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Introduction
On cherche ici à résoudre le problème de décision suivant :

Un mot m étant donné, m appartient-il au langage L ?

Pour cela, on va construire des "machines abstraites" qui savent reconnaître l’appartenance ou la non-appartenance
d’un mot à un langage donné. Ces machines sont appelées des automates.
A langage connu, des questions se posent :

• existe-t-il un automate qui reconnait le langage, c’est-à-dire qui permet de savoir si un mot appartient au
langage ?

• dans la négative, quelle est la classe des langages reconnaissables par un automate ?

et à automate connu :

• quel est le langage reconnu par l’automate ?

• existe-t-il un automate plus simple effectuant le même travail ?
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1 Automates finis déterministes
1.1 Définition et représentation
Un automate est une machine abstraite permettant de reconnaître un langage sur un alphabet. De manière
formelle, on donne la définition suivante :

Définition.
Un automate fini déterministe (DFA pour deterministic finite automaton) est défini par un quintuplet
A = (Σ, Q, q0, F, δ) où :

• Σ est un alphabet (fini),

• Q est un ensemble fini dont les éléments sont appelés les états de A,

• q0 est un élément de Q appelé l’état initial,

• F est une partie de Q dont les éléments sont appelés états acceptants (ou finaux),

• δ est une application d’une partie de Q × Σ dans Q appelée fonction de transition.

Représentations d’un automate.
Il est d’usage de représenter un automate par un graphe dont les noeuds sont les états et les arêtes les couples
(qi, qj) appartenant à Q2 étiquetés par a appartenant à Σ tel que δ(qi, a) = qj .

Σ = {a, b}
Q = {q0, q1, q2}
F = {q0, q1}

δ a b
q0 q1 q0
q1 q2 q0
q2 q2 q2

q0 q1 q2

a

b

a

b

a, b

L’état initial (ici q0) est désigné par une flèche entrante, les états acceptants (ici q0 et q1) sont représentés par
une flèche sortante (certains auteurs représentent les états acceptants avec un double cercle).

Il sera souvent pratique d’étendre la définition de δ aux mots :

Définition.
Soit A = (Σ, Q, q0, F, δ) un automate fini déterministe. La fonction de transition δ∗ étendue aux mots est la
fonction partielle δ∗ : Q × Σ∗ → Q définie récursivement par :

• pour tout q ∈ Q, δ∗(q, ε) = q,

• pour tous q ∈ Q, u ∈ Σ∗ et a ∈ Σ, δ∗(q, ua) = δ(δ∗(q, u), a).

1.2 Langage reconnu
Le fonctionnement d’un automate est intuitif : il lit un mot symbole par symbole, en partant de l’état initial et
en se déplaçant suivant la fonction de transition. Si en fin de mot l’état courant est un état acceptant, le mot
est accepté. Dans le cas contraire, il est rejeté. Plus formellement :

Définition.
Soit A = (Σ, Q, q0, F, δ) un automate fini déterministe.

• Une transition est un triplet (qi, a, qj) tel que δ(qi, a) = qj . Elle sera représentée par qi
a−→ qj .

• Un chemin dans A est une suite finie de transitions consécutives débutant par l’état initial q0 :

q0
a1−→ q1

a2−→ . . .
an−→ qn

Le mot u = a1a2 . . . an est alors appelé l’étiquette du chemin et on a : δ∗(q0, u) = qn.

• Un mot u ∈ Σ∗ est reconnu par A si et seulement si δ∗(q0, u) ∈ F .

2
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Exemple. Reprenons l’automate défini précédemment :

q0 q1 q2

a

b

a

b

a, b

Les mots aba et bbab sont reconnus par l’automate. Le mot abaab ne l’est pas.

Définition.

• Le langage reconnu par un automate A, noté L (A), est l’ensemble des mots reconnus par A.

• Un langage L est dit reconnaissable s’il existe un automate fini déterministe A tel que L = L (A).

• On note Rec(Σ) l’ensemble des langages reconnaissables sur un alphabet Σ.

Remarque. Tous les langages ne sont pas reconnaissables, puisque l’ensemble des automates est dénombrable
alors que l’ensemble des langages ne l’est pas. En effet :

• Σ∗ est un ensemble infini, donc P(Σ∗), qui est l’ensemble des langages, est indénombrable.

• Les ensembles d’états possibles sont dénombrables (l’ensemble des [[0, n − 1]], pour n ∈ N∗) et une fois Q
fixé, il n’y a qu’un nombre fini de façons de choisir q0, F et δ.

Le théorème de Kleene que nous verrons plus loin établit l’équivalence entre les expressions rationnelles et les
automates finis dans le sens où ces deux notions définissent les mêmes langages.

Exercice.

1. Déterminer le langage reconnu par l’automate A1 suivant :

q0 q1 q2

a

b

a

b

a, b

2. Déterminer le langage reconnu par l’automate A2 suivant :

q0 q1 q2
a

b

a

a

b

3
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1.3 Implémentation
Pour modéliser un automate en OCaml, il est pratique d’utiliser le type char pour représenter l’alphabet Σ, le
type int pour l’ensemble des états et un dictionnaire pour énumérer la liste des transitions possibles.

Pour simplifier, la liste des transitions possibles sera représentée par le type ((int * char) * int) list et
nous définirons la fonction assoc pour associer au couple (q, a) l’état δ(q, a).

