MP - Option Informatique Devoir en temps libre

Correction du devoir a faire pour le Lundi 5 Janvier

Exercice 1 (Mots et pliages)
1. (a) Nous avons :

aababa = ababab = bababb = abaabb = bababb = Gababb = bababb

(b) Soit s appartenant a 3*. Notons pour tout entier naturel n, la propriété & (n) :
"pour tout mot r de longueur n, 7s =357
Ini. Soit r un mot de longueur 0. Donc r = ¢ et on a :

S=8S=Sc£=8SE=35T.

Donc Z(0) est vraie.
Héré. Soit n € N. Supposons & (n) vraie et montrons & (n + 1).
Soit 7 un mot de longueur n 4+ 1. On a deux cas :
— Si la premiere lettre de r est a, alors r = ar’ avec r’ appartenant a »*
de longueur n et par hypothese de récurrence :

'"b=3Sar =3sT.

s=ar's=r1r'

b=75

V)
<

— Si la premiere lettre de r est b, alors r = br’ avec r’ appartenant a >*
de longueur n et par hypothese de récurrence :

rs=br's=r'sa=5r"a=5b’'=35T.

<

Dans tous les cas, Z(n + 1) est vraie.
Ccl. Par le principe de récurrence, on a donc démontré & (n) pour tout n € N.

Comme ce résultat est vrai pour tout s € ¥*, on a donc démontré que :
V(r,s) e (2%)?, 75=357.
(¢) On définit en OCaml les types alphabet et mot ainsi :

type alphabet = A | B ;;
type mot = alphabet list ;;

(d) Voici la fonction demandée :

let rec barre m = match m with

| [—> (]
| a :: q -> (barre q) @ [b]
| b :: q -> (barre q) @ [al]

2. (a) i. A chaque pliage, nous doublons le nombre de faces, donc pour tout n
appartenant a N, apres n pliages, nous avons 2" faces et donc 2™ — 1 plis.
Le mot u,, est donc de longueur 2™ — 1.

Soit n appartenant a N. Imaginons la feuille dépliée apres n + 1 pliages.
Ayant commencé par plier la feuille en deux, le pli central est en creux
symbolisé par la lettre a.

Le premier pliage effectué, il reste n pliages a effectuer :

1/5

MP - Option Informatique Devoir en temps libre

ii.

11.

— ces n pliages vont étre effectués sur la moitié gauche a I’endroit donc
générés le mot u,,.

— ces n pliages vont étre effectués sur la moitié droite a l’envers donc
générés le mot wu,,.

donc, par concaténation, t, 1 = U,al,.

Voici la fonction demandée :

let rec suiteu n = match n with
| 0 -> []
| _ => let u = suiteu (n-1) in u @ ([a] @ (barre u))
On remarque que, pour tout n > 2, 2" — 1 = 3[4], c’est-a-dire qu'il existe
k appartenant a N tel que 2" — 1 = 4k + 3.

Montrons alors par récurrence que, pour tout entier n > 2,
Uy = AWobwy . . . bon_gawon_ob.

Ini. uy = aab et uy est bien de la forme voulue donc &(2) est vraie.
Héré. Soit un entier n > 2. Supposons Z(n) vraie. Donc u,, est de la
forme :
Uy, = QWabWy . . . bwon_saWan _ob.
On a alors (avec les question 2.(a)i. puis 1.(b)) :
Upt+1 = UpQlyp
= QIUQb'LU4 Ce wan_4aw2n_2baawgn_zbwgn_w .. w_4aw_2b

~~ ~~
Un Up

= awsbwy . . . bwon_4awon _obwon aWon L obWaon L 4a . . . Won+1_4aWen+1_9b

donc u, 1 est de la forme attendue et & (n + 1) est vraie.
Ccl. Par le principe de récurrence, pour tout n > 2, on a :

Uy, = awsbwy . . . bwgn_sawen_ob.

Soit k£ appartenant a N. Il existe alors n supérieur ou égal a 2 tel que :
4k + 3 < 2" — 1. Donc w41 est la (4k + 1)-ieme lettre de u, et wyy,3 la
(4k + 3)-iéme lettre de u,. Donc avec le résultat précédent, wyr1 = a et
Waky3 = b.

Ainsi, pour tout k € N, wyry1 = a et wypy3 = b.

Formons le mot v,, = wowy ... won_o a partir des lettres d’indices pairs de
u, (on rappelle que u, est de longueur 2™ — 1).

Alors v,41 = v,av, (car il y a un nombre impair de lettres dans u,,).
Puisque v; = ¢, une récurrence immédiate montre que, pour tout n > 1,
Up = Up_1.

Ainsi, pour tout entier naturel k, il existe n appartenant a N\{0, 1} tel que
E<2!—1letona:

UVn = WaW4...Wo%k ...Won_9

Up—1 wiwy ... Wk ... Worn-1_1.

Donc wqr, = wy,.

2/5

MP - Option Informatique Devoir en temps libre

iii. Voici la fonction demandée :

let rec suitew n = match n mod 2 with
| 0 -> suitew (n / 2)
| _ -> if (n mod 4) = 1 then a else b

)

iv. W2000 = W1p000 = W500 = Wa250 = Wi125 = @ Car 125 =4 x 31 + 1.

