Nombres complexes

Formes algébriques et trigonométriques

Exercice 7.1 $(\bigstar \bigstar)$

Déterminer la forme algébrique de :

$$z_1 = \frac{e^{2i\theta}}{1-i}; \qquad z_2 = (\sqrt{3}-i)^{2015}; \qquad z_3 = (1+e^{i\theta})^n; \qquad z_4 = \frac{1+i\tan\theta}{1-i\tan\theta}, \ \theta \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[.$$

Exercice 7.2 (\bigstar)

Trouver les modules et arguments de :

$$z_1 = \frac{\sqrt{3} + 2}{\sqrt{6} + i\sqrt{2}}; \qquad z_2 = 1 + i\tan(\theta); \qquad z_3 = 1 + i\theta \text{ où } \theta \in]-\pi; \pi[; \qquad z_4 = \frac{1 + \cos\theta + i\sin\theta}{1 - \cos\theta - i\sin\theta}.$$

Exercice 7.3 $(\star\star)$

Soit $z \in \mathbb{C}$ tel que $|z| \leq 1$.

- 1. Montrer que $|z^3 + 2iz| \leq 3$.
- 2. Quels sont les z pour lesquels cette inégalité est en fait une égalité ?

Exercice 7.4 (\bigstar)

Soit $z \in \mathbb{C}$ tel que $|z| \neq 1$. Montrer que pour tout $n \in \mathbb{N}^*$, $\left| \frac{1-z^n}{1-z} \right| \leq \frac{1-|z|^n}{1-|z|}$.

Exercice 7.5 $(\bigstar \bigstar)$

Pour quelles valeurs de n, le nombre complexe $\left(\frac{(1-i\sqrt{3})^5}{(1-i)^3}\right)^n$ est-il un réel positif ?

Exercice 7.6 $(\star\star\star)$

Soit $z \in \mathbb{C} \setminus \mathbb{R}_-$, de forme algébrique z = a + ib, $(a, b) \in \mathbb{R}^2$.

Montrer que l'argument principal de z est $\theta = 2 \arctan \left(\frac{b}{a + \sqrt{a^2 + b^2}} \right)$.

Commençons par noter que z n'étant pas un réel négatif, on n'a pas à la fois b=0 et $a\leq 0$.

Si $b \neq 0$, alors $\sqrt{a^2 + b^2} > \sqrt{a^2} = |a| \geq -a$, si bien que $a + \sqrt{a^2 + b^2} \neq 0$.

Et dans le cas où b=0, alors a>0, et donc $a+\sqrt{a^2+b^2}>0$, et donc est non nul. Donc déjà, $\theta=2\arctan\left(\frac{b}{a+\sqrt{a^2+b^2}}\right)$ est bien défini.

Il s'agit donc de prouver que $\sqrt{a^2+b^2}e^{i\theta}=z$, soit encore que $\sqrt{a^2+b^2}\cos(\theta)=a$ et $\sqrt{a^2+b^2}\sin(\theta)=a$ b. Utilisons pour cela les formules de l'angle moitié : si $t = \tan(\theta/2)$, alors

$$\cos(\theta) = \frac{1 - t^2}{1 + t^2} \text{ et } \sin(\theta) = \frac{2t}{1 + t^2}$$

1

Or ici, $\tan(\theta/2) = \tan\left(\arctan\left(\frac{b}{a+\sqrt{a^2+b^2}}\right)\right) = \frac{b}{a+\sqrt{a^2+b^2}}$. Et donc