Ceci conduit à définir le type :

type dfa = {start: int ; accept: int list ; delta: ((int * char) * int) list} ;;

Par exemple, l’automate

q0 q1 q2
a

a

b

b

a

sera défini par :

La fonction suivante détermine l’état final de l’automate après parcours du chemin étiqueté par un mot passé
en argument (et déclenche l’exception Not_found en cas de blocage) :

4
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Enfin, la fonction qui suit détermine si un mot est reconnu ou pas :

2 Simplification des automates
2.1 Complétion
Définition.

Soit A = (Σ, Q, q0, F, δ) un automate fini déterministe.

• Un blocage de l’automate A est un couple (q, a) ∈ Q × Σ pour lequel la fonction de transition δ n’est
pas définie.

• Un automate sans blocage est dit complet.

Remarque. Un automate est donc complet si et seulement si δ est définie sur tout l’ensemble Q × Σ.

Exemples.

1. L’automate A1 suivant est complet :

q0 q1 q2

a

b

a

b

a, b

2. L’automate A2 suivant n’est pas complet :

q0 q1 q2
a

b

a

a

b

En effet, un mot débutant par la lettre b ne peut être lu par cet automate, faute d’une transition partant
de q0 et étiquetée par b. Le couple (q0, b) est donc un blocage de l’automate.

Tout langage reconnaissable est reconnu par un automate complet.

Propriété 1 (Complétion d’un automate)

5
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Preuve.

□

Pour compléter un automate, on ajoute un état puits et tous les blocages deviennent des transitions vers
cet état.

Méthode.

Exemple. Avec cette méthode, on passe ainsi de l’automate incomplet

q0 q1 q2
a

b

a

a

b

6
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à l’automate complet

q0 q1 q2

q3

a

b

b

a

a

b

a, b

2.2 Émondage
Nous avons mis en évidence la fonction principale d’un automate : reconnaitre des mots en parcourant un par
un ses caractères.

Dans le cas d’un automate complet, la complexité de l’algorithme qui en résulte est proportionnelle à la longueur
du mot puisqu’aucune transition n’est bloquante.

Or ceci peut s’avérer particulièrement inefficace : par exemple, dans le cas de l’automate

q0 q1 q2

a

b

a

b

a, b

une fois arrivé dans l’état q2, il est impossible de le quitter et il n’est donc pas nécessaire de poursuivre la lecture
du mot (q2 est un puits). Puisqu’il ne s’agit pas d’un état acceptant, il peut être supprimé sans modifier le
langage reconnu par l’automate :

Σ = {a, b}
Q = {q0, q1}
F = {q0, q1}

δ a b
q0 q1 q0
q1 − q0

q0 q1

a

b

b

L’automate obtenu est dit émondé. Plus formellement :

Définition.
Soit A = (Σ, Q, q0, F, δ) un automate fini déterministe. On dit d’un état q ∈ Q qu’il est :

• accessible lorsqu’il existe un chemin menant de l’état initial q0 à q,

• co-accessible lorsqu’il existe un chemin menant de q à un état acceptant,

• utile si et seulement s’il est accessible et co-accessible.

Si tous les états q ∈ Q sont utiles, on dit que l’automate A est émondé.

Tout langage reconnaissable non vide est reconnu par un automate émondé.

Propriété 2 (Émondage d’un automate)
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Preuve.

□

Pour émonder un automate, on efface les états qui ne sont pas à la fois accessibles et co-accessibles et
toutes les transitions impliquant ces états.

Méthode.

Exercice. Donner une version émondée de l’automate A ci-dessous puis le langage reconnu par A.

q0 q1 q2

q3 q4

a

b

a

b

b

a

a, b

a

b

Automate A Automate A émondé
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Remarque. Le fait qu’un automate soit émondé ne signifie pas qu’il soit le plus petit possible (au sens du
nombre d’états). Considérons par exemple les deux automates suivants :

q0 q1

a, b

a, b

q0

a, b

Ces deux automates reconnaissent tous les deux le langage Σ∗ pour Σ = {a, b}. On peut aussi facilement vérifier
que ces automates sont complets et émondés. Cependant, le deuxième automate possède un état de moins que
le premier.

2.3 Standardisation
Définition.

Un automate A = (Σ, Q, q0, F, δ) est dit standard si et seulement s’il n’existe pas de lettre x ∈ Σ et d’état
q ∈ Q tel que δ(q, x) = q0.
Autrement dit, il n’existe pas de transition aboutissant à l’état initial.

Tout langage reconnaissable est reconnu par un automate standard.

Propriété 3 (Standardisation d’un automate)

Preuve.

□

Exercice. Donner une version standardisée de l’automate A ci-dessous puis le langage reconnu par A.

q0 q1 q2
a

a

b

b

a

b

Automate A Automate A standardisé

9
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Exercice 1 (⋆)
On considère l’alphabet Σ = {a, b}. Déterminer un automate reconnaissant le langage des mots sur Σ :

1. comptant au plus une occurrence de a ;

2. ne comportant pas le facteur aa ;

3. ayant un nombre pair de a ;

4. ayant un nombre pair de a et un nombre multiple de 3 de b ;

5. n’ayant pas plus de deux occurrences consécutives de la même lettre.

