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Suites
TD 14

Définition de la convergence
Exercice 14.1 (⋆)
Soient (un) et (vn) deux suites convergentes. On note ℓ = lim

n→+∞
un et ℓ′ = lim

n→+∞
vn, et on suppose

ℓ < ℓ′. Montrer qu’à partir d’un certain rang, un < vn.

Exercice 14.2 (⋆⋆)
Montrer qu’une suite (un)n∈N à valeurs dans Z est convergente si, et seulement si, elle est stationnaire.
Que dire alors de la limite de (un) ?

Exercice 14.3 (⋆⋆⋆ - Moyennes de Césaro - �)
Soit (un)n∈N ∈ RN. On pose pour tout n ∈ N∗, vn = 1

n

n∑
k=1

uk.

1. Montrer que si (un)n∈N est monotone, alors (vn)n∈N est monotone et de même monotonie que
(un)n∈N.

2. (a) Montrer que si (un)n∈N converge vers 0, (vn)n∈N aussi. Que pensez-vous de la réciproque ?
(b) Montrer que si (un)n∈N converge vers une limite ℓ ∈ R, (vn)n∈N aussi (Théorème de Césaro).

3. Application. Soit (wn) une suite réelle. Montrer que si lim(wn+1 − wn) = 0, alors lim wn

n
= 0.

Donner un exemple d’une telle suite qui ne soit pas convergente.

Limites de suites
Exercice 14.4 (⋆⋆)
Déterminer les limites des suites dont le terme général est donné par :

(i)
√

n + 1 −
√

n

(ii) n3 + 5n

5n3 + cos(n) + 1
n2

(iii) an − bn

an + bn
, (a, b) ∈ (R∗

+)2

(iv) 1
n2

n∑
k=1

⌊kx⌋

(v)
2n+1∑
k=1

1√
n2 + k

(vi)
n2∑

k=1

1√
n2 + k

(vii) n
√

2 + (−1)n

(viii)
(

1 + x

n

)n

, x ∈ R

(ix) (ln(n))1/n

(x)
(
sin
(

1
n

))1/ ln(n)

Exercice 14.5 (⋆⋆)
Soit (un) une suite bornée.

1. Montrer que l’on peut poser pour tout n ∈ N, vn = sup ({uk, k ≥ n}) et wn = inf ({uk, k ≥ n}).

2. Montrer que les suites (vn) et (wn) sont convergentes.

3. Montrer que la suite (un) est convergente si, et seulement si, lim vn = lim wn.
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Exercice 14.6 (⋆⋆⋆)
Soit α ∈ R \ πZ. On pose pour tout n ∈ N, un = cos(nα) et vn = sin(nα).

1. Pour tout n ∈ N, exprimer un+1 en fonction de un et vn. Même question pour vn+1.

2. En déduire que si l’une des deux suites (un) et (vn) converge, alors l’autre aussi.

3. Prouver alors que (un) et (vn) divergent.

Exercice 14.7 (⋆⋆⋆ - Règle de D’Alembert - �)
Soit (un)n∈N ∈ (R∗

+)N. On suppose que
(

un+1
un

)
n∈N

converge vers une limite ℓ ∈ R.

1. On suppose ℓ > 1. Montrer qu’il existe n0 ∈ N tel que pour tout n ≥ n0, un+1 >
1 + ℓ

2 un.

En déduire que (un)n∈N diverge vers +∞.

2. On suppose ℓ < 1. Montrer que (un)n∈N converge vers 0.

3. Donner des exemples de suites (un) pour lesquelles ℓ = 1, qui tendent vers 0, qui tendent vers
un réel non nul, ou encore qui tendent vers +∞.

Suites adjacentes
Exercice 14.8 (⋆⋆)
Pour n ∈ N∗, on pose un =

n∑
k=1

1√
k

− 2
√

n et vn =
n∑

k=1

1√
k

− 2
√

n + 1.

Montrer que les suites (un) et (vn) sont adjacentes, et en déduire la limite de
n∑

k=1

1√
k

.

Exercice 14.9 (⋆⋆ - Théorème des segments emboîtés)
Soit ([an, bn])n une suite décroissante (au sens de l’inclusion) de segments non vides de R et dont les
longueurs tendent vers 0 lorsque n → +∞. Montrer que

⋂
n∈N

[an, bn] est un singleton.

Exercice 14.10 (⋆⋆⋆ - Moyenne arithmético-géométrique)
Soit (a, b) ∈ R2 tel que 0 ≤ a ≤ b. On pose u0 = a, v0 = b et pour tout n ∈ N :

un+1 = √
unvn et vn+1 = un + vn

2 .