MP2ILycée Roosevelt

$$\cos(\theta) = \frac{1 - \frac{b^2}{\left(a + \sqrt{a^2 + b^2}\right)^2}}{1 + \frac{b^2}{\left(a + \sqrt{a^2 + b^2}\right)^2}} = \frac{1 - \frac{b^2}{a^2 + 2a\sqrt{a^2 + b^2} + a^2 + b^2}}{1 + \frac{b^2}{a^2 + 2a\sqrt{a^2 + b^2} + a^2 + b^2}}$$
$$= \frac{2a^2 + 2a\sqrt{a^2 + b^2}}{2a^2 + 2b^2 + 2a\sqrt{a^2 + b^2}} = a\frac{a + \sqrt{a^2 + b^2}}{a^2 + b^2 + a\sqrt{a^2 + b^2}}$$
$$= \frac{a}{\sqrt{a^2 + b^2}} \frac{a + \sqrt{a^2 + b^2}}{a + \sqrt{a^2 + b^2}} = \frac{a}{\sqrt{a^2 + b^2}}$$

Et donc on a bien $\sqrt{a^2 + b^2} \cos \theta = a$. Et de même,

$$\sin(\theta) = \frac{2\frac{b}{a+\sqrt{a^2+b^2}}}{1+\frac{b^2}{\left(a+\sqrt{a^2+b^2}\right)^2}} = \frac{2b}{\frac{2a^2+2b^2+2a\sqrt{a^2+b^2}}{a+\sqrt{a^2+b^2}}}$$
$$= b\frac{a+\sqrt{a^2+b^2}}{a^2+b^2+a\sqrt{a^2+b^2}} = \frac{b}{\sqrt{a^2+b^2}}\frac{a+\sqrt{a^2+b^2}}{\sqrt{a^2+b^2}} = \frac{b}{\sqrt{a^2+b^2}}$$

Et donc on a bien $\sqrt{a^2 + b^2} \sin \theta = b$.

Ainsi, $\sqrt{a^2 + b^2}e^{i\sigma} = a + ib = z$.

Exercice 7.7 $(\star\star)$

Résoudre dans \mathbb{C} :

(i)
$$e^z + 1 = 0$$
;

| (ii)
$$e^z = 1 + i\sqrt{3}$$
; | (iii) $e^z + e^{-z} = 1$.

(iii)
$$e^z + e^{-z} = 1$$
.

Applications au calcul trigonométrique et algébrique

Exercice 7.8 $(\bigstar \bigstar)$

Linéariser $\sin^5(x)$, $\cos(x)\sin^4(x)$ et $\cos^2(2x)\sin^3(3x)$.

Exercice 7.9 (
$$\star\star$$
) $\sin\left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{4}\right)$. Calculer la fraction $\frac{\cos\left(\frac{\pi}{3}\right) + \cos\left(\frac{\pi}{4}\right)}{\cos\left(\frac{\pi}{3}\right) + \cos\left(\frac{\pi}{4}\right)}$. En déduire $\tan\left(\frac{\pi}{24}\right)$.

Exercice 7.10 (★)

Exprimer $\sin(5\theta)$ en fonction de $\sin(\theta)$ et en déduire la valeur de $\sin\left(\frac{\pi}{5}\right)$.

Exercice 7.11 ($\star\star$) Soit $n \in \mathbb{N}^*$. Calculer $S_1 = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \binom{n}{2k}$ et $S_2 = \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} (-1)^k \binom{n}{2k+1}$.

D'après la formule du binôme de Newton, on a $(1+i)^n = \sum_{k=0}^n i^k \binom{n}{k}$. Mais i^k ne peut prendre que 4 valeurs : i, -1, -i et 1.

Plus précisément : si k = 2p est pair, alors $i^k = \begin{cases} -1 & \text{si } p \text{ est impair} \\ 1 & \text{si } p \text{ est pair} \end{cases} = (-1)^p = (-1)^{k/2}$. Et

MP2ILycée Roosevelt

dans le cas où k = 2p + 1 est impair, alors $i^k = \begin{cases} i & \text{si } p \text{ est pair} \\ -i & \text{si } p \text{ est impair} \end{cases} = (-1)^p i.$ Et donc, il vient

$$(1+i)^{n} = \sum_{\substack{0 \le k \le n \\ k \text{ pir}}} (-1)^{k/2} \binom{n}{k} + i \sum_{\substack{0 \le k \le n \\ k \text{ impir}}} (-1)^{(k-1)/2} \binom{n}{k}$$
$$= \sum_{p=0}^{\left\lfloor \frac{n}{2} \right\rfloor} (-1)^{p} \binom{n}{2p} + i \sum_{p=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (-1)^{p} \binom{n}{2p+1}$$
$$= S_{1} + iS_{2}.$$