Exercice 2 (⋆⋆)
On considère l’alphabet Σ = {a, b}. Déterminer un automate reconnaissant le langage des mots sur Σ :

1. ayant aba pour préfixe ;

2. ayant aba pour suffixe ;

3. ayant aba pour sous-mot ;

4. ayant aba pour facteur.

Exercice 3 (⋆)
Montrer qu’il existe des langages reconnus par un automate déterministe qui ne peuvent être reconnus par un
automate déterministe avec un seul état acceptant. On pourra considérer le langage {ε, a}.

Exercice 4 (⋆)
Émonder l’automate suivant :

q0 q1 q2 q3

q4 q5 q6 q7 q11

q8 q9 q10

a b
a

b a b
a b

b

a

a
b

a

b

b

a

aa

a

b

a

a

Exercice 5 (⋆⋆)
Soit l’alphabet Σ = {0, 1}. Déterminer des automates reconnaissant :

1. Le langage des mots qui sont l’écriture binaire d’un multiple de 2.

2. Le langage des mots qui sont l’écriture binaire d’un multiple de 4.

3. Le langage des mots qui sont l’écriture binaire d’un multiple de 3.

Exercice 6 (⋆⋆)
Soit A un automate à n états et L le langage reconnu par cet automate.
Montrer que si L est non vide, alors il contient au moins un mot de longueur au plus n − 1.

10
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3 Automates finis non déterministes
Dans cette section, nous allons généraliser la notion d’automate fini en utilisant plusieurs états initiaux et en
autorisant deux transitions sortantes d’un même état q à porter la même étiquette.

Nous constaterons que cette généralisation n’augmente pas l’expressivité du modèle : les langages reconnus sont
les mêmes que pour les automates déterministes ; cependant le nombre d’états d’un automate non déterministe
peut être notablement inférieur à l’automate déterministe équivalent.

3.1 Définitions
Définition.

Un automate fini non déterministe (NFA, nondeterministic finite automaton) est défini par un quintuplet
A = (Σ, Q, I, F, δ) où :

• Σ est un alphabet (fini),

• Q est un ensemble fini dont les éléments sont appelés les états de A,

• I ⊂ Q est l’ensemble des états initiaux,

• F ⊂ Q est l’ensemble des états acceptants (ou finaux),

• δ est une application de Q × Σ dans P(Q), appelée fonction de transition.

Remarque. Il n’y a plus ici de blocage au sens déjà étudié, mais δ(q, a) peut prendre la valeur ∅.

Il y a dans cette définition plusieurs défauts de déterminisme :

• il peut y avoir plusieurs états initiaux ;

• il peut y avoir plusieurs transitions possibles depuis un état pour un caractère donné.

Attention.

Exemple. L’automate A suivant est non déterministe :

Σ = {a, b}
Q = {q0, q1, q2}
F = {q2}

δ a b
q0 {q1} ∅
q1 {q1} {q1, q2}
q2 ∅ ∅ q0 q1 q2

a

a, b

b

Définition.
Soit A = (Σ, Q, I, F, δ) un automate fini non déterministe.

• Une transition est un triplet (qi, a, qj) tel que qj appartient à δ(qi, a).

Elle est représentée par qi
a−→ qj .

• Un chemin dans l’automate A est une suite finie de transitions consécutives

q0
a1−→ q1

a2−→ . . .
an−→ qn

débutant par l’état initial q0, le mot a1a2 . . . an est appelé l’étiquette du chemin.

• Un chemin est dit acceptant si et seulement si l’état d’arrivée de celui-ci est un état acceptant.

• Un mot de Σ∗ est reconnu par l’automate A si et seulement s’il étiquette un chemin acceptant.

• Le langage reconnu par l’automate A, noté L (A), est l’ensemble des mots reconnus par A.

11
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Remarque.

• A la différence des automates déterministe, il peut exister plusieurs chemins dans un automate non déter-
ministe pour un mot donné.
Par exemple, pour l’automate non déterministe A précédent et pour le mot abb, nous avons les deux
chemins :

q0
a−→ q1

b−→ q1
b−→ q1 et q0

a−→ q1
b−→ q1

b−→ q2.

• Un mot m est reconnu par un automate non déterministe si et seulement s’il existe au moins un chemin
étiqueté par m menant d’un état initial à un état acceptant, ce qui nécessite de tester tous les chemins
partant d’un état initial et étiquetés par m avant de pouvoir affirmer que ce dernier n’est pas reconnaissable.
Par exemple, le mot abb est reconnu par l’automate non déterministe A précédent puisque le chemin

q0
a−→ q1

b−→ q1
b−→ q2

est acceptant.

Exercice. Déterminer le langage reconnu par l’automate non déterministe A précédent.

3.2 Déterminisation
Nous avons introduit deux modèles d’automates : déterministes et non déterministes. Il se trouve que ces deux
modèles sont équivalents dans le sens où ils reconnaissent les mêmes langages. On pourra donc parler en général
de langage reconnaissable, sans avoir besoin de préciser par quel type d’automate fini.

Pour prouver ce résultat, on commence par introduire la définition suivante :

Définition.
Soit AN = (Σ, QN , IN , FN , δN ) un automate non déterministe.

On appelle automate des parties associé à AN , l’automate déterministe AD = (Σ, QD, I, FD, δD) construit
comme suit :

• QD = P(QN ),

• FD = {P ∈ QD | P ∩ FN ̸= ∅},

• δN :


QD × Σ → QD

(P, a) 7→
⋃

q∈P

δN (q, a)

On peut alors démontrer le résultat annoncé :

Soit L ⊂ Σ∗ un langage.

