
MP2I Lycée Roosevelt

Calcul matriciel
TD 17

Opérations matricielles
Exercice 17.1 (⋆)
Montrer que si A, B sont deux matrices nilpotentes de Mn(K) qui commutent, alors A + B et AB
sont encore nilpotentes. Est-ce encore vrai si on ne suppose plus que A et B commutent ?

Exercice 17.2 (⋆⋆ - Matrices stochastiques)
Une matrice A = (ai,j) ∈ Mn(R) est dite stochastique si pour tout (i, j) ∈ J1, nK2, ai,j est un réel positif

ou nul, et si pour tout i ∈ J1, nK,
n∑

j=1
ai,j = 1. On note ST n(R) l’ensemble des matrices stochastiques

de Mn(R)

1. Donner des exemples de matrices stochastiques.

2. Soit λ ∈ [0, 1]. Montrer que si A et B appartiennent à ST n(R), alors λ · A + (1 − λ) · B est dans
ST n(R) également.

3. (a) Notons X =

1
...
1

 ∈ Mn,1(R). Montrer que : A ∈ ST n(R) ⇔
{

∀i, j, ai,j ≥ 0
AX = X

.

(b) En déduire que si A et B sont stochastiques, alors A × B est stochastique.

Exercice 17.3 (⋆⋆⋆ - Centre de Mn(K) - �)
On considère l’ensemble suivant (appelé le centre de Mn(K)) :

Zn = {M ∈ Mn(K) | ∀A ∈ Mn(K), A × M = M × A}.

1. Proposer deux matrices appartenant à Zn.

2. La matrice
(

1 0
0 2

)
appartient-elle à Z2 ?

3. On souhaite déterminer l’ensemble Zn. Considérons pour cela une matrice M ∈ Zn.

(a) Pour tout 1 ≤ i, j ≤ n, calculer Ei,j × M et M × Ei,j .
(b) En déduire que M est une matrice scalaire, c’est-à-dire de la forme λ · In avec λ ∈ K.
(c) Conclure.

1. On peut proposer 0n ou In. Plus globalement, toute matrice scalaire, c’est-à-dire de la
forme λIn pour λ ∈ K, est dans Zn. Le but de la suite de l’exercice est de montrer qu’il
n’y en a pas d’autres.

2. On a : (
1 0
0 2

)
× E1,2 = E1,2 ̸= E1,2 ×

(
1 0
0 2

)
= 2E1,2.

Donc
(

1 0
0 2

)
n’est pas dans le centre de M2(K).
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3. (a) Rappelons que :

Ei,j × Ek,ℓ =
{

Ei,ℓ si j = k

0 sinon.

Pour tous 1 ≤ i, j ≤ n :

Ei,j × M = Ei,j ×
(

n∑
k=1

n∑
ℓ=1

mk,ℓEk,ℓ

)
=

n∑
k=1

n∑
ℓ=1

mk,ℓEi,j × Ek,ℓ︸ ︷︷ ︸
=0 si k ̸=j

=
n∑

ℓ=1
mj,ℓEi,ℓ

D’autre part :

M × Ei,j =
(

n∑
k=1

n∑
ℓ=1

mk,ℓEk,ℓ

)
× Ei,j =

n∑
ℓ=1

n∑
k=1

mk,ℓEk,ℓEi,j︸ ︷︷ ︸
=0 si ℓ ̸=i

=
n∑

k=1
mk,iEk,j

(b) Puisque M ∈ Zn, on a M × Ei,j = Ei,j × M , d’où :

n∑
ℓ=1

mj,ℓEi,ℓ =
n∑

k=1
mk,iEk,j .

Par unicité de l’écriture comme somme de matrices élémentaires (on utilise ici ce qu’on
appelle la liberté de la famille (Ei,j)) :

mj,ℓ = 0 pour tout ℓ ̸= j,

mk,i = 0 pour tout k ̸= i,

mj,j = mi,i (cas ℓ = j et k = i).

Ceci étant vrai pour tout 1 ≤ i, j ≤ n, on en déduit que :{
mi,j = 0 pour tout i ̸= j

mi,i = mj,j pour tout i, j ∈ J1, nK
.

La matrice M est donc égale à M = m1,1In. C’est donc bien une matrice scalaire.
(c) Réciproquement, les matrices scalaires appartiennent bien à Zn. Ainsi (par double

inclusion) :
Zn = {λIn, λ ∈ K}.

