TD 4

Rappels et compléments sur les fonctions

Généralités sur les fonctions

Exercice 4.1 (★★ - 🔊)

Pour chacune des affirmations suivantes, dire si elle est vraie ou fausse en justifiant votre affirmation:

- 1. la somme de deux fonctions croissantes est croissante.
- 2. la somme de deux fonctions monotones est monotone.
- 3. le produit de deux fonctions monotones est monotone.
- 4. si f est paire, alors $g \circ f$ est paire.
- 5. si f est impaire et g est paire, alors $g \circ f$ est paire.
- 6. si f est paire, alors f' est paire.

- 7. si f est périodique, alors $g \circ f$ est périodique.
- 8. si g est périodique, alors $g \circ f$ est périodique.
- 9. si g est bornée, alors $g \circ f$ est bornée.
- 10. si $g \circ f$ est bornée, alors g est bornée.
- 11. le produit de deux fonctions majorées est majoré.
- 12. le produit de deux fonctions bornées est borné.

Exercice 4.2 (**)

Les deux questions suivantes sont indépendantes.

- 1. Montrer que pour $k \in \mathbb{N}^*$, $f_k : x \mapsto \left\lfloor \frac{x}{k} \right\rfloor \frac{\lfloor x \rfloor}{k}$ est k-périodique.
- 2. (a) Que dire d'une fonction périodique et croissante?
 - (b) D'une fonction périodique et strictement croissante?
 - 1. Soit $k \in \mathbb{N}^*$. Nous avions établi au chapitre 3 que :

$$\forall x \in \mathbb{R}, \quad \forall n \in \mathbb{Z}, \quad |x+n| = |x| + n.$$

D'où ici:

$$\left| \frac{x+k}{k} \right| = \left| \frac{x}{k} + 1 \right| = \left| \frac{x}{k} \right| + 1$$
 et $\left[x + k \right] = \left[x \right] + k$.

Ainsi, pour tout $x \in \mathbb{R}$:

$$f_k(x+k) = \left\lfloor \frac{x}{k} \right\rfloor + 1 - \left(\frac{\lfloor x \rfloor + k}{k} \right) = \left\lfloor \frac{x}{k} \right\rfloor - \frac{\lfloor x \rfloor}{k} = f_k(x).$$

Donc f_k est k-périodique.

2. Prouvons qu'une fonction périodique et croissante est nécessairement constante.

Soit donc $f: \mathcal{D} \to \mathbf{R}$ une fonction périodique et constante. Nous allons prouver que $\forall x, y \in \mathcal{D}, f(x) = f(y)$, ce qui est l'une des caractérisations des fonctions constantes.

Soient donc $x, y \in \mathcal{D}$. Quitte à les échanger, supposons que $x \leq y$. Notons T une période de f, et soit alors $n \in \mathbb{N}$ tel que $x + nT \geq y$ (un tel entier existe bien puisque $\lim_{n \to +\infty} x + nT = +\infty$).

On a alors $x \leq y$, donc par croissance de f, $f(x) \leq f(y)$.

Et $y \le x + nT$, donc par croissante de f, $f(y) \le f(x + nT)$.

Or par T-périodicité de f, f(x+nT) = f(x).

On a donc $f(x) \leq f(y) \leq f(x)$, si bien que f(x) = f(y).

Donc une fonction continue et périodique est constante.

En revanche, il n'existe pas de fonction périodique et strictement croissante.

En effet, supposons qu'une telle fonction $f: \mathcal{D} \to \mathbf{R}$, T-périodique et strictement croissante existe.

Soit alors $x \in \mathcal{D}$. On a x + T > x, et donc f(x + T) > f(x), ce qui contredit la définition de la T-périodicité.

Exercice 4.3 (★★★)

Dans tout l'exercice, on se place dans un repère orthogonal (O, \vec{i}, \vec{j}) .

- 1. Soit $a \in \mathbb{R}$. Justifier que la symétrie par rapport à la droite (verticale) d'équation $x = \frac{a}{2}$ envoie un point de coordonnées (x, y) sur le point de coordonnées (a x, y).
- 2. Soit $f:[0,a]\to\mathbb{R}$ telle que pour tout $x\in[0,a]$, f(x)=f(a-x). Justifier alors que \mathscr{C}_f est symétrique par rapport à la droite d'équation $x=\frac{a}{2}$.
- 3. Soit f la fonction définie sur \mathbb{R} par $f(x) = \sin(x) |2\cos^2(x) 1|$.
 - (a) Justifier qu'il suffit d'étudier f sur $\left[0, \frac{\pi}{2}\right]$.
 - (b) (\bigstar) Tracer le graphe de f sur $[-\pi, 2\pi]$.