L est reconnu par un automate fini déterministe si et seulement s’il est reconnu par un automate
fini non déterministe.

Théorème 4 (Déterminisation)
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Pour déterminiser un automate, on peut procéder comme suit :

• on écrit un tableau dont les colonnes sont indexées par les lettres et la première ligne est indexée
par l’état initial de l’automate des parties ;

• on indique dans cette première ligne, à quel(s) état(s) mène chaque lettre puis on ajoute des lignes
correspondant aux ensembles d’états atteints non encore considérés ;

• on recommence jusqu’à ce que le procédé s’arrête.

On n’obtient ainsi que les états accessibles (mais pas forcément co-accessibles) de l’automate des parties.

Méthode.

Exercice. Considérons toujours l’automate non déterministe :

q0 q1 q2
a

a, b

b

Construire l’automate déterministe associé, puis donner la version émondée.

Remarque. Le résultat précédent prouve que les automates non déterministes ne sont pas plus "riche" que les
automates déterministes puisqu’ils reconnaissent exactement les mêmes langages.
En outre, ils ne sont pas très efficaces pour le traitement effectif des données : pour un mot donné, il faut
explorer tous les chemins étiquetés par celui-ci à partir de tous les états initiaux, avant de pouvoir affirmer que
ce mot n’est pas reconnu alors que pour un automate déterministe, il y a au plus un chemin étiqueté pour un
mot donné.
Cependant, ils sont parfois plus simples à construire à partir d’une caractérisation donnée d’un langage et seront
pour cette raison précieux dans certaines preuves à venir. Ils fournissent de plus des automates ayant souvent
un nombre plus réduit d’états.
La démarche que nous suivrons plus loin consistera à trouver un automate non déterministe reconnaissant un
langage donné, à le déterminiser puis à émonder ce dernier avec pour objectif d’obtenir un automate déterministe
ayant un nombre le plus réduit possible d’états.
Il faut cependant noter qu’il sera parfois tout bonnement impossible d’obtenir un automate déterministe ayant
un nombre d’états du même ordre de grandeur que pour l’automate non déterministe équivalent.

13
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Exercice. Considérons le langage L dénoté par (a + b)∗a(a + b)n−1.

1. Donner un automate non déterministe à n + 1 états qui reconnait L.

2. Montrer que tout automate déterministe qui reconnait L possède au moins 2n états.

3.3 Les ε-transitions
Nous allons maintenant présenter une variante des automates finis qui autorise l’utilisation de transitions qui
ne lisent pas de lettre du mot.

Ces transitions sont appelées des ε-transitions (ou des transitions spontanées) et notées avec un ε (symbole
du mot vide...) en guise d’étiquette :

qi
ε−→ qj

Exercice.

1. Considérons l’automate :

q0 q1

a

ε

b

Donner le langage reconnu par cet automate.

14
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2. On souhaite construire un automate qui reconnaît les mots commençant par aba ou se terminant par bab.

(a) Construire un automate qui reconnaît les mots commençant par aba.

(b) Construire un automate qui reconnaît les mots se terminant par bab.

(c) En assemblant ces deux automates à l’aide d’ε-transitions, construire un automate qui reconnaît les
mots commençant par aba ou se terminant par bab.

Remarques.

1. L’utilisation des ε-transitions permet parfois de décrire plus lisiblement un langage. Nous verrons plus
loin qu’elles permettent aussi de simplifier la description de certaines opérations (l’union, la concaténation
et la fermeture de Kleene).

2. L’existence d’ε-transitions rend généralement l’automate non déterministe, puisque nous avons toujours
la possibilité d’emprunter une telle transition même quand il existe une transition ordinaire que nous
pourrions emprunter.

Définition.
Un automate fini non déterministe asynchrone (c’est-à-dire contenant des ε-transitions) est défini par
un quintuplet A = (Σ, Q, I, F, δ) où :

• Σ est un alphabet (fini),

• Q est un ensemble fini dont les éléments sont appelés les états de A,

• I ⊂ Q est l’ensemble des états initiaux,

• F ⊂ Q est l’ensemble des états acceptants (ou finaux),

• δ est une application de Q × (Σ ∪ {ε}) dans P(Q), appelée fonction de transition.

Le théorème suivant montre que les automates avec ε-transitions décrivent la même classe de langages que
les automates sans ε-transition. On pourra donc encore parler de langage reconnaissable, sans préciser si
l’automate est ou non asynchrone.

15
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Soit L ⊂ Σ∗ un langage.

L est reconnu par un automate fini non déterministe asynchrone si et seulement s’il est reconnu
par un automate fini non déterministe.

Théorème 5 (Suppression des ε-transitions)

Nous allons proposer deux algorithmes d’élimination des ε-transitions qui transforment l’automate initial asyn-
chrone en un automate équivalent sans ε-transition.

Clôture transitive.

Les deux algorithmes commencent par une clôture transitive des ε-transitions de l’automate asynchrone. En
notant G = (Q, A) le graphe associé à l’automate, nous considérons le graphe partiel G′ = (Q, A′) de G où A′ se
limite aux arcs correspondant aux ε-transitions. Nous ajoutons à A les couples de sommets (s, t) appartenant
à Q2 reliés par un chemin dans A′, qui deviennent de nouvelles ε-transitions dans l’automate.