Exercice 17.4 (⋆⋆⋆ - Nilpotence des matrices triangulaires strictes - �)
Le but de cet exercice est de montrer que toute matrice triangulaire supérieure stricte de Mn(K) est
nilpotente d’indice de nilpotence inférieur à n.

1. Soit k ≥ 0 et notons T +
k (K) l’ensemble de matrices A = (ai,j) telles que :

ai,j = 0 si i + k > j.

(a) Identifier T +
0 (K), T +

1 (K), T +
n (K)

(b) Soient k, ℓ ≥ 1. Montrer que si A ∈ T +
k (K) et B ∈ T +

ℓ (K), alors A × B ∈ T +
k+ℓ(K).
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2. Montrer qu’une matrice triangulaire supérieure stricte est nilpotente, d’indice de nilpotence
inférieur à n.

1. (a) Par définition, T +
0 (K) est l’ensemble des matrices A = (ai,j) telles que :

ai,j = 0 si i > j

ce qui correspond aux matrices triangulaires supérieures :
a1,1 a1,2 . . . a1,n

0 a2,2
. . . ...

... . . . an−1,n

0 . . . 0 an,n

 .

De même, T +
1 (K) est l’ensemble des matrices A = (ai,j) telles que :

ai,j = 0 si i > j − 1

ce qui correspond aux matrices triangulaires supérieures strictes :
0 a1,2 . . . a1,n

0 0 . . . ...
... . . . an−1,n

0 . . . 0 0

 .

Enfin, T +
n (K) est l’ensemble des matrices A = (ai,j) telles que :

ai,j = 0 si i > j − n.

Puisque i > j−n pour tout (i, j) ∈ J1, nK2, une telle matrice est nulle. Donc T +
n (K) est

l’ensemble réduit à la matrice nulle. On notera plus généralement que T +
k (K) = {0n}

pour tout k ≥ n.
(b) Soient k, ℓ ≥ 1 et A ∈ T +

k (K) et B ∈ T +
ℓ (K). Alors :

ai,j = 0 si i + k > j et bi,j = 0 si i > j − ℓ.

On souhaite montrer que A × B ∈ T +
k+l(K), c’est-à-dire que pour tout (i, j) ∈ J1, nK2 :

[A × B]i,j = 0 si i + k > j − ℓ.

Or pour un tel couple (i, j) :

[A × B]i,j =
n∑

r=1
ai,rbr,j =

i+k−ℓ∑
r=1

ai,r︸︷︷︸
=0

br,j +
n∑

r=i+k

ai,r br,j︸︷︷︸
=0 car r≥i+k>j−ℓ

= 0

D’où le résultat.
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2. Soit A une matrice triangulaire supérieure stricte, de sorte que A ∈ T +
1 (K). En utilisant

le résultat de la question précédente, on obtient par une récurrence immédiate que :

∀k ∈ N∗, Ak ∈ T +
k (K).

En particulier, An ∈ T +
n (K) = {0n}, et A est nilpotente d’indice de nilpotence inférieur à

n.

Trace, transposée
Exercice 17.5 (⋆)
Soient A, B ∈ Sn(R). Montrer que AB est symétrique si, et seulement si, AB = BA.

Exercice 17.6 (⋆⋆)
Montrer qu’il n’existe pas deux matrices A, B ∈ Mn(K) telles que A × B − B × A = In.

Exercice 17.7 (⋆⋆)
Soit A ∈ Mn(R). Montrer que tr

(
A⊤A

)
= 0 si, et seulement si, A = 0n.

On a :

Tr(A⊤A) =
n∑

i=1
[A⊤A]i,i =

n∑
i=1

n∑
j=1

[A⊤]i,j [A]j,i =
n∑

i=1

n∑
j=1

[A]j,i[A]j,i.

Ainsi Tr(A⊤A) = 0 équivaut à
n∑

i=1

n∑
j=1

[A]2j,i = 0. Comme c’est une somme de termes positifs, elle

est nulle si et seulement si tous les termes sont nuls, c’est à dire :

∀(i, j) ∈ J1, nK2, [A]j,i = 0,

soit encore A = 0. D’où le résultat.

À retenir pour plus tard.
Ce calcul réapparaitra un peu plus tard lorsqu’on définira sur Mn(R) le produit scalaire
⟨A, B⟩ = tr(A⊤B).

