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Dénombrement
TD 15

Dénombrements
Exercice 15.1 (⋆)
Combien y a-t-il de mots de 7 lettres contenant le mot INFO ? De 8 lettres ? De 9 lettres?

Exercice 15.2 (⋆)
Lors de son inscription à un site de commerce en ligne, un utilisateur se voit demander un mot de
passe contenant 6 à 8 caractères, un tel mot de passe étant formé de lettres majuscules et de chiffres,
et contenant au moins une lettre. Combien de mots de passe sont-ils possibles ?

Exercice 15.3 (⋆)
Combien de relations d’ordre total existe-t-il sur un ensemble à n éléments ?

Exercice 15.4 (⋆⋆)
Combien les mots suivants ont-ils d’anagrammes (mot obtenu par permutation des lettres) ?

(i) ROOSEVELT (ii) RIKIKI (iii) ABRACADABRA

Exercice 15.5 (⋆⋆)
Soient p ⩽ n deux entiers naturels non nuls. Combien existe-t-il de parties de J1, nK qui contiennent :

(i) un seul élément de J1, pK ? (ii) au moins un élément de J1, pK ?

Exercice 15.6 (⋆⋆⋆ - Compositions d’un entier)
Soient n ∈ N et p ∈ N∗. On note Cp

n le nombre de suites (x1, . . . , xp) ∈ Np vérifiant la condition
x1 + · · · + xp = n.

1. Déterminer Cp
n en considérant les symboles « 1 » et « + » dans l’écriture x1 + · · · + xp = n.

2. On cherche à calculer Cp
n d’une autre manière.

(a) Établir : Cp+1
n =

n∑
k=0

Cp
k .

(b) En déduire : Cp
n =

(n+p−1
n

)
.

Exercice 15.7 (⋆⋆)
Dans un polygone convexe on appelle diagonale tout segment qui relie deux sommets non consécutifs.
Combien de côtés doit posséder un polygone qui possède autant de sommets que de diagonales ?

Exercice 15.8 (⋆⋆)
De combien de manières peut-on placer p tours sur un échiquier de taille n × n de manière à ce
qu’aucune ne puisse en prendre une autre ?
On rappelle qu’aux échecs une tour ne peut se déplacer que le long d’une ligne ou d’une colonne.
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Pour obtenir une telle configuration :

• on choisit p lignes de l’échiquier parmi n, ce qui représente
(n

p

)
possibilités ;

• puis pour chaque ligne, on choisit l’emplacement de la tour sur cette ligne. Plus précisément
pour la première ligne (celle avec le plus petit numéro), on a n emplacements possibles.
Puis (n − 1) emplacements possibles pour la deuxième ligne et la deuxième tour, jusqu’à
la ligne p pour laquelle on a (n − p + 1) possibilités pour placer la tour p.

Par le principe des bergers, le nombre de telles configurations est donc :(
n

p

)
n(n − 1) . . . (n − p + 1) =

(
n

p

)
n!

(n − p)! .

Exercice 15.9 (⋆⋆)
Une urne contient 15 boules numérotées de 1 à 15. Les boules numérotées de 1 à 5 sont blanches, les
boules numérotées de 6 à 15 sont noires.

1. On tire simultanément cinq boules de l’urne.

(a) Combien y a-t-il de tirages possibles ?
(b) Combien de tirages donnent 2 boules blanches et 3 boules noires ?

2. On tire successivement 5 boules de l’urne sans remise.

(a) En tenant compte de l’ordre, combien y a-t-il de tirages possibles ?
(b) Combien de tirages donnent 2 boules blanches et 3 boules noires dans un ordre quelconque ?

Exercice 15.10 (⋆⋆ - Le poker)
Rappelons qu’un jeu de poker contient 32 cartes, c’est-à-dire 8 (du 7 à l’as) de chaque couleur. Une
main est formée de 5 cartes. Combien y a-t-il de mains contenant :

(i) une quinte flush (cinq cartes consécutives de même couleur) ?

(ii) une couleur (5 cartes de même couleur, qui ne forment pas une quinte flush) ?

