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— TD 17
Calcul matriciel

Opérations matricielles

Exercice 17.1 (%)
Montrer que si A, B sont deux matrices nilpotentes de ., (K) qui commutent, alors A + B et AB
sont encore nilpotentes. Est-ce encore vrai si on ne suppose plus que A et B commutent ?

Exercice 17.2 (%% - Matrices stochastiques)
Une matrice A = (a; j) € #,(R) est dite stochastique si pour tout (i, 5) € [1,n]?, a;; est un réel positif

n
ou nul, et si pour tout i € [1,n], Z a;j = 1. On note ST, (R) 'ensemble des matrices stochastiques
j=1

de 4, (R)
1. Donner des exemples de matrices stochastiques.

2. Soit A € [0,1]. Montrer que si A et B appartiennent a ST, (R), alors A\- A+ (1 — ) - B est dans
STr(R) également.
1
3. (a) Notons X = | : | € #,1(R). Montrer que: A€ ST,(R) & {
1
(b) En déduire que si A et B sont stochastiques, alors A x B est stochastique.

Vi,j, am Z 0
AX =X

Exercice 17.3 (k%% - Centre de .#,(K) - £3)
On considere 'ensemble suivant (appelé le centre de #,,(K)) :

%, = {M € M(K) |VA € M,(K), Ax M = M x A}.

1. Proposer deux matrices appartenant a %,.

2. La matrice <(1] g) appartient-elle & 25 ?

3. On souhaite déterminer ’ensemble Z;,. Considérons pour cela une matrice M € 2.

(a) Pour tout 1 <i,j <n, calculer E; ; x M et M x E; ;.
(b) En déduire que M est une matrice scalaire, c’est-a-dire de la forme A - I, avec A € K.

(c) Conclure.

1. On peut proposer 0, ou I,. Plus globalement, toute matrice scalaire, c¢’est-a-dire de la
forme AI, pour A € K, est dans Z,. Le but de la suite de I’exercice est de montrer qu’il
n’y en a pas d’autres.

1 0 1 0
<O 2) X E19=FEi2# E12 X (0 2) =2FE .

Donc (é g) n’est pas dans le centre de .Z5(K).

2. On a:
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(a) Rappelons que :

E; sij=k
Eijx Egg=4 " °7
0 sinon.
Pour tous 1 <4,5 < n:
n n n n
Bijx M = E;;x (j{:j{:ﬂlheﬂ%x> ::jz:zz:TnkjE%J x By ¢
k=1¢=1 k=1¢=1
=0 si k#£j
n
=Y mjEiy
=1
D’autre part :
n n n n
M x E;j = (E::§:7nkxﬂkx> X Eij =YY myEpEi
k=1¢=1 t=1k=1
=0 si ¢#£i
n
= muiEy
k=1

(b) Puisque M € Z;,,ona M x E; ; = E; j x M, d’ou :

n n
§:7njxf%¢:= §:7nk¢E%J-
=) k=1

Par unicité de I’écriture comme somme de matrices élémentaires (on utilise ici ce qu’on
appelle la liberté de la famille (E;;)) :

mje =0 pour tout £ # j,
my; =0 pour tout k # i,

mjj =m;; (casl=jetk=1).
Ceci étant vrai pour tout 1 < 4,5 <n, on en déduit que :

mi; =0 pour tout i # j
m,hi = m],] pour tout 7/,] S [[15”]] ‘

La matrice M est donc égale a M = my 11,. C’est donc bien une matrice scalaire.

(c) Réciproquement, les matrices scalaires appartiennent bien & Z5,. Ainsi (par double
inclusion) :

%y = {A,, A €K}

Exercice 17.4 (%% % - Nilpotence des matrices triangulaires strictes - @))
Le but de cet exercice est de montrer que toute matrice triangulaire supérieure stricte de .4, (K) est
nilpotente d’indice de nilpotence inférieur a n.

1. Soit k > 0 et notons .7, (K) I'ensemble de matrices A = (a; ;) telles que :

ai7jZOSiZ'+k>j.

(a) Identifier 75 (K), 77 (K), Z}(K)
(b) Soient k, ¢ > 1. Montrer que si A € 7,7 (K) et B € J,"(K), alors A x B € 7% (K).
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2. Montrer qu’une matrice triangulaire supérieure stricte est nilpotente, d’indice de nilpotence
inférieur a n.

1.