Exercice 17.8 (⋆⋆⋆)
Soient A, B ∈ Mn(R) telles que pour tout M ∈ Mn(R), tr(AM) = tr(BM). Montrer que A = B.

Exercice 17.9 (⋆⋆⋆⋆ - Oral Mines 2023)
Soient A, B ∈ Mn(C) telles que AB = 0n. Montrer que pour tout k ≥ 1 :

tr((A + B)k) = tr(Ak) + tr(Bk).
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Notons P(k) la propriété : "(A + B)k =
k∑

i=0
BiAk−i" et montrons cette propriété par récurrence.

I P(0) est vraie car :
0∑

i=0
BiA0−i = B0A0 = In = (A + B)0.

H Soit k ∈ N. Supposons P(k) vraie.

(A + B)k+1 = (A + B) × (A + B)k =
HR

(A + B)
k∑

i=0
BiAk−i

=
k∑

i=0
ABiAk−i +

k∑
i=0

Bi+1Ak−i

= Ak+1 +
k∑

i=1
AB︸︷︷︸
=0

Bi−1Ak−i +
k+1∑
i=1

BiAk+1−i

= A +
k+1∑
i=1

BiAk+1−i =
k+1∑
i=0

BiAk+1−i.

Ainsi, P(k + 1) vraie.

Par principe de récurrence, pour tout k ∈ N, (A + B)k =
k∑

i=0
BiAk−i.

Par linéarité de la trace, on a donc

tr((A + B)k) =
k∑

i=0
tr(BiAk−i).

Mais pour i ∈ [[1, k − 1]],

tr(BiAk−i) = tr(BBi−1Ak−i−1A) = tr(AB︸︷︷︸
=0

Bi−1Ak−i−1) = 0

Finalement,

tr((A + B)k) =
k∑

i=0
tr(BiAk−i) = tr(Ak) +

k−1∑
i=1

tr(BiAk−i)︸ ︷︷ ︸
=0

+tr(Bk) = tr(Ak) + tr(Bk).

Matrices inversibles, algorithme du pivot de Gauss

Exercice 17.10 (⋆⋆)
On considère la matrice A =


1 3 4 8
2 −1 1 2

−3 2 −1 −2
1 2 3 −3

. Déterminer une matrice R échelonnée par lignes

et une matrice E produit de matrices d’opérations élémentaires, telle que EA = R.
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Exercice 17.11 (⋆⋆)
Calculer l’inverse s’il existe des matrices suivantes :

A =
(

3 2
1 1

)
, B =

−1 0 2
0 0 1
0 −1 1

 , C =

1 1 1
2 0 1
1 3 2

 , D =

3 2 −1
1 −1 1
2 −2 1

 , E = (min(i, j))1≤i,j≤n .

Exercice 17.12 (⋆⋆⋆)
Déterminer si les matrices suivantes sont inversibles en discutant suivant la valeur du paramètre réel
α, calculer leur inverse le cas échéant :

A =
(

ch(α) sh(α)
sh(α) ch(α)

)
, B =

α 1 1
1 α 1
1 1 α

 , C =

1 2 1
1 1 1 + α
1 1 −α2

 .

Exercice 17.13 (⋆⋆⋆⋆ - Matrices à diagonale strictement dominante - �)
Soit A = (ai,j) ∈ Mn(R) telle que pour tout i ∈ J1, nK, |ai,i| >

∑
j ̸=i

|ai,j |.

Soit X = (xi) ∈ Mn,1(R) tel que AX = 0, et soit i0 ∈ J1, nK tel que |xi0 | = max
i∈J1,nK

|xi|.

Montrer que xi0 = 0, et en déduire que A est inversible.

Soit A = (ai,j) ∈ Mn(R) telle que pour tout i ∈ J1, nK, |ai,i| >
∑
j ̸=i

|ai,j |.

Soient X ∈ Mn,1(R) tel que AX = 0, et i0 ∈ J1, nK tel que |xi0 | = max
i∈J1,nK

|xi|.

En considérant la i0-ème ligne du système AX = 0, on obtient :

ai0,1x1 + · · · + ai0,i0xi0 + · · · + ai0,nxn = 0

qui se récrit :
ai0,i0xi0 = −

∑
i ̸=i0

ai0,ixi.

