(t) =
1 + cos(2t)

2
pour tout t ∈ R :

1 + cos
(

θ
2n

)
2

= cos2
(

θ
2n+1

)
et donc an+1 = bn cos

2
(

θ
2n+1

)
.
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Par hypothèse de récurrence :

an+1 = b
n∏

k=1

cos

(
θ

2k

)
× cos2(

θ

2n+1
) = b

n+1∏
k=1

cos

(
θ

2k

)
× cos

(
θ

2n+1

)
.

Ainsi, toujours par hypothèse de récurrence :

bn+1 =
√
an+1bn =

√√√√b
n+1∏
k=1

cos

(
θ

2k

)
× cos

(
θ

2n+1

)
× b

n∏
k=1

cos

(
θ

2k

)
= b

n+1∏
k=1

cos

(
θ

2k

)

car cos
(

θ
2k

)
≥ 0 pour tout k ∈ J1, n+ 1K. Finalement :

bn+1 = b
n+1∏
k=1

cos

(
θ

2k

)
et donc an+1 = bn+1 cos

(
θ

2n+1

)
.

La propriété P(n+ 1) est donc vraie.

Par le principe de récurrence, P(n) est vraie pour tout n ∈ N.

(c) On déduit du résultat précédent que pour tout n ∈ N :

bn+1 · sin
(

θ

2n+1

)
= b

[
n+1∏
k=1

cos

(
θ

2k

)]
sin

(
θ

2n+1

)

= b

[
n∏

k=1

cos

(
θ

2k

)]
× cos

(
θ

2n+1

)
sin

(
θ

2n+1

)
= bn × 1

2
sin

(
2× θ

2n+1

)
=

1

2

(
bn sin

(
θ

2n

))
La suite

(
bn sin

(
θ
2n

))
est donc géométrique de raison 1

2 .

(d) D’après la question précédente, pour tout n ∈ N :

bn sin

(
θ

2n

)
= b0 sin

(
θ

20

)
× 1

2n
=

b sin(θ)

2n
.

Deux cas sont possibles :

• si θ = 0, ce qui correspond au cas a = b, alors cos
(

θ
2k

)
= 1 pour tout k ∈ [[1, n]], et

donc bn = b et an = b.

• si 0 < θ < π
2 , qui correspond au cas 0 < a < b, alors sin

(
θ
2k

)
> 0 et :

bn =
b sin(θ)

2n sin( θ
2n )

et an =
b sin(θ) cos

(
θ
2n

)
2n sin( θ

2n )
.

(e) Supposons 0 < θ < π
2 . Alors :

2n sin

(
θ

2n

)
=

sin
(

θ
2n

)
θ
2n

× θ −→
n→+∞

θ

car lim
n→+∞

θ

2n
= 0 et lim

x→0

sin(x)

x
= 1. Ainsi :

M (a, b) = lim
n→+∞

bn = b · sin(θ)
θ

.

(f) Si θ = 0, (bn) est constante égale à b par la question 6.(d) et M (a, b) = b .
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(g) Soit n ∈ N. Par la question 3.(a) :

b2n − a2n =
b2 − a2

4n
, d’où 4n(bn − an) =

b2 − a2

bn + an
.

Or lim
n→+∞

(an + bn) = 2M (a, b) et

M (a, b) =

{
b · sin(θ)

θ si θ ∈ ]0, π2 [,
b si θ = 0.

Puisque M (a, b) > 0 dans tous les cas :

lim
n→+∞

4n(bn − an) =
b2 − a2

2M (a, b)
.

Deux cas sont alors possibles :

• Si θ = 0, alors a = b et :
b2 − a2

2M (a, b)
= 0 =

bθ sin(θ)

2
.

.

• Si θ ∈ ]0, π2 [ :

b2 − a2

2M (a, b)
=

b2 − b2 cos2(θ)

2b sin(θ)θ

=
bθ

2

sin2(θ)

sin(θ)
=

bθ sin(θ)

2
.

