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Exercice 1
1. Calculons :

wi = /0 P sin(@) o /0 W/gtan(az) dz = [ In(cos(z))]7/? = —In (cos (g)) — In(2).

cos(x)

2. (a) Soit n € N*. Calculons :

/”/3Sinn(x)cos(x)d$:[sinn"‘l(x)]ﬁ/?: B (\@)m.
0

n+1 |, n+1

(b) Soit € N. Calculons :

7/3 i n+2 T/3 i
sz — :/ sin" " (x) da _/ sin”(x) da
0 0

cos(z) cos(z)
w/3 i 2 -1 w/3
= / sin"(x)% dz = —/ sin” (z) cos(z) dz
0 cos(z) 0
T n+1
_ [sin"* (=) /3 B 1 V3
B n+l [, | n4+1\ 2 '
- . 13 3
En particulier pour n = 1, on obtient :  ug = 31 +uy|=In(2) — 3

3. Soit n € N. Pour tout = € [0, %} :
0 <sin(x) <1 et donc 0 < sin""!(x) < sin”(z).

sin"t(z) _ sin"(x)

cos(x) ~ cos(z)’

Puisque cos(z) > 0 : 0<

Par croissance de 'intégrale, on obtient :

7/3 3an+1 T/3 i
0 0

cos(z) cos(x)

Donc ‘ (uy) est décroissante. ‘

La suite (uy,) est décroissante, minorée par 0. Par le théoreme des suites monotones, ‘ (up) est convergente.

ol S

4. (a) Puisque sin est croissante sur [0, ], pour tout = € [0, 5], sin(z) < sin(F) <

Dans la suite, on note donc | K = 73

1
(b) Pour z € [0, 5], 0 < sin"(x) < K", et par ailleurs cos(x) > cos(§) = 7 Donc :

sin”(x)

0< < 2K™.

cos(x)
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Par croissance de 'intégrale :

w/3 92
ogung/ 2K”dx:§K”.
0

Puisque K € ]0,1], K™ — 0. Parle théoréme des gendarmes,| lim w, existe et vaut 0.
n—-+oo n—-+oo

Pour tout n € N :
n+1

Snt1 — n—zuk—zuk—un+1>0

Donc ‘la suite (S,,) est croissante.‘

Par ailleurs, en reprenant I’encadrement de uy obtenu & la question 4.(b), on obtient pour
tout n € N :

n
21 21— K™t 2
S, <Y T Kk="" < .
”—;03 3 1-K ~3(1-K)

La suite (S,,) est donc majorée et croissante, ‘elle possede une limite finie ‘ par le théoreme
des suites monotones.

Pour tout z € [0, §], sin(x) # 1. Et donc pour tout n € N :

z”: sinf(z) 1-— sin”“(az).

— cos(r) 1 —sin(z)
Par linéarité de 'intégrale :
n /3 k w/3 M k
S — 2/ sin®(z) de :/ sin®(z) de

= Jo cos(x) N cos(x)

w/3 1 n w/3 1 — sin™t!
:/ Zsink(x) doe = / bm_ ($) dz

o  cos(z) — o cos(z)(1l —sin(x))

B /3 1 . w/3 sinn+1($) .
N /0 cos(x)(1 — sin(z) d /0 cos(z)(1 — sin(z) de.

Pour tout z € [0, §] :

cos(x)(1 — cos(z)(1 — sin(z)) et donc sin"* (z) sin"*1(x)
0 < cos(z)(1 — K) < cos(z)(1 (z)) et donc 0 < @ —sm@]) < @ A=K

Et par croissance de l'intégrale :

o< /71'/3 sin”*1(z) / Smn+1 dg; U
~Jo  cos(z)(1—sin(x )) - 1 - K cos(x O 1-K

w/3 sin"“(x)

Puisque lim wu = 0, par le théoréeme des gendarmes, lim - dx
que am Un+l b & n—+oo Jo  cos(z)(1l — sin(x)

existe et vaut 0.