Prenons la valeur absolue de cette expression, et majorons par l’inégalité triangulaire :

|ai0,i0 ||xi0 | =

∣∣∣∣∣∣−
∑
i ̸=i0

ai0,ixi

∣∣∣∣∣∣ ≤
∑
i ̸=i0

|ai0,i||xi| ≤
∑
i ̸=i0

|ai0,i||xi0 |

Par l’absurde, supposons X ̸= 0n,1. Alors xi0 ̸= 0, et en divisant par |xi0 | > 0 l’expression
précédente :

|ai0,i0 | ≤
∑
i ̸=i0

|ai0,i|.

Ceci contredit l’hypothèse A à diagonale strictement dominante.
Ainsi, le système linéaire AX = 0 admet pour unique solution X = 0. Or c’est l’une des carac-
térisations de A inversible. Ainsi une matrice à diagonale strictement dominante est inversible.

Exemple. La matrice A =

3 −1 1
1 3 0
0 0 2

 est à stricte dominance diagonale. Elle est donc

inversible.
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Exercice 17.14 (⋆⋆⋆⋆)
Déterminer l’ensemble des matrices stochastiques de Mn(R) (dont la définition a été donnée à l’Exercice
17.2), inversibles et dont l’inverse est également stochastique.

Soit A = (ai,j) une telle matrice, et B = A−1 = (bi,j) sa matrice inverse, supposée stochastique
aussi. Soit (i, j) ∈ J1, nK2 tel que i ̸= j. En identifiant le coefficient en position (i, j) dans l’égalité
B × A = In, on obtient :

n∑
k=1

bi,kak,j = [B × A]i,j = [In]i,j = 0.

Or par hypothèse, les coefficients des matrices A et B sont tous positifs. L’égalité précédente
implique donc :

∀k ∈ J1, nK, bi,kak,j = 0. (∗)

Fixons alors k ∈ J1, nK. Comme la matrice B est inversible, la k-ème colonne de B n’est pas nulle
: il existe un indice de ligne qu’on notera ik ∈ J1, nK tel que bik,k ̸= 0. Mais alors en reprenant
(∗), on obtient que pour tout j ̸= ik :

bik,kak,j = 0, et donc ak,j = 0.

Ainsi, la k-ème ligne de A ne contient que des 0, sauf éventuellement le coefficient ak,ik
. Et

comme la matrice A est stochastique par lignes, ce coefficient ak,ik
est nécessairement égal à 1.

Résumons : on vient de montrer que pour tout k ∈ J1, nK, la k-ème ligne de A ne contient que
des coefficients nuls sauf celui en position (k, ik) qui lui vaut 1.

Reste alors une dernière remarque à faire : prenons 1 ≤ k < ℓ ≤ n et comparons les lignes k
et ℓ de A. Elles ont un seul coefficient non nul (qui vaut 1) respectivement en position (k, ik)
et (ℓ, iℓ). Si ik = iℓ, alors les lignes k et ℓ de A seraient égales, ce qui est impossible puisque A
est inversible (par opération élémentaire, A serait équivalente par lignes à une matrice ayant une
ligne nulle).

Ainsi, l’application σ : k ∈ J1, nK 7→ ik ∈ J1, nK est injective, et donc bijective puisque les
ensembles de départ et d’arrivée de même cardinaux. Et pour tout (i, j) ∈ J1, nK2 :

ai,j =
{

1 si j = σ(i)
0 sinon

= δσ(i),j .
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Une telle matrice est appelée matrice de permutation associée à σ. Plus précisément, à
toute permutation σ de J1, nK, on associe une matrice Pσ définie par :

Pσ = (δσ(i),j)i,j .

Par exemple,

0 1 0
1 0 0
0 0 1

 est la matrice de permutation associée à la permutation σ de J1, 3K

définie par σ(1) = 2, σ(2) = 1, σ(3) = 3. Inversement, si τ est la permutation de J1, 3K

définie par τ(1) = 3, τ(2) = 1, τ(3) = 2, alors on a Pτ =

0 0 1
1 0 0
0 1 0

.

On peut montré (laissé en exercice, on le fera dans un prochain chapitre) que pour σ et τ
des permutations :

Pσ × Pτ = Pσ◦τ .