Montrer que les suites (un) et (vn) sont convergentes, puis qu’elles convergent vers la même limite.
Cette limite est appelée moyenne arithmético-géométrique de a et b.
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Suites implicites et suites récurrentes
Exercice 14.11 (⋆⋆)

1. Montrer que pour tout n ∈ N, l’équation x3 + nx = 1 admet une unique solution réelle. On note
un cette solution.

2. Montrer que la suite (un) est strictement décroissante. En déduire qu’elle converge et calculer
sa limite.

Exercice 14.12 (⋆⋆⋆)
1. Montrer que pour tout n ∈ N∗, l’équation x + x2 + · · · + xn = 1 admet une unique solution réelle

dans l’intervalle [0, +∞[. On note xn cette solution.

2. Montrer que la suite (xn) est monotone, puis convergente, et calculer sa limite.

1. Pour tout n ∈ N∗, notons fn la fonction polynomiale définie pour tout x ∈ R par :

fn(x) = xn + xn−1 + · · · + x − 1.

On applique le théorème de la bijection à fn sur [0, +∞[ :

• fn est continue sur [0, +∞[ en tant que fonction polynômiale ;
• fn est dérivable sur [0, +∞[ en tant que fonction polynomiale, et pour tout x ∈ R :

f ′
n(x) =

n∑
k=1

kxk−1.

Ainsi f ′
n(x) > 0 pour tout x ∈ [0, +∞[. La fonction fn est donc strictement crois-

sante sur [0, +∞[ ;
• fn(0) = −1 et lim

x→+∞
fn(x) = +∞.

La fonction fn réalise donc une bijection de l’intervalle [0, +∞[ sur [−1, +∞[. Puisque
0 ∈ [−1, +∞[, l’équation fn(x) = 0 d’inconnue x ∈ [0, +∞[ possède une unique solution
xn.

2. Pour tous n ∈ N∗ et x ∈ R :

fn+1(x) =
n+1∑
k=1

xk − 1 =
n∑

k=1
xk − 1 + xn+1 = fn(x) + xn+1.

D’où en prenant x = xn dans cette égalité :

fn+1(xn) = fn(xn) + xn+1
n = xn+1

n ≥ 0 = fn+1(xn+1)

car fn(xn) = 0 = fn+1(xn+1) et xn+1
n ≥ 0. La fonction fn+1 étant strictement croissante,

on obtient :
xn ≥ xn+1.

Ceci étant vrai pour tout n ∈ N∗, la suite (xn) est donc décroissante. Puisqu’elle est
également minorée par 0, elle converge donc vers une limite ℓ ≥ 0.

Reste à déterminer ℓ. Pour cela, regardons les premiers termes de la suite (xn) :

• pour n = 1, f1 : x 7→ x − 1 s’annule en un unique réel positif x1 = 1 ;
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• pour n = 2, f2 : x 7→ x2+x−1 est une fonction polynomiale de degré 2, de discriminant

égal à 5, et admet pour racines réelles −1 ±
√

5
2 . L’unique racine positive est donc

x2 = −1 +
√

5
2 ∈ [0, 1[.

Puisque (xn) est décroissante, pour tout n ≥ 2 :

0 ≤ xn ≤ x2 < 1.

Soit n ∈ N. Reprenons à présent l’égalité fn(xn) = 0, elle se récrit (en reconnaissant une
somme géométrique et en notant que xn ̸= 1) :

xn
1 − xn+1

n

1 − xn
= 1. (∗)

On sait que lim xn = ℓ. Reste le terme en xn+1
n qui nous embête un peu. Pour cela,

remarquons que :
0 ≤ xn+1

n ≤ xn+1
2 .

Puisque x2 ∈ ] − 1, 1[, lim xn+1
2 = 0, et par théorème des gendarmes, lim xn+1

n existe et vaut
0.

Passons à la limite quand n → +∞ dans (∗) (on a montré que tout converge) :

ℓ
1

1 − ℓ
= 1, d’où ℓ = 1

2 .

La suite (xn) converge donc vers 1
2.

Exercice 14.13 (⋆)
Donner le terme général des suites définies par :

(i) u0 = 0 et pour tout n ∈ N, un+1 = 1
3un + 2 ;

(ii) v0 = 1 et pour tout n ∈ N, vn+1 = λvn + 3, où λ est une constante réelle.

Exercice 14.14 (⋆)
Donner le terme général et étudier la convergence des suites définies par (u0, u1) ∈ R2 et pour tout
n ∈ N :

(i) un+2 = un+1 − 1
4un ; (ii) un+2 = un+1 − 1

2un ; (iii) un+2 = 1
2(un+1 + un).