Exercice 4.4 ($\star\star\star\star$)

Soit a > 0, et soit $f : \mathbb{R} \to \mathbb{R}$ telle que : $\forall x \in \mathbb{R}$, $f(x+a) = \frac{1}{2} + \sqrt{f(x) - f(x)^2}$. Prouver que f est périodique.

Notons que l'équation implique que nécessairement f(x) est toujours compris entre $\frac{1}{2}$ et 1 (car $f(x) - f(x)^2 \ge 0$ si, et seulement si, $f(x) \in [0,1]$). On a alors, pour tout $x \in \mathbf{R}$,

$$f(x+2a) = \frac{1}{2} + \sqrt{f(x+a) - f(x+a)^2}$$

$$= \frac{1}{2} + \sqrt{\frac{1}{2} + \sqrt{f(x) - f(x)^2} - \left(\frac{1}{2} + \sqrt{f(x) - f(x)^2}\right)^2}$$

$$= \frac{1}{2} + \sqrt{\frac{1}{2} + \sqrt{f(x) - f(x)^2} - \frac{1}{4} - \sqrt{f(x) - f(x)^2} - f(x) + f(x)^2}$$

$$= \frac{1}{2} + \sqrt{f(x)^2 - f(x) + \frac{1}{4}}$$

$$= \frac{1}{2} + \sqrt{\left(f(x) - \frac{1}{2}\right)^2}$$

$$= \frac{1}{2} + f(x) - \frac{1}{2} \quad \operatorname{car} f(x) - \frac{1}{2} \ge 0$$

$$= f(x)$$

Donc ceci prouve que f est 2a-périodique.

Exercice 4.5 (Une équation fonctionnelle (Oral Polytechnique) - *****

Le but de cet exercice est de déterminer toutes les fonctions $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$ qui tendent vers 0 en $+\infty$ et telles que pour tous réels strictement positifs x et y: f(xf(y)) = yf(x) (\mathscr{R}).

- 1. Montrer que $g: x \mapsto \frac{1}{x}$ est solution du problème posé.
- 2. Prouver que si f est une fonction satisfaisant aux conditions de l'énoncé, alors le seul éventuel point fixe de f (c'est-à-dire la seule solution éventuelle de l'équation f(x) = x) est 1.
- 3. En déduire que g est la seule solution au problème posé.
 - 1. C'est une vérification immédiate.
 - 2. Si f est une solution, et si α est un point fixe de f, alors $f(\alpha) = \alpha$. Alors, pour tout $x \in \mathbf{R}_+^*$, on obtient en prenant $y = \alpha$ dans (\mathscr{R}) , $f(x\alpha) = \alpha f(x)$. Mais alors, pour tout $x \in \mathbf{R}_+^*$,

$$f(x\alpha^2) = f((x\alpha)\alpha) = \alpha f(x\alpha) = \alpha^2 f(x).$$

Puis de même, $f(x\alpha^3) = \alpha f(x\alpha^2) = \alpha^3 f(x)$. Une récurrence facile prouve alors que pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}_+^*$:

$$f(x\alpha^n) = \alpha^n f(x).$$

Étudions les deux cas suivants :

- supposons que $\alpha > 1$. Alors $x\alpha^n \underset{n \to +\infty}{\longrightarrow} +\infty$, et donc par hypothèse, $f(x\alpha^n) \underset{n \to +\infty}{\longrightarrow} 0$. Mais $f(x\alpha^n) = \alpha^n f(x)$. Or, f étant supposée à valeurs dans \mathbf{R}_+^+ , f(x) est non nul, et donc $\alpha^n f(x) \underset{n \to +\infty}{\longrightarrow} +\infty$, d'où une contradiction. Donc déjà, on ne peut pas avoir $\alpha > 1$.
- Supposons à présent $\alpha < 1$. On a toujours $f(x\alpha^n) = \alpha^n f(x)$, mais cette fois, $\alpha^n \underset{n \to +\infty}{\longrightarrow} 0$, ce qui ne nous avance pas beaucoup...

