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Devoir surveillé du Samedi 13 Décembre

Correction - DS 3

Exercice 1
1. Calculons :

u1 =

∫ π/3

0

sin(x)

cos(x)
dx =

∫ π/3

0
tan(x) dx = [− ln(cos(x))]

π/3
0 = − ln

(
cos
(π
3

))
= ln(2).

2. (a) Soit n ∈ N∗. Calculons :

∫ π/3

0
sinn(x) cos(x) dx =

[
sinn+1(x)

n+ 1

]π/3
0

=
1

n+ 1

(√
3

2

)n+1

.

(b) Soit ∈ N. Calculons :

un+2 − un =

∫ π/3

0

sinn+2(x)

cos(x)
dx−

∫ π/3

0

sinn(x)

cos(x)
dx

=

∫ π/3

0
sinn(x)

sin2(x)− 1

cos(x)
dx = −

∫ π/3

0
sinn(x) cos(x) dx

= −
[
sinn+1(x)

n+ 1

]π/3
0

= − 1

n+ 1

(√
3

2

)n+1

.

En particulier pour n = 1, on obtient : u3 = −1

2

3

4
+ u1 = ln(2)− 3

8
.

3. Soit n ∈ N. Pour tout x ∈
[
0, π3

]
:

0 ≤ sin(x) ≤ 1 et donc 0 ≤ sinn+1(x) ≤ sinn(x).

Puisque cos(x) > 0 : 0 ≤ sinn+1(x)

cos(x)
≤ sinn(x)

cos(x)
.

Par croissance de l’intégrale, on obtient :

0 ≤ un+1 =

∫ π/3

0

sinn+1(x)

cos(x)
dx ≤

∫ π/3

0

sinn(x)

cos(x)
dx = un.

Donc (un) est décroissante.

La suite (un) est décroissante, minorée par 0. Par le théorème des suites monotones, (un) est convergente.

4. (a) Puisque sin est croissante sur
[
0, π3

]
, pour tout x ∈

[
0, π3

]
, sin(x) ≤ sin(π3 ) ≤

√
3

2
.

Dans la suite, on note donc K =
√
3
2 .

(b) Pour x ∈ [0, π3 ], 0 ≤ sinn(x) ≤ Kn, et par ailleurs cos(x) ≥ cos(π3 ) =
1

2
. Donc :

0 ≤ sinn(x)

cos(x)
≤ 2Kn.
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Par croissance de l’intégrale :

0 ≤ un ≤
∫ π/3

0
2Kn dx =

2π

3
Kn.

PuisqueK ∈ ]0, 1],Kn −→
n→+∞

0. Par le théorème des gendarmes, lim
n→+∞

un existe et vaut 0.

5. (a) Pour tout n ∈ N :

Sn+1 − Sn =
n+1∑
k=0

uk −
n∑

k=0

uk = un+1 ≥ 0.

Donc la suite (Sn) est croissante.

Par ailleurs, en reprenant l’encadrement de uk obtenu à la question 4.(b), on obtient pour
tout n ∈ N :

Sn ≤
n∑

k=0

2π

3
Kk =

2π

3

1−Kn+1

1−K
≤ 2π

3(1−K)
.

La suite (Sn) est donc majorée et croissante, elle possède une limite finie par le théorème
des suites monotones.

(b) Pour tout x ∈ [0, π3 ], sin(x) ̸= 1. Et donc pour tout n ∈ N :

n∑
k=0

sink(x)

cos(x)
=

1− sinn+1(x)

1− sin(x)
.

Par linéarité de l’intégrale :

Sn =
n∑

k=0

∫ π/3

0

sink(x)

cos(x)
dx =

∫ π/3

0

n∑
k=0

sink(x)

cos(x)
dx

=

∫ π/3

0

1

cos(x)

n∑
k=0

sink(x) dx =

∫ π/3

0

1− sinn+1(x)

cos(x)(1− sin(x))
dx

=

∫ π/3

0

1

cos(x)(1− sin(x)
dx−

∫ π/3

0

sinn+1(x)

cos(x)(1− sin(x)
dx.

