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— TD 15

Dénombrement

Dénombrements

Exercice 15.1 (%)
Combien y a-t-il de mots de 7 lettres contenant le mot INFO ? De 8 lettres 7 De 9 lettres?

Exercice 15.2 (%)

Lors de son inscription & un site de commerce en ligne, un utilisateur se voit demander un mot de
passe contenant 6 & 8 caracteres, un tel mot de passe étant formé de lettres majuscules et de chiffres,
et contenant au moins une lettre. Combien de mots de passe sont-ils possibles ?

Exercice 15.3 (%)
Combien de relations d’ordre total existe-t-il sur un ensemble & n éléments 7

Exercice 15.4 (%%)
Combien les mots suivants ont-ils d’anagrammes (mot obtenu par permutation des lettres) ?

(i) ROOSEVELT (i) RIKIKI (iii) ABRACADABRA

Exercice 15.5 (% %)
Soient p < n deux entiers naturels non nuls. Combien existe-t-il de parties de [1,7n] qui contiennent :

(i) un seul élément de [[1,p] ? (ii) au moins un élément de [1,p] ?

Exercice 15.6 (k%% - Compositions d’un entier)
Soient n € N et p € N*. On note C? le nombre de suites (z1,...,z,) € NP vérifiant la condition
1+ +xp=n.

1. Déterminer C? en considérant les symboles « 1 » et « 4+ » dans I’écriture x1 + - - - 4+ z, = n.

2. On cherche a calculer C? d’une autre maniere.
. n
(a) Etablir:  CPt1 =% "CF.
k=0

(b) En déduire :  CF = (""P71).

Exercice 15.7 (% %)
Dans un polygone convexe on appelle diagonale tout segment qui relie deux sommets non consécutifs.
Combien de c6tés doit posséder un polygone qui possede autant de sommets que de diagonales ?

Exercice 15.8 (% %)

De combien de maniéres peut-on placer p tours sur un échiquier de taille n x n de maniére a ce
qu’aucune ne puisse en prendre une autre ?

On rappelle qu’aux échecs une tour ne peut se déplacer que le long d’une ligne ou d’une colonne.
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Pour obtenir une telle configuration :
e on choisit p lignes de I’échiquier parmi n, ce qui représente (Z) possibilités ;

e puis pour chaque ligne, on choisit I’emplacement de la tour sur cette ligne. Plus précisément
pour la premiere ligne (celle avec le plus petit numéro), on a n emplacements possibles.
Puis (n — 1) emplacements possibles pour la deuxiéme ligne et la deuxiéme tour, jusqu’a
la ligne p pour laquelle on a (n — p + 1) possibilités pour placer la tour p.

Par le principe des bergers, le nombre de telles configurations est donc :

n n n!
(p)n(n—l)...(n—p—l—l): <p>(np)'

Exercice 15.9 (%%)
Une urne contient 15 boules numérotées de 1 a 15. Les boules numérotées de 1 & 5 sont blanches, les
boules numérotées de 6 & 15 sont noires.

1. On tire simultanément cing boules de I'urne.

(a) Combien y a-t-il de tirages possibles 7

(b) Combien de tirages donnent 2 boules blanches et 3 boules noires ?
2. On tire successivement 5 boules de 'urne sans remise.

(a) En tenant compte de 'ordre, combien y a-t-il de tirages possibles 7

(b) Combien de tirages donnent 2 boules blanches et 3 boules noires dans un ordre quelconque ?

Exercice 15.10 (%% - Le poker)
Rappelons qu’'un jeu de poker contient 32 cartes, c’est-a-dire 8 (du 7 a I’as) de chaque couleur. Une
main est formée de 5 cartes. Combien y a-t-il de mains contenant :

(i) une quinte flush (cing cartes consécutives de méme couleur) ?
(ii

) une couleur (5 cartes de méme couleur, qui ne forment pas une quinte flush) 7
(iii) exactement trois trefles 7
)

(iv) exactement un as et deux coeurs ?

Exercice 15.11 (%)
Soient x,...,x, des réels de lintervalle [0,1]. Prouver qu'’il en existe deux qui sont a distance
strictement inférieure a % I'un de l'autre.