Mais d'autre part, nous savons que $1 + i = \sqrt{2}e^{i\frac{\pi}{7}}$. Et par conséquent,

$$(1+i)^n = (\sqrt{2})^n e^{in\frac{\pi}{4}} = (\sqrt{2})^n \left(\cos\left(\frac{n\pi}{4}\right) + i\sin\left(\frac{n\pi}{4}\right)\right).$$

On en déduit donc que

$$S_1 = (\sqrt{2})^n \cos\left(\frac{n\pi}{4}\right) \text{ et } S_2 = (\sqrt{2})^n \sin\left(\frac{n\pi}{4}\right).$$

Exercice 7.12 $(\star\star\star)$

Calculer les sommes suivantes (où $n \in \mathbb{N}$ et $(a, b) \in \mathbb{R}^2$):

$$A_n = \sum_{k=0}^n \cos(a+kb)$$
 $B_n = \sum_{k=0}^n \sin(a+kb)$ $C_n = \sum_{k=0}^n \binom{n}{k} \cos(a+kb)$ $D_n = \sum_{k=0}^n \cos^k(a) \sin(ka)$

Racines n-èmes

Exercice 7.13 (\bigstar)

Déterminer les racines cinquièmes de j et de $\frac{2\sqrt{2}}{i-1}$.

Exercice 7.14 ($\star\star$) On pose $z = e^{\frac{2i\pi}{7}}$, $u = z + z^2 + z^4$ et $v = z^3 + z^5 + z^6$.

- 1. Calculer u + v, puis u^2 en fonction de u.
- 2. En déduire la valeur de $\sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{4\pi}{7}\right) + \sin\left(\frac{8\pi}{7}\right)$.

Exercice 7.15 $(\star\star\star)$

Résoudre dans \mathbb{C} les équations suivantes (où $n \geq 2$):

$$(E_1): \left(\frac{z+1}{z-1}\right)^n + \left(\frac{z-1}{z+1}\right)^n = 2\cos(n\theta) \text{ où } \theta \in \left]0, \frac{2\pi}{n}\right]; \qquad (E_2): z^n = \overline{z}.$$

Exercice 7.16 $(\star\star\star)$

Soit $n \in \mathbb{N}^*$.

1. Calculer $\prod_{\omega \in \mathbb{U}_n} \omega$.

MP2I Lycée Roosevelt

2. Calculer $\sum_{\omega \in \mathbb{U}_n} \omega^p$ pour tout $p \in \mathbb{N}$. En déduire $\sum_{\omega \in \mathbb{U}_n} (1 + \omega)^n$.

Exercice 7.17 ($\star\star\star$ - Banque CCINP 89)

Soit $n \in \mathbb{N}$, avec $n \geq 2$ et soit $\zeta = e^{\frac{2i\pi}{n}}$.

1. On suppose que $k \in [1, n-1]$. Déterminer le module et un argument du complexe $\zeta^k - 1$.

2. On pose
$$S = \sum_{k=1}^{n-1} \left| \zeta^k - 1 \right|$$
. Montrer que $S = \frac{2}{\tan\left(\frac{\pi}{2n}\right)}$.

1. Déterminer module et argument de $\zeta^k - 1$, c'est déterminer sa forme exponentielle. Et pour cela, notre meilleur allié est la factorisation par l'angle moitié. On a :

$$\zeta^k - 1 = e^{\frac{ik\pi}{n}} - 1 = e^{\frac{ik\pi}{n}} \left(e^{i\frac{k\pi}{n}} - e^{-i\frac{k}{\pi}n} \right) = 2i\sin\left(\frac{k\pi}{n}\right) e^{\frac{ik\pi}{n}}.$$