(c) Pour tout x ∈ [0, π3 ] :

0 < cos(x)(1−K) ≤ cos(x)(1− sin(x)) et donc 0 ≤ sinn+1(x)

cos(x)(1− sin(x))
≤ sinn+1(x)

cos(x)(1−K)
.

Et par croissance de l’intégrale :

0 ≤
∫ π/3

0

sinn+1(x)

cos(x)(1− sin(x))
dx ≤ 1

1−K

∫ π/3

0

sinn+1(x)

cos(x)
dx =

un+1

1−K
.

Puisque lim
n→+∞

un+1 = 0, par le théorème des gendarmes, lim
n→+∞

∫ π/3

0

sinn+1(x)

cos(x)(1− sin(x)
dx

existe et vaut 0.

En passant à la limite dans l’égalité obtenue à la question précédente (en notant bien que
tout converge), on obtient :

S = lim
n→+∞

Sn =

∫ π/3

0

1

cos(x)(1− sin(x))
dx.
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(d) Réalisons le changement de variable t = sin(x), en notant que dt = cos(x) dx et que

t : 0 →
√
3
2 lorsque x : 0 → π

3 . On obtient :

S =

∫ π/3

0

cos(x)

cos2(x)(1− sin(x))
dx =

∫ π/3

0

cos(x)

(1− sin2(x))(1− sin(x))
dx

=

∫ √
3/2

0

dt

(1− t2)(1− t)
.

(e) Reste à calculer l’intégrale précédente, ce qui nécessite d’intégrer une fraction rationnelle
(de degré strictement négatif). Cherchons sa décomposition en éléments simples. Par le
cours, on va la chercher sous la forme :

1

(x− 1)2(x+ 1)
=

a

x− 1
+

b

(x− 1)2
+

c

x+ 1
. (⋆)

• En multipliant (⋆) par (x− 1)2 et en évaluant en x = 1, on obtient b = 1
2 .

• En multipliant (⋆) par x+ 1 et en évaluant en x = −1, on obtient c = 1
4 .

• En multipliant (⋆) par x et en faisant tendre x vers +∞, on obtient a = −c = −1
4

Finalement :

S = −1

4

∫ √
3/2

0

dt

t− 1
+

1

2

∫ √
3/2

0

dt

(t− 1)2
+

1

4

∫ √
3/2

0

dt

t+ 1

=
1

4

[
ln(1 + t)− ln(|t− 1|)− 2

t− 1

]√3/2

0

=
1

4

(
ln

(
1 +

√
3

2

)
− ln

(
1−

√
3

2

)
− 2√

3/2− 1
− 2

)

=
1

4
ln

(
2 +

√
3

2−
√
3

)
+

1

4

(
4√
3− 2

− 2

)
=

1

4
ln
(
7 + 4

√
3
)
+
√
3 +

3

2

en multipliant par les quantités conjuguées pour simplifier les racines aux dénominateurs.

Exercice 2
Fait en cours !

Exercice 3
1. On a z qui est dérivable, avec z′′ = y′′ − y′.

Alors y est solution de (E) si et seulement si

∀x ∈ R, xy′′(x)− (1 + x)y′(x) + y(x) = 1.

Mais pour tout x ∈ R,

xy′′(x)− (1 + x)y′(x) + y(x) = 1 ⇔ x(z′(x) + y′(x))− (1 + x)y′(x) + y(x) = 1

⇔ xz′(x)− y′(x) + y(x) = 1

⇔ xz′(x)− z(x) = 1.

Et donc y est solution de (E) si et seulement si pour tout x ∈ R, xz′(x) − z(x) = 1, donc si et
seulement si z est solution de (E′).
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2. Sur chacun des intervalles R∗
+ et R∗

−, (E
′) est équivalente à z′(x)− 1

xz(x) =
1
x .

L’équation homogène associée est z′(x)− z(x)
x = 0, qui a pour ensemble de solutions{

x 7→ λeln |x|, λ ∈ R
}
= {x 7→ λ|x|, λ ∈ R} .