On a alors $\alpha = f(\alpha) = f(1 \times \alpha) = f(1f(\alpha)) = \alpha f(1)$. Et donc en divisant par $\alpha, f(1) = 1$. Et alors :

$$1 = f(1) = f\left(\frac{1}{\alpha}\alpha\right) = f\left(\frac{1}{\alpha}f(\alpha)\right) = \alpha f\left(\frac{1}{\alpha}\right)$$

de sorte que $f\left(\frac{1}{\alpha}\right) = \frac{1}{\alpha}$. Et donc $\frac{1}{\alpha}$ est également un point fixe de f. Or, $\frac{1}{\alpha} > 1$, et nous avons déjà dit qu'il ne pouvait y avoir de points fixes supérieurs strictement à 1. Donc il n'y a pas non plus de points fixes de f dans]0,1[.

Le seul point fixe éventuel de f est 1.

3. Nous n'avons pas encore dit qu'une fonction f solution au problème posé possède un point fixe! Mais notons que si $x \in \mathbf{R}_+^*$, alors en prenant y = x dans la relation (\mathcal{R}) , on a f(xf(x)) = xf(x).

Et donc pour tout $x \in \mathbf{R}_+^*$, xf(x) est un point fixe de f, qui possède donc au moins un point fixe. Et d'après la question précédente, ce point fixe ne peut être que 1. Ainsi, pour tout $x \in \mathbf{R}_+^+$:

$$xf(x) = 1 \Leftrightarrow f(x) = \frac{1}{x} = g(x).$$

Et donc g est la seule fonction qui satisfait aux conditions de l'énoncé.

Limites

Exercice 4.6 $(\star\star)$

Déterminer les limites de :

$$f_1: x \mapsto \frac{1-5x}{5+x} \text{ en } -5, +\infty \text{ et } -\infty;$$

$$f_2: x \mapsto \sqrt{\frac{x^3}{1+x}} \text{ en } +\infty \text{ et } -\infty;$$

$$f_3: x \mapsto \frac{3x^2 - x - 2}{x^4 - 1} \text{ en } 1, +\infty \text{ et } -\infty;$$

$$f_4: x \mapsto \sqrt{x^2 - 4x + 1} - x + 2 \text{ en } +\infty;$$

 $f_5: x \mapsto \sqrt{x^2 - 4x + 9} + x - 3 \text{ en } -\infty.$

$$f_5: x \mapsto \sqrt{x^2 - 4x + 9} + x - 3 \text{ en } -\infty.$$

- Exercice 4.7 ($\bigstar \bigstar$)
 1. Calculer la limite en 1 de $x \mapsto \frac{\sin(\pi x)}{x-1}$
 - 2. Calculer les limites en $+\infty$ des fonctions suivantes :

(a)
$$x \mapsto x \sin\left(\frac{3}{x}\right)$$
;

(b)
$$x \mapsto \frac{\ln(1+x)}{\ln(x)}$$
.

3. Calculer les limites en 0 des fonctions suivantes :

(a)
$$x \mapsto \frac{\ln(1+\sin(x))}{x}$$
; (b) $x \mapsto \frac{\sqrt{1+x}-1}{x}$; (c) $x \mapsto \frac{e^{2x}-e^{-x}}{x}$.

(b)
$$x \mapsto \frac{\sqrt{1+x}-1}{x}$$
;

(c)
$$x \mapsto \frac{e^{2x} - e^{-x}}{x}$$

Dérivées

Exercice 4.8 (\bigstar)

Etudier le domaine de définition, de dérivabilité et calculer la dérivée des fonctions suivantes :

$$f_1: x \mapsto \sqrt{\frac{1+x}{1-x}}$$
 $f_2: x \mapsto \sqrt{x+\sqrt{1+x^2}}$ $f_3: x \mapsto \frac{1}{(\cos(x)+1)^4}$ $f_4: x \mapsto \sin\left(\ln\left(\frac{e^{2x}+1}{e^{2x}+3}\right)\right)$

Exercice 4.9 (★★)

Pour $m \in \mathbb{R}$, on pose $f_m(x) = \frac{x+m}{x^2+1}$. On note \mathscr{C}_m la courbe représentative de f_m .

- 1. Montrer que les tangentes aux courbes \mathscr{C}_m au point d'abscisse 0 sont parallèles.
- 2. Montrer que les tangentes aux courbes \mathscr{C}_m au point d'abscisse 1 sont concourantes.