En particulier, on montre à partir de cette égalité que Pσ est inversible, d’inverse P −1
σ =

Pσ−1 . L’inverse d’une matrice de permutation est donc aussi une matrice de permutation.

Pour aller plus loin.

Réciproquement, si A est une matrice de permutation, elle est clairement stochastique. Et par
échanges de lignes, A est équivalente par lignes à la matrice In. Elle est donc inversible, d’inverse
une matrice de permutation qui est également stochastique.

Puissances et polynômes d’une matrice
Exercice 17.15 (⋆)
Calculer les puissances des matrices suivantes :

A =
(

0 1
2 0

)
, B =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, C =

3 2 3
0 3 4
0 0 3

 , D =


0 1 . . . 1
1 0 . . . 0
...

...
...

1 0 . . . 0

 .

1. On remarque que A2 = 2I2. Alors pour tout n ∈ N :

A2n = (A2)n = (2I2)n = 2nI2 et A2n+1 = A2n × A = 2nI2 × A = 2nI2.

2. Le calcul des premières puissances de A prouve que

B2 =
(

cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)
et B3 =

(
cos(3θ) − sin(3θ)
sin(3θ) cos(3θ)

)
.

Une récurrence facile prouve alors que pour tout n ∈ N,

Bn =
(

cos(nθ) − sin(nθ)
sin(nθ) cos(nθ)

)
.
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3. C =

3 2 3
0 3 4
0 0 3

 = 3I3 + N avec N =

0 2 3
0 0 4
0 0 0

.

N2 =

0 0 8
0 0 0
0 0 0

, N3 = 0 et pour tout k ≥ 3, Nk = N3Nk−3 = 0 × Nk−3 = 0.

Comme 3I3 et N commutent, on obtient avec la formule du binôme de Newton :

Cn = (3I3 + N)n =
n∑

k=0

(
n

k

)
Nk(3I3)n−k =

n∑
k=0

(
n

k

)
3n−kNk

=
(

n

0

)
3nN0 +

(
n

1

)
3n−1N1 +

(
n

2

)
3n−2N2 +

n∑
k=3

(
n

k

)
3n−kNk

︸ ︷︷ ︸
=0

= 3nI3 + 3n−1nN + 3n−2 n(n − 1)
2 N2

=

3n 3n−1n n3n + 2n(n − 1)3n−2

0 3n n3n

0 0 3n


4. Supposons que D est de taille n. Alors :

D2 =


n − 1 0 . . . 0

0 1 . . . 1
...

...
...

0 1 . . . 1


puis

D3 =


0 n − 1 . . . n − 1

n − 1 0 . . . 0
...

...
...

n − 1 0 . . . 0

 = (n − 1)D.

On a ensuite :
D4 = (n − 1)A2, D5 = (n − 1)D3 = (n − 1)2D...

Une récurrence prouve alors que pour tout k ∈ N,

A2k = (n − 1)k−1A2 et A2k+1 = (n − 1)kA.

Exercice 17.16 (⋆)
Considérons la matrice A =

 0 1 −1
−3 4 −3
−1 1 0

.

1. Montrer que P : x 7→ x2 − 3x + 2 est un polynôme annulateur de A.

2. En déduire que A est inversible et exprimer son inverse A−1 comme un polynôme en A.

Exercice 17.17 (⋆⋆)
Considérons la matrice A =

2 1 1
1 2 1
1 1 2

.

1. Première méthode : calcul des puissances de A à l’aide d’un polynôme annulateur.
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(a) Déterminer un polynôme annulateur de degré 2 de A.
(b) Montrer que pour tout n ∈ N, il existe αn, βn ∈ R tels que An = αnA + βnI3.
(c) Déterminer une relation de récurrence satisfaite par αn et βn. En déduire αn et βn en

fonction de n.
(d) En déduire An pour tout n ∈ N.

2. Deuxième méthode : calcul des puissances de A par la formule du binôme.

(a) Soit J =

1 1 1
1 1 1
1 1 1

. Déterminer Jk pour tout k ∈ N.

(b) En déduire An pour tout n ∈ N.

Exercice 17.18 (⋆⋆)
Soient (xn), (yn), (zn) trois suites réelles définies par x0, y0, z0 ∈ R et :

∀n ∈ N,


xn+1 = 2

3xn + 1
6yn + 1

6zn

yn+1 = 1
6xn + 2

3yn + 1
6zn

zn+1 = 1
6xn + 1

6yn + 2
3zn

.