Sut R∗
+, on a |x| = x.

Et sur R∗
−, |x| = −x, si bien que l’ensemble des solutions de l’équation homogène associée à (E′)

est {x 7→ −λx, λ ∈ R}.
Mais quitte à changer λ en son opposé, on retrouve {x 7→ λx, λ ∈ R}.
Une variation de la constante nous permettrait de trouver une solution particulière, mais plus
simplement ici, constatons que la fonction constante égale à −1 est solution de (E′).

Et donc sur chacun des intervalles R∗
− et R∗

+, l’ensemble des solutions de (E′) est

{x 7→ λx− 1, λ ∈ R} .

3. Procédons par analyse-synthèse.

• Analyse. Soit z une solution de (E′) sur R.
Alors pour x = 0, on obtient z′(0) = −1, et puisque z est solution de (E′) sur R∗

− et R∗
+, il

existe deux réels λ, µ tels que

z : x 7→


λx− 1 si x < 0
−1 si x = 0

µx− 1 si x < 0

Puisque z est dérivable en 0, lim
x→0+

z(x)− z(0)

x− 0
= lim

x→0−

z(x)− z(0)

x− 0
.

Mais pour x > 0,
z(x)− z(0)

x− 0
=

µx− 1 + 1

x
= µ −→

x→0+
µ

Et de même, lim
x→0−

z(x)− z(0)

x− 0
= λ, si bien que λ = µ.

Ainsi, il existe λ ∈ R tel que pour tout x ∈ R, z(x) = λx− 1.

• Synthèse. Soit λ ∈ R. Alors la fonction z : x 7→ λx − 1 est évidement dérivable sur R,
avec pour tout x ∈ R, z′(x) = λ, et donc

xz′(x)− z(x) = λx− (λx− 1) = 1.

Donc z est solution de (E′), si bien que l’ensemble des solutions de (E′) sur R est

{x 7→ λx− 1, λ ∈ R} .

4. Une fonction y est solution de (E) sur R si et seulement si il existe λ ∈ R tel que pour tout
x ∈ R, y′(x)− y(x) = λx− 1.

Pour λ ∈ R; notons donc (Eλ) l’équation différentielle y′(x)− y(x) = λx− 1.

Les solutions de l’équation homogène associée sont les x 7→ µex, µ ∈ R.
Par ailleurs, nous savons (propriété 7 du cours) qu’il existe une solution de cette équation sous
la forme d’une fonction polynomiale de degré 1.

Cherchons donc une telle solution sous la forme y : x 7→ ax+ b.

Alors y est solution de (Eλ) si et seulement si pour tout x ∈ R, a− (ax+ b) = λx− 1, ce qui est
par identification des coefficients est le cas si et seulement si{

−a = λ
a− b = −1

⇔
{

a = −λ
b = 1− λ
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Donc y : −λ(1+x)+1 est une solution particulière de (Eλ), si bien que l’ensemble des solutions
de (Eλ) est

{x 7→ µex − λ(1 + x) + 1, µ ∈ R} .

Et donc une fonction y est solution de (E) si et seulement si il existe λ ∈ R tel que y est
solution de (Eλ), donc si et seulement si il existe deux réels λ, µ tels que pour tout x ∈ R,
y(x) = µex − λ(1 + x) + 1.

Pour conclure, l’ensemble des solutions de (E) est donc{
x 7→ µex − λ(1 + x) + 1, (λ, µ) ∈ R2

}
.

Exercice 4
1. On a :

A∆E = (A\E) ∪ (E\A) = ∅ ∪ Ā = Ā

A∆A = (A\A) ∪ (A\A) = ∅ ∪ ∅ = ∅
A∆∅ = (A\∅) ∪ (∅\A) = A ∪ ∅ = A

A∆Ā = (A\Ā) ∪ (Ā\A) = A ∪ Ā = E

2. Une preuve par double inclusion est possible. Mais préférons le calcul suivant :

A∆B = (A\B) ∪ (B\A) = (A ∩ B̄) ∪ (B ∩ Ā)

= ((A ∩ B̄) ∪B) ∩ ((A ∩ B̄) ∪ Ā)

= ((A ∪B) ∩ (B̄ ∪B)︸ ︷︷ ︸
=E

) ∩ ((A ∪ Ā)︸ ︷︷ ︸
=E

∩(B̄ ∪ Ā))

= (A ∪B) ∩ (Ā ∪ B̄)

= (A ∪B) ∩ (A ∩B) = (A ∪B)\(A ∩B).