Soit encore

$$\zeta^k - 1 = 2\sin\left(\frac{k\pi}{n}\right)e^{i\left(\frac{k\pi}{n} + \frac{\pi}{2}\right)}$$

Puisque $\sin\left(\frac{k\pi}{n}\right) \geq 0$, c'est donc bien le module de $\zeta^k - 1$: $\left|\zeta^k - 1\right| = 2\sin\left(\frac{k\pi}{n}\right)$ et un argument de $\zeta^k - 1$ est $\frac{k\pi}{n} + \frac{\pi}{2}$

2. Notons que pour $k = 0, \zeta^k - 1 = 1 - 1 = 0$, et donc

$$S = \sum_{k=1}^{n-1} |\zeta^k - 1| = 2 \sum_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right).$$

Donc S est la partie imaginaire de

$$A = 2\sum_{k=1}^{n-1} e^{i\frac{k\pi}{n}} = 2\sum_{k=1}^{n-1} \left(e^{i\frac{\pi}{n}}\right)^k = 2e^{i\frac{\pi}{n}} \frac{1 - e^{i\frac{(n-1)\pi}{n}}}{1 - e^{i\frac{\pi}{n}}} = 2\frac{e^{i\frac{\pi}{n}} - e^{i\frac{n\pi}{n}}}{1 - e^{i\frac{\pi}{n}}} = 2\frac{e^{i\frac{\pi}{n}} - e^{i\frac{n\pi}{n}}}{1 - e^{i\frac{\pi}{n}}} = 2\frac{e^{i\frac{\pi}{n}} - e^{i\frac{\pi}{n}}}{1 - e^{i\frac{\pi}{n}}}.$$

Or, comme à la question 1, on prouve que $1 - e^{i\frac{\pi}{n}} = -2i\sin\left(\frac{\pi}{2n}\right)e^{i\frac{\pi}{2n}}$. Et $1 + e^{i\frac{\pi}{n}} = e^{i\frac{\pi}{2n}}\left(e^{i\frac{\pi}{2n}} + e^{-i\frac{\pi}{2n}}\right) = 2\cos\left(\frac{\pi}{2n}\right)e^{i\frac{\pi}{2n}}$. Donc après simplification,

$$A = 2i \frac{\cos \frac{\pi}{2n}}{\sin \frac{\pi}{2n}} = i \frac{2}{\tan \frac{\pi}{2n}}.$$

Et alors $\sum_{k=1}^{n-1} \left| \zeta^k - 1 \right| = \frac{2}{\tan \frac{\pi}{2n}}$.

Exercice 7.18 ($\star\star\star\star$ - Polynômes de Tchebychev)

Soit $n \in \mathbb{N}^*$.

- 1. Prouver qu'il existe des entiers a_0, a_1, \ldots, a_n tels que pour tout $\theta \in \mathbb{R}$, $\cos(n\theta) = \sum_{k=0}^n a_k \cos^k(\theta)$.
- 2. Montrer que $a_n = 2^{n-1}$.
- 3. Soit $w = \frac{3-4i}{5}$. Vérifier que $w \in \mathbb{U}$, mais que $w \notin \bigcup_{n \in \mathbb{N}^*} \mathbb{U}_n$, c'est-à-dire que w n'est pas une racine de l'unité.

MP2ILycée Roosevelt

1. On a, pour tout $\theta \in \mathbb{R}$,

$$\cos(n\theta) = \operatorname{Re}\left(e^{in\theta}\right) = \operatorname{Re}\left((\cos\theta + i\sin\theta)^n\right)$$

$$= \operatorname{Re}\left(\sum_{k=0}^n \binom{n}{k} (i\sin\theta)^k \cos^{n-k}\theta\right)$$

$$= \sum_{k=0}^n \operatorname{Re}\left(\binom{n}{k} i^k \sin^k \theta \cos^{n-k}\theta\right)$$

$$= \sum_{k=0}^n \binom{n}{k} \sin^k \theta \cos^{n-k}\theta \operatorname{Re}\left(i^k\right)$$