Exercice 4.10 (★★ - 🔊)

- 1. Soit $n \in \mathbb{N}$ et $f : x \in \mathbb{R} \mapsto x^n$. Calculer $f^{(k)}$ pour tout $k \in \mathbb{N}$.
- 2. Plus généralement, si f est une fonction polynomiale de degré n, montrer que pour tout $k \in \mathbb{N}$:
 - si $k \le n$, $f^{(k)}$ est polynomiale de degré n-k; si $k \ge n+1$, $f^{(k)}$ est la fonction nulle.

Exercice 4.11 $(\star\star\star)$

Pour chacune des fonctions suivantes, déterminer sa dérivée n-ème pour tout $n \in \mathbb{N}$.

$$f_1: x \mapsto e^{ax+b}, a \neq 0;$$

$$f_2: x \mapsto \frac{2}{1+3x};$$

$$f_3: x \mapsto \sin(x).$$

Étude de fonctions et inégalités

Exercice 4.12 (★★)

Soit f la fonction définie sur \mathbb{R}_+^* par $f(x) = \left(2x + 1 + \frac{1}{x}\right)e^{-\frac{1}{x}}$.

- 1. Montrer que f se prolonge en une fonction continue sur \mathbb{R}_+ . Étudier la dérivabilité de ce prolongement.
- 2. Déterminer les asymptotes au graphe de f.

Exercice 4.13 $(\bigstar \bigstar)$

Étudier et représenter graphiquement la fonction $f: x \mapsto \sqrt{\frac{2-2x}{3+x^2}}$.

Est-elle bornée ? Possède t-elle des extrema sur son ensemble de définition?

Exercice 4.14 $(\bigstar \bigstar)$

- 1. Montrer que, pour x et y strictement positifs : $x \ln x + y \ln y \le (x+y) \ln(x+y)$.
- 2. Montrer que pour tout $x, y \in]-1, 1[: \frac{x-y}{1+xy} \in]-1, 1[.$
 - 1. On fixe y > 0, et on étudie la fonction $f_y : x \in \mathbb{R}_+^* \mapsto (x+y) \ln(x+y) x \ln(x) y \ln(y)$. Elle est continue et dérivable sur son ensemble de définition, et pour tout x > 0:

$$f'_y(x) = \ln(x+y) + 1 - (\ln(x) + 1) = \ln\left(\frac{x+y}{x}\right) = \ln\left(1 + \frac{y}{x}\right) > 0.$$

Donc f_y est strictement croissante sur \mathbb{R}_+^* , et par croissances comparées :

$$\lim_{x \to 0^+} f_y(x) = y \ln(y) - 0 - y \ln(y) = 0.$$

Par conséquent, $f_y(x) \ge 0$ pour tout x > 0. Et on a bien établi l'inégalité voulue pour tous $x \in \mathbb{R}$ et $y \in \mathbb{R}$.

2.

Exercice 4.15 ($\bigstar \bigstar$)
Pour tout entier $n \ge 1$, on pose $u_n = \prod_{k=1}^n \left(1 + \frac{k}{n^2}\right)$.

- 1. Prouver l'inégalité $x \frac{x^2}{2} \le \ln(1+x) \le x$ pour tout nombre positif x.
- 2. Encadrer $\ln(u_n)$, puis déduire les limites de $\ln(u_n)$ et de u_n .
 - 1. On obtient ces inégalités en étudiant successivement les fonctions $f_1: x \mapsto \ln(1+x) x$ et $f_2: x \mapsto \ln(1+x) - x + \frac{x^2}{2}$.
 - 2. Soit $n \ge 1$, et soit $k \in [1, n]$. On obtient en appliquant l'inégalité précédente pour $x = \frac{k}{n^2}$

$$\frac{k}{n^2} - \frac{k^2}{2n^4} \le \ln\left(1 + \frac{k}{n^2}\right) \le \frac{k}{n^2}.$$

Sommons ces inégalités pour k allant de 1 à n:

$$\sum_{k=1}^{n} \frac{k}{n^2} - \frac{k^2}{2n^4} \le \sum_{k=1}^{n} \ln\left(1 + \frac{k}{n^2}\right) \le \sum_{k=1}^{n} \frac{k}{n^2}$$

ce qui se récrit :

$$\underbrace{\frac{n(n+1)}{2n^2} - \frac{n(n+1)(2n+1)}{12n^4}}_{=v_n} \le \ln(u_n) \le \underbrace{\frac{n(n+1)}{2n^2}}_{w_n}.$$