Déterminer xn, yn et zn en fonction de n ∈ N, x0, y0 et z0.

Exercice 17.19 (⋆⋆)
On considère les matrices A =

 3 4 −4
−2 −1 2
−2 0 1

 et P =

1 0 −1
0 1 1
1 1 1

 .

1. Montrer que P est inversible et calculer P −1.

2. Calculer la matrice D = P −1AP ainsi que Dn pour tout n ∈ N.

3. En déduire An pour tout n ∈ N.

4. Mêmes questions avec les matrices A =

0 −1 1
1 2 −3
1 1 −2

 et P =

1 1 0
1 −1 1
1 0 1

 .

Exercice 17.20 (⋆⋆⋆ - Polynôme annulateur d’une matrice diagonale)
Soit (λ1, . . . , λr) ∈ Kr (r ⩽ n) des scalaires distincts deux à deux et (m1, . . . , mr) ∈ (N∗)r tels que :

m1 + · · · + mr = n

On pose D = diag(λ1, . . . , λ1︸ ︷︷ ︸
m1 termes

, λ2, . . . , λ2︸ ︷︷ ︸
m2 termes

, . . . , λr, . . . , λr︸ ︷︷ ︸
mr termes

) ∈ Mn(K).

1. Montrer que pour toute fonction polynomiale P :

P (D) = diag(P (λ1), . . . , P (λ1)︸ ︷︷ ︸
m1 termes

, . . . , P (λr), . . . , P (λr)︸ ︷︷ ︸
mr termes

)

2. En déduire une condition nécessaire et suffisante pour que P soit un polynôme annulateur de D.

3. Soit A ∈ Mn(R). On suppose qu’il existe Q ∈ Mn(K) inversible telle que Q−1AQ = D.
Déterminer un polynôme annulateur de A.
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4. À l’aide de l’Exercice 17.19, déterminer un polynôme annulateur de la matrice A =

 3 4 −4
−2 −1 2
−2 0 1

.

En déduire que A est inversible et déterminer A−1.

Exercice 17.21 (⋆⋆⋆⋆)
Soient n ≥ 2 et N une matrice de Mn(K). On suppose que N est nilpotente.

1. Montrer que la matrice A = In − N est inversible et déterminer son inverse.

2. Montrer que In − A−1 est nilpotente.

3. Soit M ∈ Mn(K) une matrice matrice qui commute avec N . Montrer que M est inversible si, et
seulement si, M + N est inversible.

Dans tout l’exercice, on notera p l’indice de nilpotence de la matrice N .

1. Puisque Np = 0n :

In = Ip
n − Np = (In − N)

p−1∑
k=0

NkIp−1−k
n

 = (In − N)(In + N + N2 + · · · + Np−1).

Ainsi A = In − N est bien inversible, d’inverse A−1 = In + N + N2 + · · · + Np−1.

2. Si p = 1, alors N = 0 et In − A−1 = 0n est bien nilpotente. Si p ≥ 2 :

In − A−1 = −N − N2 − · · · − Np−1 = N(−In − N − · · · − Np−2).

Posons M = −In − N − · · · − Np−2. M est un polynôme en N , donc commute avec N , de
sorte que :

(In − A−1)p = (N × M)p = (N × M) × · · · × (N × M)︸ ︷︷ ︸
pfois

=
M et N commutent

NpMp = 0n.

Ainsi In − A−1 est bien nilpotente.

3. Supposons que M est inversible. Montrons que M + N est également inversible. Pour cela,
écrivons :

M + N = M × (In + M−1N).

Partant de l’égalité MN = NM , et en multipliant à gauche et à droite par M−1, on obtient
NM−1 = M−1N , et puisque M−1 et N commutent :

(M−1N)p = (M−1)pNp = (M−1)p × 0n = 0n.

Par la question 1. appliquée à la matrice nilpotente −M−1N , In−(−M−1N) = In+M−1N
est une matrice inversible. Par produit de matrices inversibles, M ×(In +M−1N) = M +N
est inversible.

Réciproquement, supposons que M + N est inversible. Alors en appliquant le sens direct
que nous venons de démontrer à la matrice inversible M + N et à la matrice nilpotente
−N (en notant que ces deux matrices commutent bien), il suit que M = (M + N) − N est
inversible.
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