Dans tous les cas, lim
n→+∞

4n(bn − an) =
bθ sin(θ)

2
.

7. On procède de même qu’à la question 2, je vous laisse le soin de le rédiger.

8. La suite (an) est croissante et majorée par b0. Par le théorème des suites monotones, elle converge
vers une limite finie ℓ.

De même, la suite (bn) est donc décroissante et majorée par a0. Par le théorème des suites
monotones, (an) converge vers une limite finie ℓ′.

9. En passant à la limite quand n → +∞ dans l’égalité bn+1 =
an + bn

2
, on obtient ℓ′ = ℓ+ℓ′

2 , et

donc ℓ = ℓ′ .

10. Par définition des suites (an) et (bn), m(a, b) = a1 et M(a, b) = b1. Et par la question 7, pour
tout n ≥ 1, a1 ≤ an ≤ b1.

Par passage à la limite dans les inégalités, on obtient a1 ≤ ℓ ≤ b1, c’est-à-dire m(a, b) ≤ M (a, b) ≤ M(a, b).

11. (a) Soit n ∈ N. Calculons :

bn+1 − an+1 =
an + bn

2
−
√

anbn =
1

2
(
√
an −

√
bn)

2.

Puisque
√
an +

√
bn ≥

√
a+

√
a > 0, on obtient :

bn+1 − an+1 =
1

2
(
√
an −

√
bn)

2 (
√
an +

√
bn)

2

(
√
an +

√
bn)2

=
1

2

(bn − an)
2

(
√
an +

√
bn)2

.

(b) Soit n ∈ N. Puisque √
an +

√
bn ≥ 2

√
a > 0 :

1

2(
√
an +

√
bn)2

≤ 1

2(2
√
a)2

=
1

8a
.

D’où avec la question précédente :

bn+1 − an+1 ≤
1

8
(bn − an)

2.
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(c) Puisque lim
n→+∞

bn − an
8a

= 0, par définition de la limite :

∀ε > 0, ∃n0 ∈ N, n ≥ n0 ⇒
∣∣∣∣bn − an

8a

∣∣∣∣ ≤ ε.

Pour ε = 1
2 > 0, il existe un rang n0 ∈ N tel que :

∀n ≥ n0, 0 ≤ bn − an
8a

≤ 1

2
.

(d) On sait déjà que pour tout n ≥ n0, 0 ≤ bn − an.

Montrons par récurrence sur n ≥ n0 la propriété P(n) : ¡¡ bn − an ≤ 8a
(
1
2

)2n−n0
¿¿.

I Pour n = n0, par la question la question précédente :

bn0 − an0 ≤ 8a
1

2
= 8a

(
1

2

)2n0−n0

.

Donc P(n0) est vraie.

H Soit n ≥ n0. Supposons P(n) vraie. Par la question 11.(b) :

bn+1 − an+1 ≤
1

8a
(bn − an)

2 ≤ 1

8a

(
8a

(
1

2

)2n−n0
)2

= 8a

(
1

2

)2n+1−n0

.

Donc P(n+ 1) vraie.

Par le principe de récurrence, P(n) vraie pour tout n ≥ n0.

(e) Soit q ∈ ]0, 1[ et n ≥ n0. Puisque an ≤ M (a, b) ≤ bn :

|an − M (a, b)|
qn

≤ bn − an
qn

≤
8a
(
1
2

)2n−n0

qn
.

Or : (
1
2

)2n−n0

qn
= exp

(
2n−n0 ln(1/2)− n ln(q)

)
= exp

(
2n
(
− ln(2)2−n0 − n

2n
ln(q)

))
.

Puisque lim
n→+∞

n

2n
= 0 par croissances comparées, on obtient lim

n→+∞

(
1
2

)2n−n0

qn
= 0.

Par théorème des gendarmes, lim
n→+∞

|an − M (a, b)|
qn

existe et vaut 0.
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