(iii) exactement trois trèfles ?

(iv) exactement un as et deux cœurs ?

Exercice 15.11 (⋆)
Soient x0, . . . , xn des réels de l’intervalle [0, 1[. Prouver qu’il en existe deux qui sont à distance
strictement inférieure à 1

n l’un de l’autre.

Exercice 15.12 (⋆⋆⋆)
On considère l’ensemble J1, 100K dont on fixe une sous-partie X de cardinal 10. Montrer qu’il existe
deux sous-parties de X distinctes dont la somme des éléments est égale.

Exercice 15.13 (⋆⋆⋆⋆ - Oral X)
Montrer qu’un ensemble E est infini si, et seulement si, pour toute application f : E → E, il existe
A ∈ P(E), A ̸= ∅ et A ̸= E tel que f(A) ⊂ A.
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Dénombrements ensemblistes
Exercice 15.14 (⋆⋆ - Formule de Vandermonde)
Soient (m, r, n) ∈ N3. À l’aide d’arguments combinatoires, prouver la formule suivante :

r∑
k=0

(
m

k

)(
n

r − k

)
=
(

n + m

r

)
.

Exercice 15.15 (⋆⋆)
Soient n ≥ p deux entiers naturels. Prouver par dénombrement que

n∑
k=p

(
k

p

)
=
(

n + 1
p + 1

)
.

Exercice 15.16 (⋆⋆⋆)
Soit E un ensemble fini de cardinal n ≥ 1. Calculer :

(i)
∑

X∈P(E)
Card(X) (ii)

∑
(X,Y )∈P(E)2

Card(X ∩ Y ) (iii)
∑

(X,Y )∈P(E)2

Card(X ∪ Y ).

Exercice 15.17 (⋆⋆ - Banque CCINP)
Soit n ∈ N∗ et soit E un ensemble de cardinal n.

1. Déterminer le nombre de couples (A, B) ∈ P(E)2 tels que A ⊂ B.

2. Déterminer le nombre de couples (A, B) ∈ P(E)2 tels que A ∩ B = ∅.

3. Déterminer le nombre de triplets (A, B, C) ∈ P(E)3 tels que A, B et C soient deux à deux
disjoints et vérifient A ∪ B ∪ C = E.

Exercice 15.18 (⋆⋆)
Soit E un ensemble de cardinal n.
Déterminer le nombre de couples (A, B) de parties de E telles que A ∪ B = E.

Exercice 15.19 (⋆⋆⋆ - Dénombrement par construction d’une bijection)
Soit E un ensemble de cardinal n. On souhaite déterminer le nombre de couples (A, B) ∈ P(E)2 tels
que A ⊂ B. Notons C =

{
(A, B) ∈ P(E)2 | A ⊂ B

}
.

Pour (A, B) ∈ C , on note χA,B la fonction définie sur E par χA,B(x) =


0 si x /∈ B
1 si x ∈ B \ A
2 si x ∈ A

.

Montrer que χ :
{

C −→ {0, 1, 2}E

(A, B) 7−→ χA,B
est bijective, et conclure.

Dénombrements d’applications
Exercice 15.20 (⋆⋆⋆⋆)
Soit E et F deux ensembles finis non vides de cardinaux respectifs p et n. On note Sp,n le nombre de
surjections de E dans F .

1. Déterminer Sp,2, Sp,3, Sp,p.
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2. On suppose p > 1, n > 1 et l’on introduit a un élément arbitraire de E. En étudiant la restriction
d’une surjection de E dans F à E \ {a}, établir :

Sp,n = n (Sp−1,n + Sp−1,n−1) .

3. En déduire que, pour tout entier n ≥ 1 et tout entier p ≥ 1 :

Sp,n =
n∑

k=0
(−1)n−k

(
n

k

)
kp.

1. Remarquons que Sp,2 = 0 si p = 1. Pour p ≥ 2, il y a 2p applications de E dans F = {y1, y2}.
Parmi celles-ci, seules deux applications ne sont pas surjectives, les applications constantes
k 7→ y1 et k 7→ y2.