(a)

Par définition, 75" (K) est 'ensemble des matrices A = (a; ;) telles que :
;5 = 0 sii>yg

ce qui correspond aux matrices triangulaires supérieures :

ail ai2 ... a1n
0 a2 2
: an—1,n
0o ... 0 (n.n

De méme, 7,7 (K) est I'ensemble des matrices A = (a; ;) telles que :
a; ;=0 sit>j7—1

ce qui correspond aux matrices triangulaires supérieures strictes :

0 ar2 ... a1n
0 0

: an—1,n
0o ... 0 0

Enfin, 7" (K) est 'ensemble des matrices A = (a; ;) telles que :
am-:O sit>j—n.

Puisque i > j—n pour tout (i,7) € [1,n]?, une telle matrice est nulle. Donc 7" (K) est
I'ensemble réduit & la matrice nulle. On notera plus généralement que 7, (K) = {0,,}
pour tout k > n.

Soient k,¢ > 1et A€ 77 (K) et B € J,(K). Alors :

aj,; =0 sii+k>j et bi;=0 sii>j—L
On souhaite montrer que A x B € % ,(K), c’est-a-dire que pour tout (i,5) € [1,n]? :
[AXB]i,jZO Sii+k>j—€.

Or pour un tel couple (i, ) :

n i+k—¢ n
[AXBlij=> airbrj= Y aiybj+ > air br.;j =0
r=1 r=1 ~ r=i+k ~

=0 =0 car r>i+k>j—~

D’ou le résultat.
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2. Soit A une matrice triangulaire supérieure stricte, de sorte que A € 7,7 (K). En utilisant
le résultat de la question précédente, on obtient par une récurrence immédiate que :

Vk e N*, A% ¢ 77(K).

En particulier, A" € 7,7 (K) = {0,}, et A est nilpotente d’indice de nilpotence inférieur a
n.

Trace, transposée

Exercice 17.5 (%)
Soient A, B € .#,(R). Montrer que AB est symétrique si, et seulement si, AB = BA.

Exercice 17.6 (%%)
Montrer qu’il n’existe pas deux matrices A, B € ., (K) telles que A x B— B x A = I,,.

Exercice 17.7 (k%)
Soit A € #,(R). Montrer que tr (ATA> = 0 si, et seulement si, A = 0,,.

On a:

Tr(ATA) = ZATA ZZ[AT}i,j[A]j,i:

Ainsi Tr(ATA) = 0 équivaut & » Y "[A]5; = 0. Comme c’est une somme de termes positifs, elle
i=1j=1
est nulle si et seulement si tous les termes sont nuls, c’est a dire :

V(i j) € [1,n]?  [Alji =0,
soit encore A = 0. D’ou le résultat.

A retenir pour plus tard.

Ce calcul réapparaitra un peu plus tard lorsqu’on définira sur ., (R) le produit scalaire
(A,B) = tr(ATB).

Exercice 17.8 (%% %)
Soient A, B € ., (R) telles que pour tout M € .#,(R), tr(AM) = tr(BM). Montrer que A = B.

Exercice 17.9 (k%% % - Oral Mines 2023)
Soient A, B € #,,(C) telles que AB = 0,,. Montrer que pour tout k > 1 :

tr((A + B)F) = tr(AF) + tr(B*).
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k

Notons & (k) la propriété : "(A+ B)F =" B'AF~'" ot montrons cette propriété par récurrence.
=0

2(0) est vraie car :

0
> B'A" =B'A°=1,=(A+B)".
Soit k € N. Supposons (k) vraie.

(A+ B = (A+B) x (A+B) - (A+B) ZBZA’”
=0

k k
— ZABZAk—z + ZBi-i-lAk—i
=0 =0
k+1
_Ak+1+ZABBz—1Ak Z—{—ZBZAIC—H i
=1 —o =1
k+1 k+1
— A4+ Z BiAk—I—l—i — Z BiAk—H_i.

=1 =0

Ainsi, Z(k + 1) vrale.