Exercice 14.15 (⋆⋆)
Étudier les suites définies par :

(i) ∀n ∈ N, un+1 = 2un(1 − un) et u0 ∈ R ;

(ii) ∀n ∈ N, un+1 = 1
3(4 − u2

n) et u0 = 1/2 ;

(iii) ∀n ∈ N, un+1 = une−un et u0 = 1 ;

(iv) ∀n ∈ N, un+1 = ln(1 + 2un) et u0 ∈ R.

Exercice 14.16 (⋆⋆ - Méthode de Héron pour le calcul approché de
√

2)
Soit (un)n∈N la suite définie par u0 = 2 et pour tout n ∈ N, un+1 = 1

2

(
un + 2

un

)
.
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1. Montrer que pour tout n ∈ N, un existe et un ≥
√

2.

2. Montrer que pour tout n ∈ N, |un+1 −
√

2| ≤ |un −
√

2|2

2 .

3. En déduire que pour tout n ∈ N, |un −
√

2| ≤ 1
22n−1 . Qu’en déduit-on sur la suite (un) ?

4. Combien de termes de la suite faut-il calculer pour avoir une approximation de
√

2 à 10−100

près ?

Exercice 14.17 (⋆⋆⋆)
On considère la suite complexe (zn) définie par z0 = reiθ (−π ≤ θ ≤ π) et pour tout n ∈ N :

zn+1 = zn + |zn|
2 .

On désigne par rn le module de zn et par θn l’argument de zn tel que −π ≤ θn ≤ π.

1. Effectuer la construction géométrique de zn+1 à partir de zn.

2. Exprimer rn+1 et θn+1 en fonction de rn et de θn, et en déduire lim θn.

3. Étudier la suite un = rn sin
(

θ
2n

)
, et en déduire rn et lim rn, puis lim zn.

1. Soit n ∈ N. Les complexes zn et |zn| sont sur le même cercle de centre 0 et de rayon |zn|.
Le complexe zn+1 est alors le milieu du segment d’extrémités zn et |zn|. Par construction,
on remarquera que :

|zn+1| ≤ |zn| et θn+1 = θn

2 .

En particulier, on notera que θn ∈ ] − π, π[ pour tout n ∈ N (ce qu’on pourrait démontrer
facilement par récurrence).

2. Soit n ∈ N. Calculons :

zn+1 = zn + |zn|
2 = rneiθn + rn

2 = rnei θn
2

ei θn
2 + e−i θn

2

2 = rn cos
(

θn

2

)
ei θn

2 .

Puisque θn

2 ∈
]
−π

2 , π
2
[
, cos

(
θn
2

)
> 0. Par unicité de l’écriture trigonométrique d’un nombre

complexe non nul :
rn+1 = rn cos

(
θn

2

)
et θn+1 = θn

2 .

La suite (θn) est géométrique de raison 1
2 ∈ ] − 1, 1[. Par conséquent, pour tout n ∈ N,

θn = θ

2n
, et (θn) converge vers 0.

3. Soit n ∈ N. Calculons :

un+1 = rn+1 sin
(

θ

2n+1

)
= rn cos

(
θn

2

)
sin
(

θ

2n+1

)
= rn cos

(
θ

2n+1

)
sin
(

θ

2n+1

)
= 1

2rn sin
(

2 θ

2n+1

)
= 1

2rn.

La suite (un) est également géométrique de raison 1
2 . D’où pour tout n ∈ N :

un = 1
2n

u0 = 1
2n

r sin(θ).
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Si θ = 0, alors zn = |zn| et la suite (zn) est constante égale à r.

Supposons θ ̸= 0. Puisque sin
(

θ

2n

)
̸= 0, on obtient :

rn = un

sin
(

θ

2n

) = r sin(θ)

2n sin
(

θ

2n

) .

Or :

2n sin
(

θ

2n

)
= θ

sin
(

θ

2n

)
θ

2n

−→
n→+∞

θ.

Ainsi, la suite (rn) converge vers r sin(θ)
θ

. Enfin, pour tout n ∈ N :

zn = rn cos(θn) + irn sin(θn) −→
n→+∞

r sin(θ)
θ

.

Suites extraites
Exercice 14.18 (⋆)
Montrer que la suite de terme général un n’a pas de limite dans les deux cas suivants :

(i) un = sin
(

nπ
4
)

+ cos
(

nπ
2
)

pour tout n ∈ N ;

(ii) (⋆) un est l’inverse du nombre de diviseurs premiers de n pour tout n ≥ 2.

Exercice 14.19 (⋆⋆)
On dit qu’une suite (un)n∈N est périodique s’il existe p ∈ N∗ tel que pour tout n ∈ N, un+p = un.
Montrer que toute suite réelle périodique et convergente est constante.