Exercice 15.12 (k% %)
On consideére ’ensemble [[1,100] dont on fixe une sous-partie X de cardinal 10. Montrer qu'’il existe
deux sous-parties de X distinctes dont la somme des éléments est égale.

Exercice 15.13 (%% %% - Oral X)
Montrer qu'un ensemble E est infini si, et seulement si, pour toute application f : E — E, il existe
Ae P(E),A#Det A+ FE tel que f(A) C A.
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Dénombrements ensemblistes

Exercice 15.14 (%% - Formule de Vandermonde)
Soient (m,r,n) € N3. A l'aide d’arguments combinatoires, prouver la formule suivante :

2000

Exercice 15.15 (k%) n <k> (n—i— 1)

Soient n > p deux entiers naturels. Prouver par dénombrement que Z 1
p p
k=p

Exercice 15.16 (k% %)
Soit E un ensemble fini de cardinal n > 1. Calculer :

(i) Z Card(X) (ii) Z Card(X NY) (iii) Z Card(X UY).

XeZ(E) (X, Y)e2(E)? (X,)Y)eP(E)?

Exercice 15.17 (%% - Banque CCINP)
Soit n € N* et soit £ un ensemble de cardinal n.

1. Déterminer le nombre de couples (A, B) € Z(E)? tels que A C B.
2. Déterminer le nombre de couples (A, B) € Z(E)? tels que AN B = ).

3. Déterminer le nombre de triplets (A, B,C) € Z(E)? tels que A, B et C soient deux a deux
disjoints et vérifient AUBUC = FE.

Exercice 15.18 (% %)
Soit F/ un ensemble de cardinal n.
Déterminer le nombre de couples (A, B) de parties de E telles que AU B = E.

Exercice 15.19 (%% % - Dénombrement par construction d’une bijection)
Soit E un ensemble de cardinal n. On souhaite déterminer le nombre de couples (A, B) € Z(E)? tels
que A C B. Notons ¢ = {(A,B) € Z(E)? | A C B}.

0 siz¢B
Pour (A, B) € €, on note x4, la fonction définie sur E par xap(z) =4 1 size B\ A .
2 sized

¢ — {0,1,2}F

(A,B) — xas est bijective, et conclure.

Montrer que Y : {

Dénombrements d’applications

Exercice 15.20 (k% % %)
Soit F et I’ deux ensembles finis non vides de cardinaux respectifs p et n. On note S, ,, le nombre de
surjections de E dans F.

1. Déterminer Sy 2, Sp.3, Spp-
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2. On suppose p > 1, n > 1 et 'on introduit ¢ un élément arbitraire de £. En étudiant la restriction
d’une surjection de E dans F' a E'\ {a}, établir :

Spn =1 (Sp—1,n + Sp—1,n—1) -

3. En déduire que, pour tout entier n > 1 et tout entier p > 1 :

Sp,n = Z(_l)n_k <k> KP.

k=0

1. Remarquons que Sp2 = 0sip = 1. Pour p > 2, il y a 2P applications de E dans F' = {y1,y2}.
Parmi celles-ci, seules deux applications ne sont pas surjectives, les applications constantes
k— yp et k— yo.

Le nombre de surjections de E' dans F' est donc Sy 2 = 2" — 2.

De méme, S,3 = 0sip =1ou 2. Pourp > 3,ilya 3” applications de E dans F' =
{y1,y2,y3}. Parmi celles-ci, les applications non surjectives sont :

e les applications constantes : il y en a 3 ;

o les applications f dont l'image est {y1,y2}, {y1,y3} ou {y2,y3}. Et dans chacun de

ces cas, il y a Sp2 = 2" — 2 telles applications.

Le nombre de surjections recherchées est donc :

Sps=3"—3-3(2"—2).=3"—3x2"+3.

Enfin lorsque p = n, le cardinal des ensembles de départ et d’arrivée étant égaux, une
application est surjective si, et seulement si, elle est bijective. Et le nombre de bijections
de E dans lui-méme est p!. D’ou Sp,, = p!.

2. Soit f une surjection de £ dans F'. Notons b = f(a), et considérons g = fg\(a}-

Puisque f est surjective, b admet au moins un antécédent par f. Deux cas sont possibles :

e soit b admet un unique antécédent par f, qui est alors a. Dans ce cas, g est une
application surjective de F'\ {a} dans F'\ {b}. Et réciproquement, une telle application
g se prolonge en une surjection de E dans F' en associant a a 1’élément b de F'.