Le nombre de surjections de E dans F est donc Sp,2 = 2n − 2.

De même, Sp,3 = 0 si p = 1 ou 2. Pour p ≥ 3, il y a 3p applications de E dans F =
{y1, y2, y3}. Parmi celles-ci, les applications non surjectives sont :

• les applications constantes : il y en a 3 ;
• les applications f dont l’image est {y1, y2}, {y1, y3} ou {y2, y3}. Et dans chacun de

ces cas, il y a Sp,2 = 2n − 2 telles applications.

Le nombre de surjections recherchées est donc :

Sp,3 = 3n − 3 − 3(2n − 2). = 3n − 3 × 2n + 3.

Enfin lorsque p = n, le cardinal des ensembles de départ et d’arrivée étant égaux, une
application est surjective si, et seulement si, elle est bijective. Et le nombre de bijections
de E dans lui-même est p!. D’où Sp,p = p!.

2. Soit f une surjection de E dans F . Notons b = f(a), et considérons g = f|E\{a}.

Puisque f est surjective, b admet au moins un antécédent par f . Deux cas sont possibles :

• soit b admet un unique antécédent par f , qui est alors a. Dans ce cas, g est une
application surjective de E\{a} dans F \{b}. Et réciproquement, une telle application
g se prolonge en une surjection de E dans F en associant à a l’élément b de F .
Il y a dans ce cas n choix possibles pour choisir l’élément f(a), et Sp−1,n−1 surjections
g possibles de E \ {a} dans F \ {f(a)}. Soit au total nSp−1,n−1 surjections dont la
restriction à E \ {a} n’est pas surjective.

• soit b admet au moins deux antécédents par f . Dans ce cas, g est une application
surjective de E \ {a} dans F . Et réciproquement, pour une telle application g, elle se
prolonge en une surjection de E dans F en associant à a n’importe quel élément de
F .
Il y a dans ce cas Sp−1,n surjections g possibles de E \{a} dans F , et n choix possibles
pour l’image de a. Soit au total nSp−1,n surjections de ce type.

Ainsi, le nombre Sp,n de surjections de E dans F est égal à :

Sp,n = nSp−1,n−1 + nSp−1,n = n(Sp−1,n−1 + Sp−1,n).

3. On montre par récurrence sur p ∈ N∗ la propriété P(p) : « ∀n ∈ N∗, Sp,n =
n∑

k=0
(−1)n−k

(
n

k

)
kp ».
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I Pour p = 1 et n = 1, S1,1 = 1 et on vérifie :

1∑
k=0

(−1)1−k

(
1
k

)
k = 0 + 1 = 1.

Si n > 1, S1,n = 0 et on vérifie à l’aide de la formule du binôme que :

n∑
k=0

(−1)n−k

(
n

k

)
k =

n∑
k=1

(−1)n−k

(
n

k

)
k =

n∑
k=1

(−1)n−k

(
n − 1
k − 1

)
n = n(−1 + 1)n−1 = 0.

H Soit p ≥ 2. Supposons la propriété au rang p − 1. Pour n = 1, Sp,1 = 1 et on vérifie
que :

1∑
k=0

(−1)1−k

(
1
k

)
kp = 0 + 1p = 1.

Pour n ≥ 2, on utilise l’identité de la question précédente et l’hypothèse de récurrence :

Sp,n = n(Sp−1,n + Sp−1,n−1)

= n
n∑

k=0
(−1)n−k

(
n

k

)
kp−1 + n

n−1∑
k=0

(−1)n−1−k

(
n − 1

k

)
kp−1.

On ajoute un terme nul pour k = n dans la deuxième somme puis on combine les
deux sommes avant d’employer la formule du triangle de Pascal puis la formule du
capitaine :

Sp,n = n
n∑

k=0
(−1)n−k

((
n

k

)
−
(

n − 1
k

))
kp−1 = n

n∑
k=0

(−1)n−k

(
n − 1
k − 1

)
kp−1

= 0︸︷︷︸
k=0

+
n∑

k=1
(−1)n−k

(
n

k

)
kp =

n∑
k=0

(−1)n−k

(
n

k

)
kp.