Diagramme de Venn de la différence symétrique.

3. On a, en utilisant la question précédente :

A∆B = (A ∪B) ∩ (A ∩B)

= (A ∪B) ∪ (A ∩B) = (Ā ∩ B̄) ∪ (A ∩B)

= (Ā ∪ (A ∩B)) ∩ (B̄ ∪ (A ∩B))

= ((Ā ∪A)︸ ︷︷ ︸
=E

∩(Ā ∪B)) ∩ ((B̄ ∪A) ∩ (B̄ ∪B)︸ ︷︷ ︸
=E

)

= (Ā ∪B) ∩ (B̄ ∪A) = (Ā ∪B) ∩ (A ∩B)

= (Ā ∪B)\(Ā ∩B) = A∆B.
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Et pour la seconde égalité, notons qu’on a toujours A∆B = B∆A et donc

A∆B̄ = B̄∆A =︸︷︷︸
calcul

précédent

B∆A = A∆B.

On en déduit avec ces deux égalités :

Ā∆B̄ = A∆B = A∆B = A∆B.

4. (a) En utilisant la définition de ∆ puis la question 3., on obtient :

(A∆B)∆C = ((A∆B) ∩ C̄) ∪ (A∆B ∩ C) = (((A∆B) ∩ C̄) ∪ ((Ā∆B) ∩ C).

(b) Reprenons l’expression de la question précédente, et utilisons la définition de ∆ puis la
distributivité de l’intersection sur l’union :

(A∆B)∆C = (((A ∩ B̄) ∪ (Ā ∩B)) ∩ C̄) ∪ (((Ā ∩ B̄) ∪ (A ∩B)) ∩ C)

= (A ∩ B̄ ∩ C̄) ∪ (Ā ∩B ∩ C̄) ∪ (Ā ∩ B̄ ∩ C) ∪ (A ∩B ∩ C)

(c) Remarquons que A∆(B∆C) = (B∆C)∆A = (C∆B)∆A. Et donc en reprenant le calcul
précédent, et échangeant les rôles joués par A et C, il vient :

A∆(B∆C) = (C∆B)∆A

= (C ∩ B̄ ∩ Ā) ∪ (C̄ ∩B ∩ Ā) ∪ (C̄ ∩ B̄ ∩A) ∪ (C ∩B ∩A)

= (A∆B)∆C

5. En utilisant la commutativité et l’associativité de ∆ ainsi que les calculs effectués à la question
1., on obtient :

A∆B∆A = A∆(B∆A) = A∆(A∆B) = (A∆A)∆B = ∅∆B = B.

6. (a) Soient B et C deux parties de E telles que fA(B) = fA(C), ce qui se récrit A∆B = A∆C.

Alors A∆(A∆B) = A∆(A∆C), soit encore A∆B∆A = A∆C∆A (par commutativité et
associativité de ∆). Et donc par la question 5., B = C. Ainsi, fA est injective.

(b) La question 5 prouve que pour tout C ∈ P(E) :

A∆(C∆A) = C ⇔ fA(C∆A) = C.

Donc pour C ∈ P(E) fixé, C possède bien un antécédent B par fA, à savoir C∆A = A∆C.
Donc fA est surjective.

(c) D’après les deux questions précédentes, fA est injective et surjective. Elle est donc bijective.
Ainsi, tout élément de P(E) admet exactement un antécédent par fA. L’équation A∆B =
A ⇔ fA(B) = A d’inconnue B ∈ P(E) admet donc une unique solution.

Or, nous savons que B = ∅ est une solution puisque fA(∅) = A∆∅ = A. C’est donc l’unique
solution.
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