Par principe de récurrence, pour tout k € N, (A + B)* Z BIAF,
Par linéarité de la trace, on a donc
k . .
tr((A+ B)¥) = Z tr(BI AR,
i=0

Mais pour ¢ € [1,k — 1],

tr(B'A*) = tr(BB 1A 4) = tr(AB BiTlAF-imhy — ¢

=0
Finalement,
k ' . k—1 . ‘
tr((A+ B)k) = Ztr(B”‘Ak_Z) = tr(Ak) + Z tr(BZAk_Z) +tr(Bk) = tr(Ak) + tr(Bk).
=0 =1

=0

Matrices inversibles, algorithme du pivot de Gauss

Exercice 17.10 (% %) ; _31 le 2
On considere la matrice A = | ~ 3 9 _1 _9| Déterminer une matrice R échelonnée par lignes

1 2 3 -3
et une matrice £ produit de matrices d’opérations élémentaires, telle que FA = R.
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Exercice 17.11 (k%)
Calculer l'inverse s’il existe des matrices suivantes :

5 9 -1 0 2 11 1 3 2 -1
A:(1 1),3: 0 0 1],C=(20 1|, D=[1 =1 1 |, E=in(},5)) <<,
0 -1 1 1 3 2 2 -2 1 -

Exercice 17.12 (k% %)
Déterminer si les matrices suivantes sont inversibles en discutant suivant la valeur du parametre réel
«, calculer leur inverse le cas échéant :

a 1 1 12 1
Ao () shle)) 1y e2 |11 144
sh(a) ch(a) 1 1 o 11 a2

Exercice 17.13 (%% %% - Matrices a diagonale strictement dominante - @))

Soit A = (a;j) € Mn(R) telle que pour tout i € [1,n], |a;;| > Z |la;
J#i

Soit X = (x;) € Mp1(R) tel que AX =0, et soit ig € [1,n] tel que |z;| = ‘Hﬁ?xﬂ |z
1e(l,n

Montrer que x;, = 0, et en déduire que A est inversible.

Soit A = (a;,j) € Mn(R) telle que pour tout i € [1,n], |a;;| > Z ;-
JF#i
Soient X € #,,1(R) tel que AX =0, et ig € [1,n] tel que |z;,| = max_ |z;|.
i€

1,n]

En considérant la ig-eme ligne du systéeme AX = 0, on obtient :
Wip1T1 + - -+ Qig,igTig + -+ + QignTp =0

qui se récrit :

Qig,igTig = — E :aio,ixi'
i#io

Prenons la valeur absolue de cette expression, et majorons par 'inégalité triangulaire :

|Gigio||Tio] = |— D aigii| < D laig,illzil <Y laig.illwi]

i#i0 i#i0 i#i0
Par I'absurde, supposons X # 0,1. Alors z;, # 0, et en divisant par |z;,| > 0 I'expression

précédente :
|@ig,io| < Z ’aioﬂ"
i#£10
Ceci contredit 'hypothese A a diagonale strictement dominante.

Ainsi, le systéme linéaire AX = 0 admet pour unique solution X = 0. Or c’est I'une des carac-
térisations de A inversible. Ainsi une matrice & diagonale strictement dominante est inversible.

3 -1 1
Exemple. La matrice A = |1 3 0| est a stricte dominance diagonale. Elle est donc
0 0 2

inversible.
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Exercice 17.14 (k%% %)

Déterminer I’ensemble des matrices stochastiques de ., (R) (dont la définition a été donnée a I’Exercice
, inversibles et dont 'inverse est également stochastique.

Soit A = (a;j) une telle matrice, et B = A~1 = (b; ;) sa matrice inverse, supposée stochastique
aussi. Soit (4,7) € [1,n]? tel que i # j. En identifiant le coefficient en position (i, j) dans 1’égalité
B x A =1,, on obtient :

> bikan; = [B x Al;j = [In]i; = 0.
k=1

Or par hypothese, les coefficients des matrices A et B sont tous positifs. L’égalité précédente
implique donc :
Vk € [[1, TL]], b@kak,j = 0. (*)

Fixons alors k € [1,n]. Comme la matrice B est inversible, la k-éme colonne de B n’est pas nulle
: il existe un indice de ligne qu’on notera i € [1,n] tel que b;, 1 # 0. Mais alors en reprenant
(%), on obtient que pour tout j # iy :

bik,kak,j =0, et donc ar; = 0.

Ainsi, la k-éme ligne de A ne contient que des 0, sauf éventuellement le coefficient ay;, . Et
comme la matrice A est stochastique par lignes, ce coefficient ay;, est nécessairement égal a 1.

Résumons : on vient de montrer que pour tout k € [1,n], la k-éme ligne de A ne contient que
des coefficients nuls sauf celui en position (k, i) qui lui vaut 1.