D’où la propriété au rang p.

On conclut par principe de récurrence.

Exercice 15.21 (⋆⋆⋆)
1. Combien y a-t-il d’applications strictement croissantes de J1, pK dans J1, nK ?

2. (a) Soit f : J1, pK → J1, nK croissante. Montrer que l’application g : k 7→ f(k) + k − 1 est
strictement croissante de J1, pK dans J1, n + p − 1K.

(b) Soit g : J1, pK → J1, n + p − 1K strictement croissante. Montrer que f : k 7→ g(k) − k + 1 est
croissante de J1, pK dans J1, nK.

(c) En déduire le nombre d’applications croissantes de J1, pK dans J1, nK.

1. Notons tout d’abord qu’une application strictement croissante est injective. Par conséquent,
si p > n, il n’y a pas de telle application.

Supposons p ≤ n. Une application g : J1, pK → J1, nK strictement croissante est totalement
déterminée par son image. En effet, si Im(g) = {y1, . . . , yp} avec y1 < y2 < · · · < yp, alors
nécessairement g(i) = yi pour tout 1 ≤ i ≤ p par stricte croissance.

Ainsi, les applications strictement croissantes de J1, pK dans J1, nK sont en bijection avec les
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p-combinaisons de J1, nK. Il y en a donc
(

n

p

)
.

2. (a) L’application g est bien à valeurs dans J1, n + p − 1K puisque pour tout k ∈ J1, pK :

1 ≤ f(1) ≤ f(k) + k − 1 ≤ f(p) + p − 1 ≤ n + p − 1.

Montrons qu’elle est strictement croissante. Soit pour cela 1 ≤ k < ℓ ≤ p. Par
croissance de f :

g(k) = f(k) + k − 1 ≤ f(ℓ) + k − 1 < f(ℓ) + ℓ − 1 = g(ℓ).

Donc g est strictement croissante.
(b) Inversement, prenons g : J1, pK → J1, n + p − 1K strictement croissante. Montrons que

f : k 7→ g(k) − k + 1 est croissante de J1, pK dans J1, nK.
Soient k, ℓ ∈ J1, pK avec k ≤ ℓ. Puisque g est strictement croissante :

g(ℓ) − g(k) =
ℓ∑

i=k+1
g(i) − g(i − 1)︸ ︷︷ ︸

≥1

≥ ℓ − k.

D’où :
f(ℓ) − f(k) ≥ g(ℓ) − g(k) − (ℓ − k) ≥ 0.

Donc l’application f est croissante. Comme de plus f(1) = g(1) ≥ 1 et f(p) =
g(p) − p + 1 ≤ n + p − 1 − p + 1 = n, f est bien à valeurs dans J1, nK.

(c) Les questions précédentes établissent une correspondance bijective entre les applica-
tions croissantes de J1, pK dans J1, nK et les applications strictement croissantes de
J1, pK dans J1, n + p − 1K. Par la question 1, le nombre d’applications croissantes de

J1, pK dans J1, nK est donc
(

n + p − 1
p

)
.

Exercice 15.22 (⋆⋆⋆ - Formule du crible)
1. Prouver par récurrence sur n ⩾ 2 la formule du crible : si A1, . . . , An sont n parties finies d’un

ensemble E, alors

Card (A1 ∪ A2 ∪ · · · ∪ An) =
n∑

k=1
(−1)k+1 ∑

1⩽i1<i2<···<ik⩽n

Card (Ai1 ∩ · · · ∩ Aik
)

=
∑

I⊂J1,nK
I ̸=∅

(−1)Card(I)−1 Card
(⋂

i∈I

Ai

)
.

2. Application. On note Dn l’ensemble des dérangements de J1, nK, c’est-à-dire les éléments de Sn

sans points fixes. Pour i ∈ J1, nK, on note Ai = {σ ∈ Sn | σ(i) = i}. En appliquant la formule
du crible, prouver que :

Card(Dn) = n!
n∑

k=0

(−1)k

k! .