Exercice. Effectuer la clôture transitive des ε-transitions de l’automate :

q0 q1

q3 q2

a

ε

b

a

b

a

ε

Automate A Clôture transitive de l’automate A

Remarque. Nous ne sommes pas en train d’éliminer les ε-transitions... Par exemple dans le cas :

qi qj qk ql qm
ε ε ε ε

la clôture transitive de l’automate est :

Nous avons donc ajouté six ε-transitions !

Suppression des ε-transitions par fermeture avant.

Dans un premier temps, pour tout état t pour lequel il existe une ε-transition à un état u et pour toute transition
d’un état s à l’état t étiquetée par la lettre x (différente donc de ε), nous ajoutons une transition de l’état s à
l’état u étiqueté par la lettre x, puis une fois fini, nous supprimons l’ε-transition de l’état t à l’état u.
Dans un deuxième temps, pour tout état t pour lequel il existe une ε-transition d’un état inititial i à l’état t,
nous ajoutons t à l’ensemble des états initiaux et nous supprimons l’ε-transition de l’état i à l’état t.
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Exercice. Éliminer les ε-transitions dans l’automate par fermeture avant.

q0 q1

q3 q2

a

ε

b

a

b

a

ε

Automate A Fermeture avant de l’automate A

Suppression des ε-transitions par fermeture arrière.

Dans un premier temps, pour tout état t pour lequel il existe une ε-transition d’un état s à l’état t et pour toute
transition de l’état t à un état u étiquetée par la lettre x (différente donc de ε), nous ajoutons une transition de
l’état s à l’état u étiqueté par la lettre x, puis une fois fini, nous supprimons l’ε-transition de l’état s à l’état t.

Dans un deuxième temps, pour tout état t pour lequel il existe une ε-transition de l’état t à un état acceptant
f , nous ajoutons t à l’ensemble des états acceptants et nous supprimons l’ε-transition de l’état t à l’état f .

Exercice. Éliminer les ε-transitions dans l’automate par fermeture arrière.

q0 q1

q3 q2

a

ε

b

a

b

a

ε

Automate A Fermeture arrière de l’automate A

Remarque. Il est possible d’éviter la clôture transitive des ε-transitions de l’automate en définissant la notion
de ε-chemin entre deux états et de rechercher, sans faire de clôture, les états reliés par un ε-chemin.

Exercice 7 (⋆)
Déterminiser les automates suivants :

q0 q2

q1 q3

a

a

b

a
b

a

q0 q1

q3

q2

q4 q5

a b

b a

a, b

a, b

Automate A1 Automate A2
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Exercice 8 (⋆)
Soit Σ = {a, b}. Déterminer un automate non déterministe et un déterministe reconnaissant le langage des mots
commençant et terminant par a.

Exercice 9 (⋆⋆)
Soit Σ = {a, b}. Trouver un automate non déterministe qui reconnaît le langage des suffixes de baba puis le
déterminiser.

Exercice 10 (⋆⋆)
Soit Σ l’ensemble des lettres minuscules de l’alphabet français.

1. Définir un automate fini non déterministe acceptant les mots contenant le facteur "cpge".

2. Déterminiser cet automates.

Exercice 11 (⋆⋆ - Algorithme KMP)
1. Soit u un mot fixé et Pref(u) le langage des préfixes de u.

(a) Déterminer le langage reconnu par l’automate (Pref(u), ε, {u}, δ) avec, pour tout x ∈ Pref(u) et tout
a ∈ Σ, δ(x, a) est le plus long suffixe de xa qui appartient à Pref(u).

(b) Adapter l’automate précédent pour qu’il reconnaisse les mots dont u est facteur.

2. On considère dans cette question le cas où l’alphabet est Σ = {a, b} et le mot u est aba.

(a) Donner un automate non déterministe qui reconnait le langage Σ∗abaΣ∗ et sa déterminisation.
(b) Donner l’automate déterministe qui reconnait le langage Σ∗abaΣ∗ en utilisant l’algorithme KMP

décrit à la première question.
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4 Automates finis et langages rationnels
Il est maintenant temps d’aborder le théorème essentiel de ce chapitre, qui affirme l’équivalence entre langages
rationnels et langages reconnaissables par un automate :

Soit Σ un alphabet et L un langage sur Σ.

L est un langage rationnel si et seulement s’il existe un automate fini A tel que L = L (A).

Théorème 6 (de Kleene)

Remarque. Pour tout alphabet Σ, nous avons donc l’égalité Rat(Σ) = Rec(Σ).

1. Nous allons montrer que Rat(Σ) ⊂ Rec(Σ) en décrivant un algorithme construisant explicitement un
automate (l’automate de Glushkov ou l’automate de Thomson) associé à une expression rationnelle.

2. Moins utile en pratique, l’inclusion Rec(Σ) ⊂ Rat(Σ) nous servira essentiellement à justifier l’équivalence
dans le théorème de Kleene.

3. Quelques propriétés des langages reconnaissables (en particulier de clôture) seront établies pour être
étendues aux langages rationnels.

4.1 L’algorithme de Berry-Sethi
Rappel. Un langage L est local si et seulement s’il existe deux parties P et S de Σ et une partie N de Σ2

(l’ensemble des mots de longueur 2) telles que :

L \ {ε} = (PΣ∗ ∩ Σ∗S) \ (Σ∗NΣ∗) .