Exercice 14.20 (⋆⋆)
Soit (un)n∈N une suite réelle. Montrer que (un)n∈N est convergente dans les deux cas suivants :

(i) (u2n)n∈N, (u2n+1)n∈N et (u3n)n∈N conver-
gent ;

(ii) (un)n∈N est monotone et (u2n)n∈N con-
verge.

Exercice 14.21 (⋆⋆⋆ - �)
Soit (un)n∈N une suite non bornée. Montrer qu’elle admet une sous-suite qui tend vers l’infini.

Exercice 14.22 (⋆⋆⋆)
Soit (un) une suite telle que u0 ≥ 1 et pour tout n ∈ N, un+1 =

√
u2

n + un − (−1)n. Montrer que
un −→ +∞.
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Exercice 14.23 (⋆⋆⋆⋆)
Soit (zn) une suite complexe. On suppose que :

∀p, q ∈ N, p ̸= q ⇒ |zp − zq| ≥ 1.

Prouver que |zn| −−−−−→
n→+∞

+∞.

Exercice 14.24 (⋆⋆⋆⋆⋆ - Oral ENS)
1. Soit (un) une suite bornée. On suppose qu’il existe un réel ℓ tel que toute suite convergente

extraite de (un) possède ℓ pour limite. Montrer que (un) est convergente.

2. Soit (vn) une suite bornée telle que vn + v2n

2 converge vers un réel ℓ. Montrer que (vn) est
convergente.

Caractérisations séquentielles
Exercice 14.25 (⋆⋆)
Déterminer les bornes supérieures et inférieures, si elles existent, des ensembles de réels suivants :

A =
{(−1)nn

n + 1 , n ∈ N
}

, B =
{

pq

p2 + q2 , (p, q) ∈ N∗ × N
}

, C =
{ 2n

2m + 3n+m
, (m, n) ∈ N2

}
.

Exercice 14.26 (⋆⋆⋆)
Dans cet exercice, on note A =

{√
n −

√
m, (m, n) ∈ N2}.

1. Déterminer lim
x→0

√
1 + x − 1

x
.

2. Soit r ∈ Q, et soient p ∈ Z, q ∈ N tels que r = p
q .

(a) Justifier que pour n suffisamment grand, le réel un =
√

q2n2 + 2np −
√

q2n2 est bien défini.
(b) Prouver que un −−−−−→

n→+∞
r.

3. En déduire que A est dense dans R.

1. On reconnaît le taux d’accroissement en 0 de la fonction f : x 7→
√

1 + x. Puisque f est
dérivable sur ] − 1, +∞ [ , avec f ′ : x 7→ 1

2
√

1+x
:

lim
x→0

√
1 + x − 1

x
= f ′(0) = 1

2 .

2. (a) Il s’agit surtout de s’assurer que pour n suffisamment grand, q2n2 + 2np est positif, ce
qui n’est pas automatique si r < 0 car p < 0. Mais q2n2 + 2np = n

(
q2n + 2p

)
−→

n→+∞
+∞, si bien qu’à partir d’un certain rang, q2n2 + 2np > 0.

(b) Pour n suffisamment grand pour que un soit défini :

un =
√

q2n2

(√
1 + 2np

q2n2 − 1
)

= qn

(√
1 + 2p

q2n
− 1

)
= 2p

q
× q2n

2p

(√
1 + 2p

q2n
− 1

)
.

Mais par la question 1, puisque 2p
q2n

−−−−−→
n→+∞

0,
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q2n

2p

(√
1 + 2p

q2n
− 1

)
=

√
1 + 2p

q2n
− 1

2p
q2n

−→
n→+∞

1
2 .

Et donc
√

q2n2 + 2np −
√

q2n2 −→
n→+∞

2p
q

1
2 = p

q = r.

3. Soit x ∈ R, et soit n ∈ N∗. Par densité de Q dans R, il existe rn = pn

qn
∈ Q tel

que x − 1
2n < rn < x + 1

2n . Et par la question précédente, il existe n0 ∈ N tel que∣∣∣∣√q2
nn2

0 + 2n0pn −
√

q2
nn2

0 − rn

∣∣∣∣ < 1
2n .

Posons alors vn =
√

q2
nn2

0 + 2n0pn −
√

q2
nn2

0, qui est un élément de A. Alors :

|vn − x| ≤ |vn − rn| + |rn − x| <
1

2n
+ 1

2n
≤ 1

n
.

Et donc par le théorème des gendarmes, lim
n→+∞

vn = x, si bien que x est la limite d’une
suite d’éléments de A. Ceci étant vrai pour tout réel x, A est dense dans R.
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