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—— 1D 14
Suites
Définition de la convergence
Exercice 14.1 (%)
Soient (uy,) et (v,) deux suites convergentes. On note £ = lim wu, et ' = lim wv,, et on suppose

n—-+0o n——+oo
¢ < ¢'. Montrer qu’a partir d’un certain rang, u, < vy,.

Exercice 14.2 (% %)
Montrer qu’une suite (uy), oy & valeurs dans Z est convergente si, et seulement si, elle est stationnaire.
Que dire alors de la limite de (u,) 7

Exercice 14.3 (*** Moyennes de Césaro - @D)n
Soit (un)nen € RY. On pose pour tout n € N*, Z U

1. Montrer que si (uy)nen est monotone, alors (v,),en est monotone et de méme monotonie que
(un)nEN-

2. (a) Montrer que si (up)nen converge vers 0, (v, )nen aussi. Que pensez-vous de la réciproque ?

(b) Montrer que si (uy)nen converge vers une limite £ € R, (vy,)nen aussi (Théoreme de Césaro).

w
3. Application. Soit (w,) une suite réelle. Montrer que si lim(wy,+1 — wy) = 0, alors lim —* = 0.
n

Donner un exemple d’une telle suite qui ne soit pas convergente.

Limites de suites

Exercice 14.4 (% %)
Déterminer les limites des suites dont le terme général est donné par :

(i) Vn+1l-yn (iv) % Z 123 (vii) /24 (=1)"
k=1 7
.. n3 + 5n 2n+1 (viii) (1 + > ,x€R
(i) 5n3 + cos(n) + - v) > \/2171{; "
n o (ix) (in(n))"/"
(iii) o (a,b) € (R*)? (vi) S — 71\ 1/ In(n)
an o + oVt +k (x) (sm (;))

Exercice 14.5 (% %)
Soit (uy,) une suite bornée.

1. Montrer que 'on peut poser pour tout n € N, v, = sup ({ug, k > n}) et w, = inf ({ug, k > n}).
2. Montrer que les suites (v,) et (wy,) sont convergentes.

3. Montrer que la suite (u,) est convergente si, et seulement si, lim v,, = lim w,,.
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Exercice 14.6 (%% %)
Soit a € R\ 7Z. On pose pour tout n € N, u,, = cos(na) et v, = sin(na).

1. Pour tout n € N, exprimer u,1 en fonction de u,, et v,. Méme question pour v,1.
2. En déduire que si 'une des deux suites (uy,) et (v,) converge, alors 'autre aussi.

3. Prouver alors que (uy,) et (v,) divergent.

Soit (un)nen € (R%)N. On suppose que tntl

Exercice 14.7 (%% % - Régle de D’ lem ert -
converge vers une limite ¢ € R.

147
2

1. On suppose £ > 1. Montrer qu’il existe ng € N tel que pour tout n > ng, upy1 > Upy.
En déduire que (uy,)nen diverge vers +oo.
2. On suppose ¢ < 1. Montrer que (uy)nen converge vers 0.

3. Donner des exemples de suites (u,) pour lesquelles £ = 1, qui tendent vers 0, qui tendent vers
un réel non nul, ou encore qui tendent vers +oco.

Suites adjacentes
Exercice 14.8 (% %) n

1
Pour n € N*, onposeun—ZT—Q\/ﬁetvn—Z——Q\/n+1.

n
Montrer que les suites (uy,) et (vy,) sont adjacentes, et en déduire la limite de Z

S\

Exercice 14.9 (%% - Théoréme des segments emboités)
Soit ([an, by]),, une suite décroissante (au sens de l'inclusion) de segments non vides de R et dont les

longueurs tendent vers 0 lorsque n — +o00. Montrer que ﬂ [an, by] est un singleton.
neN

Exercice 14.10 (%% % - Moyenne arithmético-géométrique)
Soit (a,b) € R? tel que 0 < a < b. On pose ug = a, vo = b et pour tout n € N :

Uy, + Up,

Un+1 = A/ UnUn et Un+1 = 9

Montrer que les suites (u,) et (v,) sont convergentes, puis qu’elles convergent vers la méme limite.
Cette limite est appelée moyenne arithmético-géométrique de a et b.
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Suites implicites et suites récurrentes

Exercice 14.11 (% %)
1. Montrer que pour tout n € N, ’équation 2> + nx = 1 admet une unique solution réelle. On note
u, cette solution.