Exercice 2 (Arbres gauchers)
1. Dans l'ordre des arbres :

— Les sommets 2,3 et 4 ont pour rang 1. Les sommets 5 et 9 ont pour rang 2.
Le sous-arbre de racine 5 n’est pas gaucher car son fils gauche (vide) a un rang
inférieur a son fils droit. L’arbre n’est donc pas gaucher.

— Les sommets 1,2, 3 et 7 sont de rang 1. Les sommets 5 et 6 sont de rang 2. Il n’y
a pas de probleme sur les rangs, mais I’arbre ne vérifie pas la premiere condition
car le fils du sommet 2 est 7. L’arbre n’est donc pas gaucher.

— Tous les sommets sont de rang 1. Chaque sous-arbre est bien gaucher, car le fils
droit est vide. L’arbre est donc gaucher.

— Tous les sommets sont de rang 1, sauf 6 qui est de rang 2. L’arbre est gaucher
car il respecte bien les deux conditions.

2. On ne s’intéresse ici qu’au sous-arbre droit pour effectuer la formule inductive :

let rec rang a = match a with
| Vide -> 0
| N(_, _, d) -> 1 + rang d

3. On vérifie que I'arbre respecte les deux conditions pour étre gaucher.

let rec gaucher a = match a with
| Vide -> true
| N(_, Vide, Vide) —-> true
| N(_, Vide, _) -> false
| N(x, g, Vide) -> let N(y, _, _) = g in (y <= x) && (gaucher g)
| N(x, g, d) -> let N(y, _, _) = g and N(z, _, _) =d in
(y <= x) & (z <= x) && (rang d <= rang g) && (gaucher g) && (gaucher d)
4. Montrons que 0 < 7(a) < log,(1 + |al).
La premiere inégalité est directe car I’arbre vide est de rang 0.
La seconde inégalité revient & montrer que 2" — 1 < la|, que 'on montre par
induction :
e Sia est vide, alors |a| = r(a) = 0 et I'inégalité est une égalité.
e Sia est un arbre gaucher de la forme N (z, g, d) et que le résultat est prouvé pour
g et d, alors :
— r(a) =r(d) + 1;
— la| =gl +[d| + 1;
— r(d) <r(g).

3/5

MP - Option Informatique Devoir en temps libre
On obtient donc avec toutes ces informations :
la| =1+ |g|+|d=1+2"9 —1427@ 1 >2x2r@ _ 1 =9r@ _1
L’induction est donc terminée. Cette seconde borne est atteinte pour des arbres
complets.
5. Il suffit de lire I'information :
let rang a = match a with
| Vide -> 0
| N(r, -5 = _) ->r
6. On applique ce qui est décrit en prenant garde aux différentes valeurs de rang pos-
sibles.
let rec fusion a b = match a, b with
| _, Vide —> a
| Vide, _ -> b
| N(_, xa, _, _), N(_, xb, _, _) when xb > xa -> fusion b a
| N(_, xa, ga, da), _ -> let ¢ = fusion da b in
let rg = rang ga and rc = rang c in
if rg >= rc then N(rc + 1, xa, ga, c)
else N(rg + 1, xa, c, ga)
7. L’insertion est juste la fusion de I’arbre et d'une feuille.
let insertion x a = fusion a (N(1, x, Vide, Vide)) ;;
8. On enleve la racine et on fusionne les deux fils.
let extraire_max a = match a with
| Vide -> failwith "Arbre vide"
| N(_, x, g, d) -> x, fusion g d
9. La complexité temporelle de la fonction fusion vérifie la relation de récurrence (sur
les rangs) suivante :
C(re — 1,1) + O(1)
Clrayr) = { Clrasrs — 1) + O(1)
selon les racines des arbres fusionnés. On constate ainsi que la somme des deux rangs
diminue exactement de 1 a chaque appel récursif. On en déduit que C(rq, 1) =
O(rq + rp) = O(log |a| + log |b]).
On en déduit ainsi que la fonction d’insertion a une complexité en O(r) = O(log |al).
Pour un arbre de la forme a = N(z, g, d), la fonction d’extraction a une complexité
en O(r(g) + r(d)) = O(log |al).
10. Comme pour le tri par tas, on commence par insérer tous les éléments dans un arbre

gaucher, puis on les extrait un par un.

4/5

MP - Option Informatique Devoir en temps libre

let tri_gaucher 1 =
let rec creer_gaucher 1 = match 1 with
| [1 -> Vide
| x :: q -> insertion x (creer_gaucher q) in
let rec tri acc a = match a with
| Vide -> acc
| _ -> let x, b = extraire_max a in tri (x :: acc) b in
tri [] (creer_gaucher 1)

5
Pour une liste de taille n, chacune de ces fonctions auxiliaires effectue n fusions. On

en déduit que la complexité temporelle de cette fonction de tri est en O(nlog(n)),
ce qui est optimal pour un tri par comparaison.

5/5