En passant a la limite dans I’égalité obtenue a la question précédente (en notant bien que
tout converge), on obtient :

/3 1
= 1‘ = .
S n—to0 Sn /0 cos(z)(1 — sin(x)) de
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(d) Réalisons le changement de variable t = sin(x), en notant que dt = cos(x)dx et que
t:0— @ lorsque z : 0 — 5. On obtient :

cos(z) o /3 cos(x) .
5= / cos?(z)(1 — sin(z)) do= /0 (1 —sin?(z))(1 — sin(z)) d

V3/2 dt
_/o -1 —t)

e) Reste a calculer l'intégrale précédente, ce qui nécessite d’intégrer une fraction rationnelle
g P q g
(de degré strictement négatif). Cherchons sa décomposition en éléments simples. Par le
cours, on va la chercher sous la forme :

1 _a b c
G-+l -1 @ tayr W

e En multipliant (x) par (z —1)? et en évaluant en z = 1, on obtient b = 1.

W=

e En multipliant (%) par x + 1 et en évaluant en x = —1, on obtient ¢ =

=

e En multipliant () par x et en faisant tendre z vers 400, on obtient a = —c = —

g 1/\/5/2 dt +1/\/§/2 dt +1/\/§/2 dt
4 t—1 2J, (t—1)2 4 ), t+1

N
[ln(l—&—t)—ln(]t—l\)—tfl]o

V3 V3 2
(o)) )
24+4/3 4
(2—\f>+ <f 2 2)

:im(7+4¢§)+\/§+g

Finalement :

H
+
|

N S

T o=
=}

FN
=

en multipliant par les quantités conjuguées pour simplifier les racines aux dénominateurs.

Exercice 2
Fait en cours !

Exercice 3
1. On a z qui est dérivable, avec 2" = 3" — /.

Alors y est solution de (E) si et seulement si
Ve e R, zy’(z) — (1+2)y(z) + y(z) = 1.
Mais pour tout x € R,
zy'(x) = (L +2)y (2) +y(@) = 1 & 2((2) + ¢/ (2)) — 1+ 2)y/(v) +y(2) = 1

& 22 (z) —y'(x) +y(z) =1
) —z(x) = 1.

Et donc y est solution de (F) si et seulement si pour tout € R, zz'(x) — z(z) = 1, donc si et
seulement si z est solution de (E').

& 22 (x
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Sur chacun des intervalles R et R*, (E’) est équivalente & 2/(z) — 12(z) = 1.

x x
L’équation homogene associée est 2'(x) — @ = 0, qui a pour ensemble de solutions

{a:»—> PELLLIDY ER} = {z — Nz|,\ € R}.

Sut R%, on a |z| = x.

Et sur R* , |z| = —z, si bien que I'ensemble des solutions de I’équation homogene associée a (E')
est {x — —Az, A € R}.

Mais quitte a changer A en son opposé, on retrouve {z — Az, A € R}.

Une variation de la constante nous permettrait de trouver une solution particuliere, mais plus
simplement ici, constatons que la fonction constante égale & —1 est solution de (E’).

Et donc sur chacun des intervalles R* et R’ , ensemble des solutions de (E) est

‘{x»—w\x—l,/\eR}.‘

Procédons par analyse-synthese.

e Analyse. Soit z une solution de (E’) sur R.
Alors pour z = 0, on obtient 2’(0) = —1, et puisque z est solution de (E’) sur R* et R, il
existe deux réels \, p tels que

Ar—1 siz <0
Z:T -1 siz=0
pr—1 six <0

—2(0 —2(0
Puisque z est dérivable en 0, lim M = lim M
z—0t x—0 z—0~ z—0
Mais pour = > 0,
z(xr) — 2(0 r—1+1
(2) — 2(0) _p N
xr—0 x z—0t

Et de méme, lim M
rz—0~ z—0

Ainsi, il existe A € R tel que pour tout z € R, z(x) = Az — 1.

= ), si bien que A = pu.

e Synthése. Soit A € R. Alors la fonction z : x — Az — 1 est évidement dérivable sur R,
avec pour tout z € R, 2/(z) = A, et donc

2 () —z2(x) = Do — Az —1)=1.

Donc z est solution de (E'), si bien que ’ensemble des solutions de (E’) sur R est

‘{xHAx—l,)\ER}.‘

Une fonction y est solution de (F) sur R si et seulement si il existe A € R tel que pour tout
zeR, y(z) —y(z) =z — 1.