2. Montrer que la suite (uy) est strictement décroissante. En déduire qu’elle converge et calculer
sa limite.

Exercice 14.12 (%% %)
1. Montrer que pour tout n € N*, 'équation = +x2 4 -- -+ 2" = 1 admet une unique solution réelle
dans Pintervalle [0, +oc0[. On note x,, cette solution.

2. Montrer que la suite (x,) est monotone, puis convergente, et calculer sa limite.

1. Pour tout n € N*, notons f, la fonction polynomiale définie pour tout x € R par :
fol@)=a" +2" . -1
On applique le théoréme de la bijection & f,, sur [0, +oo] :

o fn est continue sur [0, +oo[ en tant que fonction polynomiale ;

o fn est dérivable sur [0, 400 en tant que fonction polynomiale, et pour tout € R :
n
fi(x) = Z kakt,
k=1

Ainsi f] (z) > 0 pour tout = € [0, +oco[. La fonction f,, est donc strictement crois-
sante sur [0, +0o0] ;

v fal0) = —Tet lim_fu(r) = +oo.

La fonction f, réalise donc une bijection de 'intervalle [0, 400 sur [—1,+oc[. Puisque
0 € [—1,+o0], I"équation f,(x) = 0 d’inconnue = € [0,+4o00] posséde une unique solution
Tn.

2. Pour tousn e N* et x € R :

n+1 n
for1(z) = Z b —1= Z b — 142" = f(z) + 2"
k=1 k=1

D’ou en prenant z = x,, dans cette égalité :

fn+1($n) = fn(l'n) + xz—H = $Z+1 >0= fn+1($n+1)

car fn(rp) = 0 = fri1(wpy1) et 271 > 0. La fonction f,11 étant strictement croissante,
on obtient :
Ty = Tn41-

Ceci étant vrai pour tout n € N* la suite (z,) est donc décroissante. Puisqu’elle est
également minorée par 0, elle converge donc vers une limite £ > 0.

Reste a déterminer ¢. Pour cela, regardons les premiers termes de la suite (z,,) :

e pour n =1, f; : x — x — 1 s’annule en un unique réel positif 1 =1 ;
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e pourn =2, fo: x> x24+x—1 est une fonction polynomiale de degré 2, de discriminant

—1++/5
égal a 5, et admet pour racines réelles 2\[ L’unique racine positive est donc

 —1+56

5 € [0,1].

Z2
Puisque (z,,) est décroissante, pour tout n > 2 :
0<z, <x9 < 1.

Soit n € N. Reprenons a présent I'égalité f,(x,) = 0, elle se récrit (en reconnaissant une
somme géométrique et en notant que x, # 1) :

1—gntt

T =1. (%)

Tn

n+1

»T qui nous embéte un peu. Pour cela,

On sait que limz, = £. Reste le terme en x
remarquons que :

n+1 n+1

0<z, ™ <zy".

n+1

Puisque x5 € | — 1, 1], lim x§+1 = 0, et par théoréme des gendarmes, limz,, "~ existe et vaut

0.

Passons a la limite quand n — +oo dans (*) (on a montré que tout converge) :

1
La suite (x,,) converge donc vers 3

Exercice 14.13 (%)
Donner le terme général des suites définies par :

1
(i) up =0 et pour tout n € N, up41 = gun +2;

(ii) vo =1 et pour tout n € N, v,,11 = Av, + 3, oit A est une constante réelle.