Reste alors une derniére remarque a faire : prenons 1 < k < £ < n et comparons les lignes k
et £ de A. Elles ont un seul coefficient non nul (qui vaut 1) respectivement en position (k, i)
et (¢,ig). Siig = iy, alors les lignes k et £ de A seraient égales, ce qui est impossible puisque A
est inversible (par opération élémentaire, A serait équivalente par lignes & une matrice ayant une
ligne nulle).

Ainsi, Papplication o : k € [1,n] — i € [1,n] est injective, et donc bijective puisque les
ensembles de départ et d’arrivée de méme cardinaux. Et pour tout (i, j) € [1,n]? :

1 sij=o(d)
i = = Op(i).i-
i {0 sinon QU
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Pour aller plus loin.

Une telle matrice est appelée matrice de permutation associée a o. Plus précisément, a
toute permutation o de [1,n], on associe une matrice P, définie par :

Py = (0o(i),j)irj-

010
Par exemple, [ 1 0 0| est la matrice de permutation associée a la permutation o de [1, 3]
0 01
définie par o(1) = 2, 0(2) = 1, 0(3) = 3. Inversement, si 7 est la permutation de [1, 3]
0 01
définie par 7(1) =3, 7(2) =1, 7(3) =2, alorsona P, = |1 0 0
010

On peut montré (laissé en exercice, on le fera dans un prochain chapitre) que pour o et 7
des permutations :
P, x P, = Pyor.

En particulier, on montre & partir de cette égalité que P, est inversible, d’inverse P, ! =
P,-1. L’inverse d’'une matrice de permutation est donc aussi une matrice de permutation.

Réciproquement, si A est une matrice de permutation, elle est clairement stochastique. Et par
échanges de lignes, A est équivalente par lignes a la matrice I,,. Elle est donc inversible, d’inverse
une matrice de permutation qui est également stochastique.

Puissances et polynéomes d’une matrice

Exercice 17.15 (%)
Calculer les puissances des matrices suivantes :

1
3 2 3
— i 0
A 01 ’ B_ Cf)S(e) sin(6) ’ c-lo 3 4], p=|.
2 0 sin(f)  cos(0) 00 3 :

1. On remarque que A% = 2I5. Alors pour tout n € N :

A% = (A" = (21)" =271, et AT = A" x A =2"1, x A =2"],.

2. Le calcul des premieres puissances de A prouve que

_ [cos(26) —sin(26) _ [cos(36) —sin(30)
B* = <sin(20) cos(26) ) ¢ B = <sin(30) cos(36) ) ’

Une récurrence facile prouve alors que pour tout n € N,

n _ [cos(nf) —sin(nd)
B = (sin(n@) cos(nd) > '
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3 2 3 0 2 3
3.C=10 3 4| =3I3+ N avec N 0 0 4
00 3 0 00
0 0 8
N2=10 0 0|, N3=0et pour tout k >3, N¥ = N3N+F=3 =0 x Nk3 = 0.
0 0O
Comme 313 et N commutent, on obtient avec la formule du binéme de Newton

C" = (3I3+ N)" Z()Nk313 Z()z)ﬁ—’wk

n n n n
_ 3nN0 3n—lNl 3n—2N2 371—ka
[o)raes (1 () X

=0

—1
3ty 3t g2 e

2

3" 3" lnp n3" +2n(n —1)372
=|0 3" n3"
(U 3n

4. Supposons que D est de taille n. Alors :

n—1 0
D2 0 1 1
0 1 1
puis
0 n—1 n—1
n—1 0 0
D3 = . =(n-1)D
n—1 0 0

On a ensuite :
D*=(n—-1)A4%, D°=(n—-1)D3=(n—1)D...

Une récurrence prouve alors que pour tout k£ € N|

AP = (n—1)F1A% et AP = (n-1)FA

Exercice 17.16 (%) 0 1 -1
Considérons la matrice A= | -3 4 -3
-1 1 0

1. Montrer que P : x — 2% — 3z + 2 est un polynéme annulateur de A.

2. En déduire que A est inversible et exprimer son inverse A~! comme un polynéme en A.

Exercice 17.17 (%) 2 11
Considérons la matrice A= |1 2 1
1 1 2

1. Premiére méthode : calcul des puissances de A a ’aide d’un polynéme annulateur.
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(a) Déterminer un polyndéme annulateur de degré 2 de A.
(b) Montrer que pour tout n € N, il existe ay, 3, € R tels que A" = a,, A + B,13.