Pour tout $n \in \mathbb{N}^*$:

$$u_n = \frac{1 + \frac{1}{n}}{2} - \frac{(1 + \frac{1}{n})(2 + \frac{1}{n})}{12n} \xrightarrow[n \to +\infty]{} \frac{1}{2}.$$

De même, $\lim_{n\to+\infty} w_n = \frac{1}{2}$

Par le théorème des gendarmes, $\lim_{n\to+\infty} \ln(u_n)$ existe et est égale à $\frac{1}{2}$. Par composition par l'exponentielle qui est continue en $\frac{1}{2}$, on en déduit que (u_n) converge et $\lim_{n\to+\infty}u_n=e^{1/2}$.

Bijections

- Exercice 4.16 (\bigstar)
 1. Montrer que la fonction $f: \left\{ \begin{array}{ccc} \mathbb{R} \setminus \{3\} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{2x+1}{x-3} \end{array} \right.$ réalise une bijection de $\mathbb{R} \setminus \{3\}$ sur un ensemble à préciser.
 - 2. Déterminer alors f^{-1} .

Exercice 4.17 $(\bigstar \bigstar)$

Soit f la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $f(x) = \frac{1}{\cos(x)}$.

1. Montrer que f réalise une bijection de $\left[0,\frac{\pi}{2}\right[$ sur un intervalle J que l'on précisera.

6

2. Montrer que f^{-1} est dérivable sur $J \setminus \{1\}$ et que pour tout $x \in J \setminus \{1\}$, $(f^{-1})'(x) = \frac{1}{x\sqrt{x^2-1}}$.

Exercice 4.18 $(\bigstar \bigstar)$

On considère la fonction f définie par $f(x) = \frac{1}{e^x + e^{-x}}$.

- 1. Déterminer le domaine de définition \mathcal{D} de f et étudier sa parité.
- 2. Étudier les variations de la fonction f et préciser ses limites aux bornes de \mathcal{D} .
- 3. Montrer que la restriction de f à l'intervalle $[0, +\infty[$ admet une application réciproque qu'on notera g.
- 4. Donner le domaine de définition de g, son domaine de continuité ainsi que son sens de variation.
- 5. Tracer les courbes représentatives des fonctions f et g.
- 6. Expliciter la fonction g.

Exercice 4.19 $(\star\star\star)$

Soit a > 0, soit I une partie de \mathbb{R} , et soit $f:]-a, a[\to I \text{ une fonction impaire réalisant une bijection}]$ de]-a,a[sur I. Montrer que f^{-1} est encore impaire. Que dire si f est paire?

Avant toute chose, remarquons que I doit être symétrique pour que la notion d'imparité possède

Soit donc $x \in I$. Alors $f\left(-f^{-1}(x)\right) = -f\left(f^{-1}(x)\right) = -x$. Puisque $f^{-1}(x) \in]-a,a[$, alors $-f^{-1}(x) \in [-a, a[$, et donc -x est bien l'image d'un élément de]-a, a[, donc il est dans I. Ceci prouve donc que I est nécessairement symétrique.

Mieux : nous venons de prouver que $-f^{-1}(x)$ est un antécédent de -x par f. Mais f étant réalisant une bijection de]-a,a[sur I, un tel antécédent est unique, et c'est $f^{-1}(-x)$. Et donc $f^{-1}(-x) = -f^{-1}(x)$: la fonction f^{-1} est impaire.

Si f est paire, $f\left(\frac{a}{2}\right) = f\left(-\frac{a}{2}\right)$, et donc ce nombre possède deux antécédents distincts par f. Donc f ne réalise pas une bijection de]-a,a[sur I et par conséquent, f^{-1} n'existe pas.

Exercice 4.20 ($\bigstar \bigstar \bigstar$) On considère la fonction $f: x \mapsto \frac{-x^2 + 8x - 12}{x^2 - 4x + 3}$.