$$= \sum_{k=0}^n \binom{n}{k} \cos^{n-k}\theta \sin^k \theta i^k$$

$$= \sum_{p=0}^{\lfloor n/2 \rfloor} \binom{n}{2p} \cos^{n-2p}\theta \sin^{2p}\theta (-1)^p$$

$$= \sum_{p=0}^{\lfloor n/2 \rfloor} \binom{n}{2p} (-1)^p \cos^{n-2p}\theta \left(1 - \cos^2\theta\right)^p = P(\cos(\theta))$$

où P est la fonction polynomiale $x \mapsto \sum_{n=0}^{\lfloor n/2 \rfloor} \binom{n}{2p} (-1)^p x^{n-2p} \left(1-x^2\right)^p$ à coefficients entiers.

2. On cherche le coefficient a_n de x^n dans P. Pour cela, notons que pour tout $p \in [0, \lfloor n/2 \rfloor,$ le coefficient de x^n dans $x^{n-2p}(1-x^2)^p$ est $1\times (-1)^p$. D'où :

$$a_n = \sum_{p=0}^{\lfloor n/2 \rfloor} \binom{n}{2p} (-1)^p (-1)^p = \sum_{p=0}^{\lfloor n/2 \rfloor} \binom{n}{2p}.$$

Cette somme a déjà été calculée dans un TD précédent (Exercice 4.6), elle vaut $a_n = 2^{n-1}$.

3. On a bien $|w|^2 = \frac{3^2 + 4^2}{5^2} = 1$, donc $w \in \mathbb{U}$.

Supposons par l'absurde qu'il existe $n \in \mathbb{N}^*$ tel que $w \in \mathbb{U}_n$. Si on note θ un argument de w, on a donc $\cos(\theta) = \frac{3}{5}$, et donc $\cos(n\theta) = 1$. Soit encore

$$2^{n-1} \left(\frac{3}{5}\right)^n + \sum_{k=0}^{n-1} a_k \left(\frac{3}{5}\right)^k = 1$$

Donc:

$$2^{n-1}3^n = 5^n - \sum_{k=1}^{n-1} a_k 3^k 5^{n-k} = 5\left(5^{n-1} - \sum_{k=1}^n a_k 3^k 5^{n-1-k}\right).$$

Or le membre de droite est un entier multiple de 5, alors que celui de gauche ne l'est pas, d'où une contradiction.

Ainsi, w n'est pas une racine de l'unité.

Exercice 7.19 ($\star\star\star\star$ - Irrationalité de $\frac{1}{\pi}\arccos\left(\frac{1}{3}\right)$ (Oral ENS)) Notons $\alpha = \frac{\arccos\left(\frac{1}{3}\right)}{\pi}$. Le but de cet exercice est de prouver que α est irrationnel, i.e. $\alpha \notin \mathbb{Q}$.

1. Donner la forme algébrique de $e^{i\pi\alpha}$.

MP2I Lycée Roosevelt

- 2. Montrer que $\alpha \in \mathbb{Q}$ si, et seulement si, il existe $n \in \mathbb{N}^*$ tel que $(1+2i\sqrt{2})^n = 3^n$.
- 3. Montrer que pour tout $n \in \mathbb{N}$, il existe des entiers a_n et b_n tels que $(1 + 2i\sqrt{2})^n = a_n + ib_n\sqrt{2}$, et tels que $a_n b_n$ ne soit pas divisible par 3. Conclure.

Notons que l'irrationnalité de α signifie qu'il n'existe pas d'angle multiple rationnel de π (angle dont la mesure en degré est un rationnel) dont le cosinus vaut $\frac{1}{3}$.

C'est un cas particulier d'un théorème du à Ivan Niven, qui a prouvé que les seuls angles multiples rationnels de π dont le cosinus est rationnel sont ceux que vous connaissez déjà, c'est-à-dire ceux dont le cosinus vaut $0, \pm \frac{1}{2}$ ou ± 1 .