1. Notons P(n) la propriété : ”si A1, . . . , An sont n parties finies d’un ensemble E, alors
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Card (A1 ∪ A2 ∪ · · · ∪ An) =
n∑

k=1
(−1)k+1 ∑

1⩽i1<i2<···<ik⩽n

Card (Ai1 ∩ · · · ∩ Aik
) ”.

Montrons par récurrence que P(n) est vraie pour tout n ≥ 2.

I Pour n = 2, c’est une formule du cours.
H Soit n ≥ 2. Supposons que P(n) est vraie.

Soient A1, . . . , An+1 des parties finies de E. Alors :

Card(A1 ∪ . . . ∪ An+1)
= Card(A1 ∪ . . . ∪ An) + Card(An+1) − Card((A1 ∪ . . . ∪ An) ∩ An+1) (cas n = 2)

=
n∑

k=1
(−1)k+1 ∑

1⩽i1<i2<···<ik⩽n

Card (Ai1 ∩ · · · ∩ Aik
) + Card(An+1)

− Card((A1 ∩ An+1) ∪ . . . ∪ (An ∩ An+1)) (avec P(n))

=
n∑

k=1
(−1)k+1 ∑

1⩽i1<i2<···<ik⩽n

Card (Ai1 ∩ · · · ∩ Aik
) + Card(An+1)

−
n∑

ℓ=1
(−1)ℓ+1 ∑

1⩽i1<i2<···<iℓ⩽n

Card (Ai1 ∩ · · · ∩ Aiℓ
∩ An+1) (avec P(n))

=
n∑

k=1
(−1)k+1 ∑

1⩽i1<i2<···<ik⩽n

Card (Ai1 ∩ · · · ∩ Aik
) + Card(An+1)

−
n+1∑
ℓ=2

(−1)ℓ
∑

1⩽i1<i2<···<iℓ−1⩽n

Card
(
Ai1 ∩ · · · ∩ Aiell−1 ∩ An+1

)
=

n∑
k=1

(−1)k+1 ∑
1⩽i1<i2<···<ik⩽n

Card (Ai1 ∩ · · · ∩ Aik
)

+
n+1∑
ℓ=1

(−1)ℓ+1 ∑
1⩽i1<i2<···<iℓ−1⩽n

Card
(
Ai1 ∩ · · · ∩ Aiell−1 ∩ An+1

)

On remarque que, dans la première somme, il y a tous les termes avec des intersections
de k des A1, . . . , An+1 sans An+1. Et dans la seconde somme, il y a tous les termes avec
des intersections de ℓ des A1, . . . , An+1 avec An+1. Donc ces deux sommes peuvent se
regrouper en une seule :

Card (A1 ∪ A2 ∪ · · · ∪ An) =
n∑

k=1
(−1)k+1 ∑

1⩽i1<i2<···<ik⩽n

Card (Ai1 ∩ · · · ∩ Aik
) ,

et ainsi P(n + 1) est vraie.

Par le principe de récurrence, nous avons donc démontré la formule du crible.

2. Dans le cas qui nous intéresse, remarquons que Dn =
n⋃

i=1
Ai. Or, avec la formule du crible,

Card
(

n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k+1 ∑
1⩽i1<i2<···<ik⩽n

Card (Ai1 ∩ · · · ∩ Aik
) .
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On remarque que la somme intérieure, à k fixé, contient
(

n

k

)
termes.

De plus, l’intersection de k des Ai est formée par les permutations qui fixent k points donnés
de [[1, n]]. Elles sont au même nombre que les permutations des n − k nombres restants,
c’est-à-dire (n − k)!. Donc :

Card(Dn) =
n∑

k=1
(−1)k+1

(
n

k

)
(n − k)! =

n∑
k=1

(−1)k+1 n!
k!

et finalement

Card(Dn) = Card(S(E)) −
n∑

k=1
(−1)k+1 n!

k! = n! +
n∑

k=1
(−1)k n!

k! = n!
n∑

k=0

(−1)k

k! .
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