Exercice 14.14 (%)
Donner le terme général et étudier la convergence des suites définies par (ug,u1) € R? et pour tout
neN:

1 1

. .. 1
(1) Un+2 = Up+4+1 — Zun ) (11) Unp+2 = Un+1 — 5“71 ) (111) Un+2 = §(Un+1 + un)

Exercice 14.15 (% %)
Etudier les suites définies par :

i) Vn € N, upi1 = 2up(l —u,) et ug € R iii) Vn € N, up11 =upe ¥ et ug =1
+ +

.. 1
(i) Vn € Nyup41 = 5(4 —up) et ug =1/2; (iv) Vn € N, upy1 = In(1 4 2uy,) et ug € R.

Exercice 14.16 (%% - Méthode de Héron pour le calcul appro hé d92 2)

Soit (un)nen la suite définie par ug = 2 et pour tout n € N, up4q = 5 (un + —
Un
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. Montrer que pour tout n € N, u,, existe et u, > /2.

|y, — \/§|2
—

1
En déduire que pour tout n € N, |u, — v/2| < T Qu’en déduit-on sur la suite (u,) 7

Combien de termes de la suite faut-il calculer pour avoir une approximation de /2 & 107190
pres ?

Exercice 14.17 (%% %)
On considere la suite complexe (z,) définie par zg = re?® (=7 < 0 < 7) et pour tout n € N :

Zn+‘zn|

Zn+1 = 9

On désigne par r, le module de z, et par 0, argument de z, tel que —7 < 60,, < 7.

1. Effectuer la construction géométrique de z,41 a partir de z,.

2. Exprimer r,4+1 et 6,41 en fonction de r, et de 6,,, et en déduire lim 6,,.

27L

3. Etudier la suite Uy, = Ty SIN (i>, et en déduire r,, et limr,, puis lim z,.

1. Soit n € N. Les complexes z, et |z,| sont sur le méme cercle de centre 0 et de rayon |z,|.

Le complexe z,41 est alors le milieu du segment d’extrémités z, et |z,|. Par construction,
on remarquera que :

0
lzns1l <z et Opy1 = ?n
En particulier, on notera que 6,, € | — m, 7| pour tout n € N (ce qu’on pourrait démontrer
facilement par récurrence).
. Soit n € N. Calculons :
i0 ifn | —ifn
Zn + |20 rR€m 4+, it €2 +e7 "2 <9n) ifn
z = = =7r,e ——(—————— =TpCos| — | € .
n+1 2 2 n 2 n
0
Puisque ?n € ]—g, 5 [, cos (%”) > 0. Par unicité de I’écriture trigonométrique d’un nombre
complexe non nul :
On ¢ 0 On
Tr4l = Tn COS | — e = —.
n+1 n 9 n+1 2
La suite (0,) est géométrique de raison % € ] —1,1[. Par conséquent, pour tout n € N,
0, = o et (6,) converge vers 0.

. Soit n € N. Calculons :

ey 6.\ . (0 ) 0\ . (0
Un+1 = Tnt18i0 | oo | = racos | o0 )sin | ooy ) = racos | ooy ) sin | ooy
1 0 1
= i'rn S11 2@ = irn.
La suite (uy,) est également géométrique de raison % D’ot1 pour tout n € N :

1 .
Un = o = o7 sin(#).
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Si @ =0, alors z, = |2,]| et la suite (2,,) est constante égale & r.

0
Supposons 6 # 0. Puisque sin (2”) # 0, on obtient :

= Un 7 sin(0)

sin (0) 2™ gin <9> ‘
2n AL

Or :
()
sin | —
2" sin <9> = Gi — 0.
2n 0 n——+o00
on
- . 7 sin(6)
Ainsi, la suite (r,,) converge vers . Enfin, pour tout n € N :
. rsin(6
Zp = Ty c08(0y) + iry, sin(6,) s 0( )

Suites extraites

Exercice 14.18 (%)
Montrer que la suite de terme général u,, n’a pas de limite dans les deux cas suivants :

(i) up = sin (%F) + cos (%) pour tout n € N ;

(ii) () up est I'inverse du nombre de diviseurs premiers de n pour tout n > 2.