Il y a dans ce cas n choix possibles pour choisir I’élément f(a), et S,—1 -1 surjections
g possibles de E'\ {a} dans F'\ {f(a)}. Soit au total nSy_1,—1 surjections dont la
restriction & E \ {a} n’est pas surjective.

e soit b admet au moins deux antécédents par f. Dans ce cas, g est une application
surjective de F'\ {a} dans F'. Et réciproquement, pour une telle application g, elle se
prolonge en une surjection de E dans F' en associant a a n’importe quel élément de
F.

Il'y a dans ce cas Sp—1,, surjections g possibles de E'\ {a} dans F', et n choix possibles
pour I'image de a. Soit au total n.S,_1 , surjections de ce type.

Ainsi, le nombre S, ,, de surjections de E dans F' est égal a :

Spn =nSp—1,n—1+nSp—1n = n(Sp—1,n-1 + Sp—1,1)-

~ n
3. On montre par récurrence sur p € N* la propriété Z(p): « ¥n € N*, S, ,, = Z(—l)"‘k <k kP ».
k=0
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Pour p=1et n=1, S;1 =1 et on vérifie :

! 1
do(=1)tF <k>k =0+1=1

Sin > 1, S1,, =0 et on vérifie a I'aide de la formule du binéme que :

S (1) () XZ: nk() zn: nk(”_Dn:n(—Hl)"—l:o.

k=0

Soit p > 2. Supposons la propriété au rang p — 1. Pour n = 1, S;,1 = 1 et on vérifie
que :

! 1
do(=1)tF <k> kP =0+17 = 1.

k=0

Pour n > 2, on utilise I’identité de la question précédente et I’hypothése de récurrence :

Spn = n(Sp—1,n + Sp—1,n—1)
n n—1
—o 3yt (et n Sy (e
k=0

On ajoute un terme nul pour & = n dans la deuxieme somme puis on combine les
deux sommes avant d’employer la formule du triangle de Pascal puis la formule du
capitaine :

el ) e
e e

D’ou la propriété au rang p.

On conclut par principe de récurrence.

Exercice 15.21 (k% %)
1. Combien y a-t-il d’applications strictement croissantes de [1,p] dans [1,n] 7

2. (a) Soit f : [1,p] — [1,n] croissante. Montrer que l'application g : k — f(k) + k — 1 est
strictement croissante de [1,p] dans [1,n +p — 1].

(b) Soit g : [1,p] — [1,n + p — 1] strictement croissante. Montrer que f : k — g(k) —k + 1 est
croissante de [1, p] dans [1,n].

(¢) En déduire le nombre d’applications croissantes de [1,p] dans [1,n].

1. Notons tout d’abord qu’une application strictement croissante est injective. Par conséquent,
si p > n, il n’y a pas de telle application.

Supposons p < n. Une application g : [1,p] — [1,n] strictement croissante est totalement
déterminée par son image. En effet, si Im(g) = {y1,...,yp} avec y1 < y2 < --- <y, alors
nécessairement g(i) = y; pour tout 1 < i < p par stricte croissance.

Ainsi, les applications strictement croissantes de [1, p] dans [[1,n] sont en bijection avec les
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p-combinaisons de [1,n]. Il y en a donc (n)
p

2. (a) L’application g est bien a valeurs dans [1,n + p — 1] puisque pour tout k € [[1,p] :
1I<f)<flk)+k-1<fp)+p—-1<n+p-—1.

Montrons qu’elle est strictement croissante. Soit pour cela 1 < k < £ < p. Par
croissance de f :

gk)=fk)+k—-1<f)+k—-1< f()+L—1=g(().

Donc g est strictement croissante.

(b) Inversement, prenons g : [1,p] — [1,n + p — 1] strictement croissante. Montrons que
f kv g(k) —k+ 1 est croissante de [1,p] dans [1,n].

Soient k, ¢ € [1,p] avec k < £. Puisque g est strictement croissante :

4

g() —gk)= > g(i) —g(i—1) > (k.

i=k+1 >1

D’ou :

f) = f(k) = g(t) —g(k) = (£ — k) > 0.
Donc 'application f est croissante. Comme de plus f(1) = g(1) > 1 et f(p) =
gp)—p+1<n+p—1—p+1=mn, f est bien a valeurs dans [1,n].