Nous savons que, si de telles parties existent, on a :

• P = P (L) = {a ∈ Σ | aΣ∗ ∩ L ̸= ∅} est l’ensemble des premières lettres des mots de L,

• S = S(L) = {a ∈ Σ | Σ∗a ∩ L ̸= ∅} est l’ensemble des dernières lettres des mots de L,

• N = N(L) = Σ2 \ F (L) où F (L) = {u ∈ Σ2 | Σ∗uΣ∗ ∩ L ̸= ∅} est l’ensemble des facteurs de longueur 2
des mots de L.

Définition.
Un automate déterministe A = (Σ, Q, q0, F, δ) est local si et seulement si, pour toute lettre x ∈ Σ, il existe
un état q ∈ Q tel que pour tout q′ ∈ Q, (q′, x) est un blocage ou δ(q′, x) = q.
Autrement dit, pour toute lettre x, toutes les transitions étiquetées par x arrivent dans un même état.

Tout langage local est reconnaissable par un automate local.

Théorème 7 (Reconnaissance des langages locaux par les automates locaux)

Preuve.
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□

Rappelons que toute expression rationnelle linéaire dénote un langage local. On déduit donc du théorème
précédent la :

Tout langage dénoté par une expression rationnelle linéaire est local donc reconnaissable par un
automate local.

Propriété 8

Exemple. Considérons l’expression rationnelle linéaire (a + b)∗c.

Nous avons vu dans le chapitre précédent les algorithmes de calcul des ensembles P , S et F et appliqués à cette
expression, nous obtenons :

P = {a, b, c} , S = {c} , F = {aa, ab, ba, bb, ac, bc} .

L’automate local reconnaissant le langage dénoté par cette expression est donc :

q0 a b c
a

b

c

a

b

c
a

b

c

4.2 Construction de l’automate de Glushkov
Considérons maintenant une expression rationnelle quelconque e.

Nous avons montré que :

• si le langage dénoté par e est non vide, alors il existe une expression rationnelle équivalente e′ ne contenant
pas le symbole ∅ (Propriété 10 du Chapitre 6).

• si le langage dénoté par e est non vide, alors il existe une expression rationnelle e′′ ne contenant ni le
symbole ∅, ni le symbole ε, telle que e soit équivalente à ε, e′′ ou ε + e′′ (Propriété 11 du Chapitre 6).
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Il est facile de construire un automate reconnaissant le langage dénoté par ε + e′′ à partir d’un automate
reconnaissant le langage dénoté par e′′ : il suffit d’ajouter q0 aux états acceptants. On sait également construire
des automates reconnaissant les langages ∅ et {ε} :

q0 q1 q0

Automate reconnaissant ∅ Automate reconnaissant {ε}

Nous supposons donc désormais que e est une expression rationnelle ne comportant ni le symbole ∅, ni le
symbole ε. Notons n le nombre de lettres (non nécessairement distinctes) de e et ordonnons ces dernières par
ordre croissant d’apparition dans e. Remplaçons dans e chaque lettre par le caractère ck où k désigne son rang
d’apparition.

Nous obtenons alors une nouvelle expression rationnelle sur le nouvel alphabet Σ′ = {c1, c2, . . . , cn}, expression
rationnelle qui est linéaire appelée la linéarisation de l’expression e.

Exemple. A l’expression
e = (a + b)(a∗ + ba∗ + b∗)∗

va être associée l’expression rationnelle linéaire

el = (c1 + c2)(c∗
3 + c4c∗

5 + c∗
6)∗.

Pour retrouver l’expression rationnelle initiale à partir de l’expression linéarisée, il suffit de connaître la fonction
de marquage µ : Σ′ → Σ précisant par quel caractère de Σ doit être remplacé le caractère ck.

Exemple. Dans le cas de l’exemple ci-dessus :

µ(c1) = µ(c3) = µ(c5) = a , µ(c2) = µ(c4) = µ(c6) = b .

Tout langage dénoté par une expression rationnelle sans symbole ∅ ni ε est reconnaissable par un
automate fini.

Théorème 9 (Une implication du théorème de Kleene)

Preuve.

□
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Remarques.
1. Compte tenu de la remarque faite au préalable, ceci prouve le sens direct du théorème de Kleene.

2. La procédure que nous venons de décrire :

• linéarisation de l’expression,
• calcul des ensembles P , S et F définissant le langage local associé,
• construction de l’automate local,
• suppression des marques utilisées pour la linéarisation

porte le nom d’algorithme de Berry-Sethi.

3. L’automate obtenu par l’algorithme de Berry-Sethi s’appelle l’automate de Glushkov de l’expression
rationnelle.
Ce dernier est en général non déterministe et possède |e| + 1 états. Il peut être rendu déterministe par
déterminisation.

Exemple. Considérons l’expression rationnelle e = (ab + b)∗ba. Sa linéarisation est :

e′ = (c1c2 + c3)∗c4c5.

Nous calculons :

P = {c1, c3, c4} , S = {c5} , F = {c1c2, c2c1, c2c3, c2c4, c3c1, c3c3, c3c4, c4c5} .