Pour A € R; notons donc (E)) 'équation différentielle y/(x) — y(z) = Az — 1.

Les solutions de I’équation homogene associée sont les x +— pe®, u € R.

Par ailleurs, nous savons (propriété 7 du cours) qu'’il existe une solution de cette équation sous
la forme d’une fonction polynomiale de degré 1.

Cherchons donc une telle solution sous la forme y : x — ax + b.

Alors y est solution de (E)) si et seulement si pour tout = € R, a — (ax +b) = A\x — 1, ce qui est
par identification des coefficients est le cas si et seulement si

—a=A o a=—A\
a—b=-1 b=1-2X
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Donc y : —A(1+z) + 1 est une solution particuliere de (E)), si bien que ’ensemble des solutions
de (E)) est

{z+— pe® —AX1+2z)+1,ueR}.
Et donc une fonction y est solution de (E) si et seulement si il existe A € R tel que y est
solution de (E)), donc si et seulement si il existe deux réels A, u tels que pour tout xz € R,
y(x) = pe* = A(1+z)+ 1.

Pour conclure, 'ensemble des solutions de (E) est donc

{z— pe® = A1 +2)+1,(\pu) € R*}.

Exercice 4
1. On a:

AAE = (A\E)U (E\A) =0U A=A
AAA = (A\A)U (A\A) =DU D =0
AAD = (A\D)U (M\A) =AUD=A
AAA = (A\A)U(A\A) = AUA=E

2. Une preuve par double inclusion est possible. Mais préférons le calcul suivant :

AAB = (A\B)U (B\A) = (AN B)U (BN A)
=(ANB)UB)N((ANB)U A)
=((AUB)N(BUB))N((AUA)N(BU A))
-5
=(AUuB)N(AUB)
AUB)N(ANB)=(AUB)\(ANB).

—~

Diagramme de Venn de la différence symétrique.

3. On a, en utilisant la question précédente :
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Et pour la seconde égalité, notons qu’on a toujours AAB = BAA et donc

AAB = BAA = BAA=AAB.
—~—

calcul
précédent

On en déduit avec ces deux égalités :
AAB = AAB = AAB = AAB.

4. (a) En utilisant la définition de A puis la question 3., on obtient :
(AAB)AC = ((AAB)NC)U (AABNC) = (((AAB)NC)U ((AAB)N C).

eprenons ’expression de la question précédente, et utilisons la définition de puis la
b) R I ion de 1 i ccéd ili la définition de A puis 1
distributivité de 'intersection sur ’union :
(AAB)AC = (ANB)U(ANB)NC)U(((ANB)U(ANB))NC)
=(ANBNC)U(ANBNC)U(ANBNC)U(ANBNCO)

(c) Remarquons que AA(BAC) = (BAC)AA = (CAB)AA. Et donc en reprenant le calcul
précédent, et échangeant les réles joués par A et C, il vient :

AA(BAC) = (CAB)AA
=(CNBNAU(CNBNAU(CNBNA)U(CNBNA)
= (AAB)AC

5. En utilisant la commutativité et I'associativité de A ainsi que les calculs effectués a la question
1., on obtient :

AABAA = AA(BAA) = AAN(AAB) = (AAA)AB = §AB = B.

6. (a) Soient B et C' deux parties de E telles que fa(B) = fa(C), ce qui se récrit AAB = AAC.
Alors AA(AAB) = AA(AAC), soit encore AABAA = AACAA (par commutativité et
associativité de A). Et donc par la question 5., B = C. Ainsi, fa est injective.

(b) La question 5 prouve que pour tout C € Z(E) :
AA(CAA) = C & fo(CAA) = C.

Donc pour C € Z(F) fixé, C posséde bien un antécédent B par fa, a savoir CAA = AAC.
Donc f4 est surjective.

(c) D’apres les deux questions précédentes, f4 est injective et surjective. Elle est donc bijective.
Ainsi, tout élément de Z(E) admet exactement un antécédent par f4. L’équation AAB =
A & fa(B) = A d’'inconnue B € #(E) admet donc une unique solution.
Or, nous savons que B = () est une solution puisque f4(0) = AAD = A. C’est donc I'unique
solution.