(c) Les questions précédentes établissent une correspondance bijective entre les applica-
tions croissantes de [1,p] dans [1,n] et les applications strictement croissantes de
[1,p] dans [1,n 4+ p — 1]. Par la question 1, le nombre d’applications croissantes de

n+p—1

[1,p] dans [1,n] est donc »

Exercice 15.22 (%% % - Formule du crible)
1. Prouver par récurrence sur n > 2 la formule du crible : si Ay,..., A, sont n parties finies d’un
ensemble FE, alors

n

Card (A; UAa U+~ UAy) =) (—1)FH! > Card (A;; N--- N A;)

k=1 1< <in<- < <N
= Z (—=1)Card)=1 Card <ﬂ Ai> .
IC[1,n] iel
I#0

2. Application. On note D,, 'ensemble des dérangements de [1,n], c’est-a-dire les éléments de &,
sans points fixes. Pour i € [1,n], on note 4; = {0 € &,, | 0(i) = i}. En appliquant la formule
du crible, prouver que :

- (DF
Card(D,,) = n! Z TR
k=0
| 1. Notons & (n) la propriété : ”si Ay,..., A, sont n parties finies d’un ensemble E, alors
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Card (A UAU---UA,) = Z:(—l)k”Jrl Z Card (4;, N---NA;, )"

k=1 1<i1<in<---<ip<n
Montrons par récurrence que &?(n) est vraie pour tout n > 2.
Pour n = 2, c¢’est une formule du cours.
Soit n > 2. Supposons que Z(n) est vraie.
Soient Ay, ..., A,4+1 des parties finies de E. Alors :

Card(A1 Uu...u An-i—l)
= Card(A; U...UA,) + Card(Ap4+1) — Card((A1 U...UA,) N Apt1) (cas n=2)

= Z(—l)kH Z Card (4;, N---NA;, ) + Card(Ap11)
k=1

1< <io< - <ip<n

—7Card((A1 NA1)U...U(A,NA1)) (avec Z(n))

=) (=1)Ftt > Card (A N---NA;,) + Card(Any 1)

k=1 1<i1<ip<---<ip<n

— Zn:(—l)eJrl Z Card (4;, N---NA;,NA,1) (avec P (n))

/=1 1< <o <<y <n
n
= (—1)FH! > Card (A;, N---NA;, ) + Card(Apy1)
k=1 1< <io < <ip<n
n+1
=S (-1t > Card (A, NN A, N Ayi)
(=2 1< <o < <ip_1<n

S DY Cad (A e 4y

k=1 1<i1<io<--<ip<n
n+1
/+1
+) (-1 > Card (A, N---N Ay, N Apyg)
=1 1< <ig < <ig_1<n

On remarque que, dans la premiére somme, il y a tous les termes avec des intersections
de k des A1, ..., Apy1 sans A, 1. Et dans la seconde somme, il y a tous les termes avec
des intersections de £ des Ay, ..., Apt+1 avec A,4q. Donc ces deux sommes peuvent se
regrouper en une seule :

Card (A1 U A U+~ UA,) = > (—1)F! > Card (A; N---NA;),
k=1 1<i1<io<-<ip<n
et ainsi Z(n + 1) est vraie.

Par le principe de récurrence, nous avons donc démontré la formule du crible.

n
2. Dans le cas qui nous intéresse, remarquons que D,, = U A;. Or, avec la formule du crible,
i=1

Card (CJ AZ-) = f:(—n’f“ > Card (A, N---NA;,) .

1=1 k=1 1<i1 <o < <ip<n
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s N , . n
On remarque que la somme intérieure, a k fixé, contient < k:) termes.

De plus, I'intersection de k des A; est formée par les permutations qui fixent k& points donnés
de [1,n]. Elles sont au méme nombre que les permutations des n — k nombres restants,
c’est-a-~dire (n — k)!. Donc :

Card(D,, Zn: k+1 <n> zn: k+1 ”'

k=1

et finalement

n n! = n!
Card(D,) = Card(&(E)) — g(_l)kﬂﬂ =n!+ kzzjl(—l)kH = nl kz:% o