Donc l’automate local standard associé à e′ est :

c3c0

c1

c4

c2

c5

c1

c3

c4

c2

c1

c4

c1 c3

c4

c3

c5

Il nous reste à supprimer le marquage pour obtenir l’automate de Glushkov associé à e :

c3c0

c1

c4

c2

c5

a

b

b

b

a

b

a
b

b

b

a
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Nous pouvons finalement le déterminiser :

δ′ a b
{c0} {c1} {c3, c4}
{c1} _ {c2}

{c3, c4} {c1, c5} {c3}
{c2} {c1} {c3, c4}

{c1, c5} _ {c2}
{c3} {c1} {c3, c4}

q5q0

q1

q2

q3

q4

a

b

b

a

b

a

b

b

a

b

4.3 Construction de l’automate de Thomson
Rappel. Les expressions rationnelles sont définies inductivement de la manière suivante :

• Cas de base :

– ∅ et ε sont des expressions rationnelles,
– pour tout a appartenant à Σ, a est une expression rationnelle.

• Étape d’induction :

– pour toutes expressions rationnelles e1 et e2, la réunion (e1 + e2) de e1 et e2 est une expression
rationnelle,

– pour toutes expressions rationnelles e1 et e2, la concaténation (e1.e2) de e1 et e2 est une expression
rationnelle,

– pour toute expression rationnelle e, l’itération (aussi appelée l’étoile) (e∗) de e est une expression
rationnelle.

Considérons une expression rationnelle e et cherchons à construire un automate A (e) qui reconnaît le langage
dénoté par l’expression rationnelle e. L’algorithme consiste à construire un automate A (e) par induction
structurelle en suivant la construction de l’expression rationnelle e :

• Cas de base :

– un automate A (ε) est :

– soit a appartenant à Σ, alors un automate A (a) est :
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• Étape d’induction :

– pour toutes expressions rationnelles e1 et e2, un automate A (e1 + e2) est :

– pour toutes expressions rationnelles e1 et e2, un automate A (e1.e2) est :

– pour toute expression rationnelle e, un automate A (e∗) est :

Comme nous pouvons le voir, ces constructions font apparaître des ε-transitions qui peuvent être ensuite élim-
inées et l’automate non déterministe obtenu peut être ensuite déterminisé.
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Exemple. Construire l’automate de Thomson associé à l’expression rationnelle e = (ab + b)∗ba.

4.4 Des automates aux expressions rationnelles

Tout langage reconnu par un automate est rationnel.

Théorème 10 (Réciproque du théorème de Kleene)

Nous allons illustrer la preuve par un exemple en suivant l’algorithme de Brzozowski et McCluskey appelé aussi
algorithme d’élimination des états. Il consiste à éliminer un par un les différents états d’un automate jusqu’à ne
plus obtenir qu’un automate généralisé à deux états qui fournira une expression rationnelle dénotant le langage
reconnu par l’automate initial.

Considérons l’automate suivant :

q0

q1

q2

q3

a

a

b

a

b

a

b
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Nous commençons par ajouter un état initial et un état final :

q0i

q1

q2

q3 f
ε

a

a

b

a

b

a

b

ε

Nous éliminons l’état q2 :

q0i

q1

q3 f
ε

a

b + a2

a

b

ε

ba

Nous éliminons l’état q1 :

q0i q3 f
ε b + a2 + aa∗b ε

ba

Nous éliminons l’état q0 :

i q3 f
b + a2 + aa∗b ε

ba

Nous éliminons l’état q3 :

i f
(b + a2 + aa∗b)(ba)∗

Nous avons ainsi montré que l’automate reconnait le langage dénoté par (b + a2 + aa∗b)(ba)∗. Évidemment,
l’expression obtenue dépend de l’ordre dans lequel les éliminations ont été réalisées.
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4.5 Propriétés des langages rationnels

Soit Σ un alphabet fini.

(1) Soit L un langage reconnaissable par un automate A = (Σ, Q, q0, F, δ).
Alors L = Σ∗ \ L est un langage reconnaissable par l’automate A′ = (Σ, Q, q0, Q \ F, δ).

(2) Soient L1 et L2 deux langages reconnaissables respectivement par un automate
A1 = (Σ, Q1, q1,0, F1, δ1) et un automate A2 = (Σ, Q2, q2,0, F2, δ2).
Alors le langage L1 ∩ L2 est reconnaissable par l’automate A = (Σ, Q, q0, F, δ) où :

Q = Q1 × Q2, q0 = (q1,0, q2,0), F = F1 × F2,

∀q = (q1, q2) ∈ Q, ∀x ∈ Σ, δ((q1, q2), x) = (δ1(q1, x), δ2(q2, x)).

(3) Soit L un langage reconnaissable par l’automate non déterministe A = (Σ, Q, I, F, δ).
Alors le miroir de L (c’est-à-dire le langage constitué des miroirs des mots de L) est un langage
reconnaissable par l’automate A′ = (Σ, Q, F, I, δ′) où :

∀(q, q′) ∈ Q2, ∀x ∈ Σ, δ′(q, x) = q′ ⇔ δ(q′, x) = q .

Propriété 11 (Stabilité des langages reconnaissables)

On déduit alors directement de la propriété précédente et du théorème de Kleene la :

Les langages rationnels sont stables par passage au complémentaire, par intersection et par passage
au langage miroir.