(c) Déterminer une relation de récurrence satisfaite par «, et 8,. En déduire a,, et (3, en
fonction de n.

(d) En déduire A™ pour tout n € N.

2. Deuxiéme méthode : calcul des puissances de A par la formule du binéme.

1 11
(a) Soit J = |1 1 1|. Déterminer J* pour tout k € N.
1 11

(b) En déduire A™ pour tout n € N.

Exercice 17.18 (% %)
Soient (xy,), (yn), (2,) trois suites réelles définies par xg, yo,20 € R et :

Tn+1 = %xn + l*yn + %Zn
Vn €N, Yn+1 = ?xn + ?yn + gzn
An+l = gon + 6Yn + 3%n

Déterminer ., y, et z, en fonction de n € N, xq, yg et zp.

Exercice 17.19 (% %) 3 4 -4 1 0 -1
On considére les matrices A= -2 -1 2 |etP=|0 1 1
-2 0 1 1 1 1

1. Montrer que P est inversible et calculer P71,
2. Calculer la matrice D = P~ AP ainsi que D" pour tout n € N.

3. En déduire A™ pour tout n € N.

0 -1 1 1 1 0
4. Mémes questions avec les matrices A=11 2 -3|letP=|1 -1 1
1 1 =2 1 0 1

Exercice 17.20 (k%% - Polynéme annulateur d’une matrice diagonale)
Soit (A1,...,Ar) € K" (r < n) des scalaires distincts deux a deux et (mq,...,m,) € (N*)" tels que :

mi+---+mp=n

On pose D = diag(A1, ..., A1, A2,y A2, oo Ay ooy A) € (K.

m1 termes mo termes m, termes

1. Montrer que pour toute fonction polynomiale P :

P(D) = diag(P(A1),...,P(A1),..., P(\p), ..., P(\))

m1 termes m, termes

2. En déduire une condition nécessaire et suffisante pour que P soit un polynéme annulateur de D.

3. Soit A € .#,(R). On suppose qu’il existe Q € .#,(K) inversible telle que Q~*AQ = D.
Déterminer un polynéme annulateur de A.

10
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3 4 -4
4. A Daide de 'Exercice[17.19} déterminer un polynéme annulateur de la matrice A = | =2 —1 2
-2 0 1

En déduire que A est inversible et déterminer A~1.

Exercice 17.21 (%% %)
Soient n > 2 et N une matrice de ., (K). On suppose que N est nilpotente.

1.

2.

3.

Montrer que la matrice A = I,, — N est inversible et déterminer son inverse.
Montrer que I, — A~! est nilpotente.

Soit M € #,,(K) une matrice matrice qui commute avec N. Montrer que M est inversible si, et
seulement si, M + N est inversible.

Dans tout I’exercice, on notera p 'indice de nilpotence de la matrice V.

1. Puisque N? =0, :

p—1
I, =17 — NP = (I, — N) (Z Nklg—l—’f) = (I, — N)(I,+ N+ N% 4 ... 4 NP71),
k=0

Ainsi A = I, — N est bien inversible, d’inverse A~ =1, + N + N2 4+ ... + NP1,

.Sip=1,alors N =0et I, — A~! =0, est bien nilpotente. Sip > 2:

I,—At'=—-N-N?—...- NP L= N(-I,—N—...— NP7%,
Posons M = —1I, — N —--- — NP2 M est un polynoéme en N, donc commute avec N, de
sorte que :
(I,— AP = (N x M =(NxM)x---x (N xM) = NPMP = 0,.

M et N commutent

pfois

Ainsi I,, — A~! est bien nilpotente.

. Supposons que M est inversible. Montrons que M + N est également inversible. Pour cela,

écrivons :
M+ N =M x (I, + M~IN).

Partant de I’égalité M N = N M, et en multipliant & gauche et & droite par M !, on obtient
NM~' = M~I'N, et puisque M~ et N commutent :

(M7INY = (M~Y)PNP = (MY x 0,, = 0,.

Par la question 1. appliquée a la matrice nilpotente —M ' N, I, - (-M~'N) = I, + M—'N
est une matrice inversible. Par produit de matrices inversibles, M x (I,+ M ~'N) = M+ N
est inversible.

Réciproquement, supposons que M + N est inversible. Alors en appliquant le sens direct
que nous venons de démontrer & la matrice inversible M + N et a la matrice nilpotente
—N (en notant que ces deux matrices commutent bien), il suit que M = (M + N) — N est
inversible.

11