- 1. On a $e^{i\alpha} = \cos \alpha + i \sin \alpha = \frac{1}{3} + i \sin \left(\arccos \frac{1}{3}\right) = \frac{1}{3} + i \sqrt{1 \left(\frac{1}{3}\right)^2} = \frac{1 + 2i\sqrt{2}}{3}$.
- 2. On a $(1 + 2i\sqrt{2})^n = 3^n \Leftrightarrow (e^{i\pi\alpha})^n = 1$.

Autrement dit, il s'agit de prouver que $\alpha \in \mathbb{Q}$ si et seulement si $e^{i\pi\alpha}$ est une racine de l'unité.

D'une part, si $\alpha = \frac{p}{q} \in \mathbb{Q}$, alors

$$\left(e^{i\pi\frac{p}{q}}\right)^{2q} = e^{2ip\pi} = 1$$

Et inversement, si $e^{i\pi\alpha}$ est une racine $n^{\text{ème}}$ de l'unité, alors il existe $k \in \mathbb{N}$ tel que $e^{i\pi\alpha} = e^{i\frac{\pi k}{n}}$. Et donc $\pi\alpha \equiv \frac{\pi k}{n}$ $[2\pi] \Leftrightarrow \alpha \equiv \frac{k}{n}$ [1]. Et par conséquent, α est rationnel.

Bref, nous avons bien prouvé que $\alpha \in \mathbb{Q}$ si et seulement si $e^{i\pi\alpha}$ est une racine de l'unité, soit si et seulement si il existe $n \in \mathbb{N}^*$ tel que $(1+2i\sqrt{2})^n=3^n$.

- 3. Montrons par récurrence qu'il existe deux entiers a_n et b_n tels que $(1+2i\sqrt{2})^n = a_n+ib_n\sqrt{2}$, avec a_n-b_n non divisible par 3.
 - **Init.** Pour n = 1, c'est évident : on prend $a_n = 1$ et $b_n = 2$, de sorte que $a_n b_n = -1$ n'est pas divisible par 3.
 - **Hér.** Supposons donc acquise l'existence de a_n et b_n vérifiant ces conditions. Alors

$$(1+2i\sqrt{2})^{n+1} = (1+2i\sqrt{2})^n (1+2i\sqrt{2}) = \left(a_n + ib_n\sqrt{2}\right) (1+2i\sqrt{2})$$
$$= (a_n - 4b_n) + (2a_n + b_n) i\sqrt{2}.$$

Posons alors $a_{n+1} = a_n - 4b_n$ et $b_{n+1} = 2a_n + b_n$, qui sont bien des entiers.

Et alors $a_{n+1} - b_{n+1} = -a_n - 5b_n = -6b_n + (b_n - a_n)$.

Si $a_{n+1} - b_{n+1}$ était divisible par 3, il existerait alors un entier k tel que

$$a_{n+1} - b_{n+1} = 3k \Leftrightarrow -6b_n + b_n - a_n = 3k \Leftrightarrow a_n - b_n = 3(-k - 2b_n)$$

contredisant le fait que $a_n - b_n$ n'est pas divisible par 3.

Par le principe de récurrence, pour tout $n \in \mathbb{N}^*$, il existe donc deux entiers a_n et b_n tels que $(1+2i\sqrt{2})^n = a_n + ib_n\sqrt{2}$ avec $a_n - b_n$ non divisible par 3.

Supposons donc à présent que α soit rationnel. Il existe alors n tel que $(1+2i\sqrt{2})^n=3^n$. Mais alors $a_n+b_ni\sqrt{2}=3^n$ est réel, et donc $b_n=0$, et $a_n=3^n$. Ceci vient contredire le fait que a_n-b_n n'est pas divisible par 3. Et donc α ne peut pas être rationnel.