Propriété 12 (Stabilité des langages rationnels)

Remarques.
1. Rappelons que, par définition, la réunion ou la concaténation de deux langages rationnels est rationnel et

que l’étoile de Kleene d’un langage rationnel est rationnel.
Ainsi, Rat(Σ) est stable par réunion, intersection, passage au complémentaire, concaténation, étoile de
Kleene et passage au langage miroir.

2. Rat(Σ) est également stable par différence ensembliste et différence symétrique puisque :

L1 \ L2 = L1 ∩ L2 et L1∆L2 = (L1 ∪ L2) \ (L1 ∩ L2).

4.6 Lemme de l’étoile
Nous disposons désormais de deux manières de prouver qu’un langage est rationnel :

• en exhibant une expression rationnelle qui le dénote ;

• en exhibant un automate qui le reconnait.

En revanche, pour montrer qu’un langage n’est pas rationnel, nous utiliserons en général le résultat suivant :

Soit L un langage rationnel.
Il existe un entier naturel k tel que tout mot m appartenant à L de longueur supérieure ou égale à
k se factorise sous la forme m = uvw avec :

|v| ≥ 1, |uv| ≤ k, ∀n ∈ N, uvnw ∈ L.

Propriété 13 (Lemme de l’étoile)
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Remarques.

1. Ce résultat est aussi connu sous le nom de lemme de pompage, dans le sens où le facteur v du mot m
peut être "pompé" un nombre quelconque de fois et produire ainsi des mots de L.

2. Rappelons que tout langage fini est rationnel et notons que, pour ces derniers, ce résultat est évident dès
lors qu’on considère un entier k strictement supérieur au plus long des mots de L.

3. En revanche, lorsque L est de cardinal infini, il possède nécessairement des mots de longueur arbitrairement
grande. Pour ces langages, ce résultat affirme que passé une certaine taille, les mots de L sont toujours
construits par répétition d’un facteur v s’insérant au sein d’un mot uw de L.

Preuve.

□

Remarque. Ce résultat est le principal utilisé pour prouver qu’un langage n’est pas rationnel. Mais attention,
il n’y a pas équivalence : il existe des langages non rationnels qui vérifient les conclusions du lemme de l’étoile.
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Exercice. Montrer que le langage {akbk | k ∈ N} n’est pas rationnel.

Exercice 12 (⋆)
Soit L le langage sur l’alphabet Σ = {a, b} formé des mots où toute occurrence de a est suivie d’une occurrence
de b. Le langage L est-il reconnaissable ? Si oui, donner un automate reconnaissant L.

Exercice 13 (⋆⋆)
1. Déterminer l’automate de Glushkov associé à l’expression rationnelle a(a + b)∗a.

2. Même question avec l’expression rationnelle (a + c)∗abb + (a + c)∗.

Exercice 14 (⋆⋆)
Soit l’alphabet Σ = {a, b} et L le langage des mots sur Σ tels que le nombre de a dans les mots de L soit un
multiple de 3.

1. Construire un automate reconnaissant L.

2. En déduire une expression rationnelle dénotant L.
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Exercice 15 (⋆)
Soit L le langage sur l’alphabet Σ = {a, b} formé des mots u n’admettant pas le facteur a2 et tels que |u|a = 0[2].
Montrer que L est rationnel.

Exercice 16 (⋆⋆)
Montrer qu’il existe des langages reconnus par un automate déterministe à plusieurs états finaux qui ne peuvent
être reconnus par un automate déterministe à un seul état final.
On pourra considérer le langage a∗b∗.

Exercice 17 (⋆⋆)
Un mot sur un alphabet Σ est double s’il contient au moins deux occurrences de chaque lettre présente dans
son écriture.

1. Montrer qu’un mot de longueur 2|Σ| contient un facteur double.

2. Montrer que cette borne est optimale, c’est-à-dire qu’il existe un mot de longueur 2|Σ| − 1 sans facteur
double.

3. Le langage des mots doubles est-il rationnel ?

Exercice 18 (⋆)
On considère l’alphabet Σ = {a, b}. Montrer que les langages suivants ne sont pas rationnels :

• L1 = {u ∈ Σ∗ | |u|a = |u|b} ;

• L2 = {aibj | i < j} ;

• L3 = {uu | u ∈ Σ∗}.

Exercice 19 (⋆⋆)
Soit A un automate déterministe reconnaissant L (A). On cherche à construire Am un automate déterministe
reconnaissant L (A) et ayant un nombre minimal d’états. Pour cela, on identifie dans l’automate A des états
équivalents : q1 et q2 sont dits équivalents si pour tout mot u, les états q1 et q2 sont tous les deux bloquants
ou, si δ(q1, u) = q′

1 et δ(q2, u) = q′
2, alors q′

1 et q′
2 sont tous les deux finals ou non finals. Plutôt que de chercher

ces états, on détermine si deux états q1 et q2 ne sont pas équivalents, à l’aide de deux règles :

1. l’un est final et l’autre pas ;

2. si les deux états sont non équivalents, et si σ ∈ Σ est tel que δ(q′
1, σ) = q1 et δ(q′

2, σ) = q2 alors q′
1 et q′

2
ne sont pas équivalents.

On construit donc une partition en classes d’équivalences d’états, initialisée avec la première règle, et affinée
avec la deuxième jusqu’à stabilité.
Appliquer cet algorithme (dit algorithme de Hopcroft) à l’automate suivant :

q0 q1

q2

q3

q4

b

b

a

b

a

b
b

a

a

b
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