Exercice 14.19 (k%)
On dit qu’une suite (un)nen est périodique s’il existe p € N* tel que pour tout n € N, up 1), = up.

Montrer que toute suite réelle périodique et convergente est constante.

Exercice 14.20 (%)
Soit (un)nen une suite réelle. Montrer que (uy,)nen est convergente dans les deux cas suivants :

(i) (u2n)nen, (U2nt1)nen €t (usn)nen conver- (ii) (un)nen est monotone et (ugn)nen con-
gent ; verge.

Exercice 14.21 (k% - £9)

Soit (uy)nen une suite non bornée. Montrer qu’elle admet une sous-suite qui tend vers l'infini.

Exercice 14.22 (k% %)
Soit (u,) une suite telle que ug > 1 et pour tout n € N, up1 = /u2 + u, — (—1)”. Montrer que
Up — +00.
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Exercice 14.23 (k% %)

Soit (zy) une suite complexe. On suppose que :
Vp,a €N, p#q=lzp—z| > 1.

Prouver que |z,| —— +oc.
n—-+00

Exercice 14.24 (k% % %% - Oral ENS)
1. Soit (uy) une suite bornée. On suppose qu'’il existe un réel ¢ tel que toute suite convergente
extraite de (uy,) possede ¢ pour limite. Montrer que (u,) est convergente.

v
2. Soit (vy) une suite bornée telle que v, + % converge vers un réel £. Montrer que (vy) est

convergente.

Caractérisations séquentielles

Exercice 14.25 (%)
Déterminer les bornes supérieures et inférieures, si elles existent, des ensembles de réels suivants :

(=1)"n } { pq " } { 2n 2}
A= —F— eN B={——— €N N =0 — € N“ 3.
{ ] , , 5 q2,(p,q) X , C om 1 gn m,(m,n)

Exercice 14.26 (%% %)
Dans cet exercice, on note A = {\/n — /m, (m,n) € N?}.

V1 -1
1. Déterminer lim L

x—0 €T

2. Soit r € Q, et soient p € Z, g € N tels que r = %.

(a) Justifier que pour n suffisamment grand, le réel u,, = v/¢?n? + 2np — \/¢>n? est bien défini.

(b) Prouver que u, —— r.
n—-+0o

3. En déduire que A est dense dans R.

1. On reconnait le taux d’accroissement en 0 de la fonction f : x — /1 4+ x. Puisque [ est

AT /. 1 .
dérivable sur | — 1, +o0 [, avec f': z — oNAE=A

val -1 1
lim Y2 P70 ) = =
z—0 T 2

2. (a) Il s’agit surtout de s’assurer que pour n suffisamment grand, ¢?n? + 2np est positif, ce

qui n’est pas automatique si r < 0 car p < 0. Mais ¢’n? + 2np = n (q2n + 2p) j
n o
+00, si bien qu’a partir d'un certain rang, ¢’n? + 2np > 0.

(b) Pour n suffisamment grand pour que u,, soit défini :

2 2 2 2 2
Up = q%Q(F qfﬁ—l):qn(,/uqf;—l):px%( Hq?]:fl)'

Mais par la question 1, puisque 22—77 —— 0,
4" p—+4oo




MP21

Lycée Roosevelt

Et donc \/¢2n? + 2np — \/¢*n?2 — 21% =2=r

n—+oo 4

. Soit z € R, et soit n € N*. Par densité de Q dans R, il existe r, = Z—” € Q tel

que r — % <r, <+ % Et par la question précédente, il existe ng € N tel que

’\/ G2ng + 2nopn — \/42nd —n

1
< 5,

Posons alors v, = \/ q%ng + 2ngpy — \/ q,%n%, qui est un élément de A. Alors :

1 1
lop, — x| < |vp —rp| +|rn — 2] < — + — < —.
2n  2n " n
Et donc par le théoreme des gendarmes, lim v, = =z, si bien que x est la limite d’une

n—-+00o
suite d’éléments de A. Ceci étant vrai pour tout réel z, A est dense dans R.