Equations polynomiales dans \mathbb{C}

Exercice 7.20 $(\star\star)$

Résoudre dans $\mathbb C$ les équations suivantes :

(i)
$$(2+i)z^2 + (5-i)z + 2 - 2i = 0$$
;

(ii)
$$2z^3 - (3+4i)z^2 - (4-7i)z + 4 + 2i = 0$$
 sachant qu'elle admet une racine réelle ;

(iii)
$$z^4 + (3-6i)z^2 - 2(4+3i) = 0$$
;

(iv)
$$z^{2n} - z^n + 1 - i = 0$$
;

(v)
$$(\bigstar) z^2 + 2|z| - 3 = 0.$$

- Exercice 7.21 ($\bigstar \star$)
 1. Résoudre les systèmes $\begin{cases} x+y=4 \\ xy=5 \end{cases} \text{ et } \begin{cases} x+y=3-2i \\ xy=5-i \end{cases}, \text{ d'inconnues } (x,y) \in \mathbb{C}^2.$
 - 2. Pour quelles valeurs de $\lambda > 0$ existe-t-il des rectangles pour lesquels l'aire a et le périmètre p sont reliés par la relation $p = \lambda \sqrt{a}$?

Nombres complexes et géométrie plane

Exercice 7.22 $(\bigstar \bigstar)$

Déterminer l'ensemble des points M d'affixe z tels que :

(i)
$$z, \frac{1}{z}$$
 et $1+z$ ont le même magne module ; (ii) $1, z$ et z^2 forment un triangle rectangle en z ; (iii) $z, \frac{1}{z}$ et $-i$ sont alignés.

Exercice 7.23 (** - Théorème de l'angle au centre)

1. Soient a, b et c trois nombres complexes de module 1 deux à deux distincts.

Montrer que $z = \frac{a(c-b)^2}{b(c-a)^2}$ est un réel positif.

2. Soient A, B et C trois points distincts appartenant à un même cercle de centre O. Montrer l'égalité suivante entre angles orientés $(\overrightarrow{OA}, \overrightarrow{OB}) = 2(\overrightarrow{MA}, \overrightarrow{MB})$.

Exercice 7.24 ($\star\star\star$ - Concours Centrale PSI)

Soit $z \in \mathbb{C}^*$. On note p et q ses deux racines carrées. Trouver une condition nécessaire et suffisante pour que les points M, P et Q d'affixes respectives z, p et q forment un triangle rectangle en M.

Exercice 7.25 $(\star\star\star)$

Soient A, B, C trois points d'affixes respectives a, b et c. On note $j = e^{i\frac{2\pi}{3}}$.

- 1. Calculer j^2 et en déduire une expression de $e^{i\frac{\pi}{3}}$ en fonction de j.
- 2. Montrer que ABC est équilatéral direct (c'est-à-dire avec $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{3}$ si, et seulement si, $a + bj + cj^2 = 0.$

7

3. Montrer que ABC est équilatéral si, et seulement si, $a^2 + b^2 + c^2 = ab + ac + bc$.

Exercice 7.26 (★★ - Similitudes directes)

1. Caractériser géométriquement les similitudes associées à

$$f: z \mapsto (2i+1)z - 1 \text{ et } g: z \mapsto (1+i\sqrt{3})z - i\sqrt{3}.$$

2. Soit T la translation de vecteur $\vec{u}(-1,0)$ et soit R la rotation de centre O et d'angle $\frac{\pi}{2}$. Caractériser géométriquement $T \circ R \circ T$ et $R \circ T \circ R$.

Exercice 7.27 (★★★★ - Théorème de Ménélaüs)

1. Que peut-on dire de la composée de deux rotations ? de deux translations ? de deux homothéties ? d'une homothétie et d'une translation ?

Pour chaque composée, on identifiera la transformation obtenue et on en donnera ses éléments caractéristiques.

2. Soient ABC un triangle non aplati, et $M \in (AB)$, $N \in (AC)$, $P \in (BC)$. Montrer que :

$$M, N, P$$
 alignés \Leftrightarrow $\frac{MA}{MB} \cdot \frac{PB}{PC} \cdot \frac{NC}{NA} = 1.$

Pour ce faire, on introduira les homothéties h_M de centre M transformant B en A, h_N de centre N transformant A en C, h_P de centre P transformant C en B, et on considèrera $f = h_P \circ h_N \circ h_M$.