- 1. Étudier la fonction f et construire sa courbe représentative.
- 2. Pour tout nombre réel r, on considère l'ensemble $f^{-1}(\{r\}) = \{x \in \mathbb{R} \mid f(x) = r\}$. Montrer qu'il contient en général deux éléments, et préciser les cas d'exception.
- 3. On considère la fonction g définie par $g(x) = \max f^{-1}(\{f(x)\})$. Étudier la fonction g et construire sa courbe représentative.
 - 1. Commençons par écrire f sous forme factorisée, ce qui facilitera son étude :

$$f(x) = -\frac{(x-2)(x-6)}{(x-1)(x-3)}.$$

La fonction f est bien définie lorsque le quotient a un sens, c'est-à-dire lorsque $x \neq 1,3$. Ainsi $\mathcal{D}_f = \mathbb{R} \setminus \{1, 3\}$. De plus, f est dérivable sur son domaine de définition comme quotient

7

MP2I

de fonctions dérivables. On obtient alors après simplification que pour tout $x \neq 1, 3$:

$$f'(x) = -2\frac{2x^2 - 9x + 12}{(x-1)^2(x-3)^2}.$$

Le discriminant du polynôme au numérateur étant strictement négatif, f'(x) < 0 pour tout $x \neq 1, 3$, et f est strictement décroissante sur les intervalles $] - \infty, 1[$,]1, 3[et $]3, +\infty[$.

On détermine les limites de f aux bords de son ensemble de définition. Écrivons :

$$\frac{-x^2 + 8x - 12}{x^2 - 4x + 3} = \frac{-1 + \frac{8}{x} - \frac{12}{x^2}}{1 - \frac{4}{x} + \frac{3}{x^2}}.$$

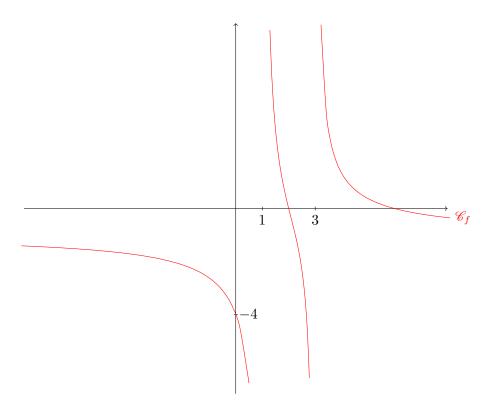
D'où $\lim_{x \to \pm \infty} f(x) = -1$.

On obtient les limites en 1 et en 3 grâce à l'expression factorisée de f:

$$f(x) = -\frac{(x-2)(x-6)}{(x-1)(x-3)}.$$

D'où $\lim_{x \to 1^-} f(x) = -\infty$, $\lim_{x \to 1^+} f(x) = +\infty$, $\lim_{x \to 3^-} f(x) = -\infty$ et $\lim_{x \to 3^+} f(x) = +\infty$.

On construit sa courbe représentative (on pourra utiliser la valeur f(0) = -4).



2. Pour tout nombre réel r, on considère l'ensemble $f^{-1}(\{r\}) = \{x \in \mathbb{R} \mid f(x) = r\}$.

Image réciproque d'ensemble.

 $f^{-1}(\{r\})$ s'appelle l'image réciproque de l'ensemble $\{r\}$ par la fonction f. Il s'agit de l'ensemble des antécédents par f de r.

Par exemple, si f est la fonction carrée définie sur $\mathbb R,$ alors :

$$f^{-1}(\{4\}) = \{2, -2\}$$
 ; $f^{-1}(\{2\}) = \{\sqrt{2}, -\sqrt{2}\}$; $f^{-1}(\{1\}) = \{1, -1\}$
 $f^{-1}(\{0\}) = \{0\}$; $f^{-1}(\{-2\}) = \emptyset$.

On fera attention à la notation f^{-1} : il ne s'agit pas ici de l'application réciproque de f. D'ailleurs f n'est pas supposée bijective ici (que ça soit la fonction carrée dans l'exemple, où la fonction f de l'exercice).

Montrons que cet ensemble contient en général deux éléments. Pour cela on va définir :

- f_1 la restriction de f à l'intervalle $]-\infty,1[$,
- f_2 la restriction de f à l'intervalle [1,3[,
- f_3 la restriction de f à l'intervalle $[3, +\infty[$.

On a montré que f_1 est continue et strictement décroissante sur $]-\infty,1[$. Par le théorème de la bijection, f_1 réalise une bijection de $]-\infty,1[$ sur l'intervalle $f_1(]-\infty,1[)=]-\infty,-1[$. On notera dans la suite f_1^{-1} sa bijection réciproque.

De même, on montre que :

- la fonction f_2 réalise une bijection de]1,3[sur l'intervalle $f_2(]1,3[)=]-\infty,+\infty[$. On notera dans la suite f_2^{-1} sa bijection réciproque ;
- la fonction f_3 réalise une bijection de $]3, +\infty[$ sur l'intervalle $f_3(]3, +\infty) =] +\infty, -1[$. On notera dans la suite f_3^{-1} sa bijection réciproque.

Soit $r \in \mathbb{R}$, on a trois cas possibles :

• soit r > -1: alors d'après ce qu'on a fait, les équations $f_2(x) = r$ et $f_3(x) = r$ admettent une unique solution chacune, respectivement $\alpha_2 = f_2^{-1}(r)$ et $\alpha_3 = f_3^{-1}(r)$, tandis que l'équation $f_1(x) = r$ n'a pas de solution. On a donc dans ce cas:

$$f^{-1}(\{r\}) = \{\alpha_2, \alpha_3\}.$$

Cet ensemble contient donc dans ce cas 2 éléments.

• soit r < -1: alors les équations $f_1(x) = r$ et $f_2(x) = r$ admettent une unique solution chacune, respectivement $\alpha_1 = f_1^{-1}(r)$ et $\alpha_2 = f_2^{-1}(r)$, tandis que l'équation $f_3(x) = r$ n'a pas de solution. On a donc dans ce cas:

$$f^{-1}(\{r\}) = \{\alpha_1, \alpha_2\}.$$

Cet ensemble contient encore 2 éléments.

• soit r = -1: alors d'après ce qu'on a fait, l'équation $f_2(x) = r$ admet une unique solution notée $\beta = f_2^{-1}(r)$, tandis que les équations $f_1(x) = r$ et $f_3(x) = r$ n'ont pas de solution. On a donc dans ce cas:

$$f^{-1}(\{r\}) = \{\beta\}.$$

Cet ensemble contient cette fois 1 seul élément.

3. On considère la fonction g définie par $g(x) = \max f^{-1}(\{f(x)\})$.

Le domaine de définition de g est le même que celui de f: en effet il faut et il suffit que f(x) soit bien définie dans cette expression pour qu'elle ait un sens. De plus, $f^{-1}(\{f(x)\})$ est un ensemble contenant au moins un élément, l'élément x, et au plus deux comme nous l'avons vu à la question précédente. On a donc $\mathcal{D}_g = \mathbb{R} \setminus \{1,3\}$.

Posons r = f(x). Plusieurs cas se présentent :

• si x < 1, alors r = f(x) < -1. Dans ce cas, on a vu que :

$$f^{-1}(\{r\}) = \{\alpha_1, \alpha_2\} = \{f_1^{-1}(r), f_2^{-1}(r)\}\$$

et puisque $f_1^{-1}(r) < f_2^{-1}(r)$, on obtient : $g(x) = f_2^{-1}(r) = f_2^{-1}(f(x))$.

• si $1 < x < \beta$, alors r = f(x) > -1. Dans ce cas, on a vu que :

$$f^{-1}(\{r\}) = \{\alpha_2, \alpha_3\} = \{f_2^{-1}(r), f_3^{-1}(r)\}\$$

et puisque $f_2^{-1}(r) < f_3^{-1}(r)$, on obtient : $g(x) = f_3^{-1}(r) = f_3^{-1}(f(x))$.

• si $x = \beta$, alors $r = f(\beta) = -1$. Dans ce cas, on a vu que :

$$f^{-1}(\{r\}) = \{\beta\}.$$

On obtient donc : $g(\beta) = \beta$.

• si $\beta < x < 3$, alors r = f(x) < -1. Dans ce cas, on a vu que :

$$f^{-1}(\{r\}) = \{\alpha_1, \alpha_2\} = \{f_1^{-1}(r), f_2^{-1}(r)\}\$$

et puisque $f_1^{-1}(r) < f_2^{-1}(r)$, on obtient :

$$g(x) = f_2^{-1}(r) = f_2^{-1}(f(x)) = f_2^{-1}(f_2(x)) = x.$$

• enfin si x > 3, alors r = f(x) > -1. Dans ce cas, on a vu que :

$$f^{-1}(\{r\}) = \{\alpha_2, \alpha_3\} = \{f_2^{-1}(r), f_3^{-1}(r)\}$$

et puisque $f_2^{-1}(r) < f_3^{-1}(r)$, on obtient :

$$g(x) = f_3^{-1}(r) = f_3^{-1}(f(x)) = f_3^{-1}(f_3(x)) = x.$$

Je vous laisse alors tenter de représenter la courbe représentative de g.