
MP - Option Informatique Devoir en temps libre

Correction du devoir à faire pour le Lundi 5 Janvier

Exercice 1 (Mots et pliages)
1. (a) Nous avons :

aababa “ ababab “ bababb “ abaabb “ bababb “ aababb “ bababb

(b) Soit s appartenant à Σ˚. Notons pour tout entier naturel n, la propriété Ppnq :
”pour tout mot r de longueur n, rs “ s r”.
Ini. Soit r un mot de longueur 0. Donc r “ ε et on a :

rs “ s “ s ε “ s ε “ s r.

Donc Pp0q est vraie.
Héré. Soit n P N. Supposons Ppnq vraie et montrons Ppn ` 1q.

Soit r un mot de longueur n ` 1. On a deux cas :
— Si la première lettre de r est a, alors r “ ar1 avec r1 appartenant à Σ˚

de longueur n et par hypothèse de récurrence :

rs “ ar1s “ r1s b “ s r1 b “ s ar1 “ s r.

— Si la première lettre de r est b, alors r “ br1 avec r1 appartenant à Σ˚

de longueur n et par hypothèse de récurrence :

rs “ br1s “ r1s a “ s r1 a “ s br1 “ s r.

Dans tous les cas, Ppn ` 1q est vraie.
Ccl. Par le principe de récurrence, on a donc démontré Ppnq pour tout n P N.
Comme ce résultat est vrai pour tout s P Σ˚, on a donc démontré que :

@pr, sq P pΣ˚
q
2 , rs “ s̄ r̄.

(c) On définit en OCaml les types alphabet et mot ainsi :

type alphabet = A | B ;;

type mot = alphabet list ;;

(d) Voici la fonction demandée :

let rec barre m = match m with

| [] -> []

| a :: q -> (barre q) @ [b]

| b :: q -> (barre q) @ [a]

;;

2. (a) i. A chaque pliage, nous doublons le nombre de faces, donc pour tout n
appartenant à N, après n pliages, nous avons 2n faces et donc 2n ´ 1 plis.
Le mot un est donc de longueur 2n ´ 1.

Soit n appartenant à N. Imaginons la feuille dépliée après n ` 1 pliages.
Ayant commencé par plier la feuille en deux, le pli central est en creux
symbolisé par la lettre a.

Le premier pliage effectué, il reste n pliages à effectuer :

1 / 5

MP - Option Informatique Devoir en temps libre

— ces n pliages vont être effectués sur la moitié gauche à l’endroit donc
générés le mot un.

— ces n pliages vont être effectués sur la moitié droite à l’envers donc
générés le mot un.

donc, par concaténation, un`1 “ unaun.

ii. Voici la fonction demandée :

let rec suiteu n = match n with

| 0 -> []

| _ -> let u = suiteu (n-1) in u @ ([a] @ (barre u))

;;

(b) i. On remarque que, pour tout n ě 2, 2n ´ 1 ” 3r4s, c’est-à-dire qu’il existe
k appartenant à N tel que 2n ´ 1 “ 4k ` 3.

Montrons alors par récurrence que, pour tout entier n ě 2,

un “ aw2bw4 . . . bw2n´4aw2n´2b.

Ini. u2 “ aab et u2 est bien de la forme voulue donc Pp2q est vraie.
Héré. Soit un entier n ě 2. Supposons Ppnq vraie. Donc un est de la

forme :
un “ aw2bw4 . . . bw2n´4aw2n´2b.

On a alors (avec les question 2.(a)i. puis 1.(b)) :

un`1 “ unaun

“ aw2bw4 . . . bw2n´4aw2n´2b
looooooooooooooomooooooooooooooon

un

a aw2n´2bw2n´4a . . . w4aw2b
looooooooooooooomooooooooooooooon

un

“ aw2bw4 . . . bw2n´4aw2n´2bw2naw2n`2bw2n`4a . . . w2n`1´4aw2n`1´2b

donc un`1 est de la forme attendue et Ppn ` 1q est vraie.
Ccl. Par le principe de récurrence, pour tout n ě 2, on a :

un “ aw2bw4 . . . bw2n´4aw2n´2b.

Soit k appartenant à N. Il existe alors n supérieur ou égal à 2 tel que :
4k ` 3 ď 2n ´ 1. Donc w4k`1 est la p4k ` 1q-ième lettre de un et w4k`3 la
p4k ` 3q-ième lettre de un. Donc avec le résultat précédent, w4k`1 “ a et
w4k`3 “ b.

Ainsi, pour tout k P N, w4k`1 “ a et w4k`3 “ b.

ii. Formons le mot vn “ w2w4 . . . w2n´2 à partir des lettres d’indices pairs de
un (on rappelle que un est de longueur 2n ´ 1).

Alors vn`1 “ vnavn (car il y a un nombre impair de lettres dans un).

Puisque v1 “ ε, une récurrence immédiate montre que, pour tout n ě 1,
vn “ un´1.

Ainsi, pour tout entier naturel k, il existe n appartenant à Nzt0, 1u tel que
k ď 2n´1 ´ 1 et on a :

vn “ w2w4 . . . w2k . . . w2n´2

un´1 “ w1w2 . . . wk . . . w2n´1´1.

Donc w2k “ wk.

2 / 5

MP - Option Informatique Devoir en temps libre

iii. Voici la fonction demandée :

let rec suitew n = match n mod 2 with

| 0 -> suitew (n / 2)

| _ -> if (n mod 4) = 1 then a else b

;;

iv. w2000 “ w1000 “ w500 “ w250 “ w125 “ a car 125 “ 4 ˆ 31 ` 1.

Exercice 2 (Arbres gauchers)
1. Dans l’ordre des arbres :

— Les sommets 2, 3 et 4 ont pour rang 1. Les sommets 5 et 9 ont pour rang 2.
Le sous-arbre de racine 5 n’est pas gaucher car son fils gauche (vide) a un rang
inférieur à son fils droit. L’arbre n’est donc pas gaucher.

— Les sommets 1, 2, 3 et 7 sont de rang 1. Les sommets 5 et 6 sont de rang 2. Il n’y
a pas de problème sur les rangs, mais l’arbre ne vérifie pas la première condition
car le fils du sommet 2 est 7. L’arbre n’est donc pas gaucher.

— Tous les sommets sont de rang 1. Chaque sous-arbre est bien gaucher, car le fils
droit est vide. L’arbre est donc gaucher.

— Tous les sommets sont de rang 1, sauf 6 qui est de rang 2. L’arbre est gaucher
car il respecte bien les deux conditions.

2. On ne s’intéresse ici qu’au sous-arbre droit pour effectuer la formule inductive :

let rec rang a = match a with

| Vide -> 0

| N(_, _, d) -> 1 + rang d

;;

3. On vérifie que l’arbre respecte les deux conditions pour être gaucher.

let rec gaucher a = match a with

| Vide -> true

| N(_, Vide, Vide) -> true

| N(_, Vide, _) -> false

| N(x, g, Vide) -> let N(y, _, _) = g in (y <= x) && (gaucher g)

| N(x, g, d) -> let N(y, _, _) = g and N(z, _, _) = d in

(y <= x) && (z <= x) && (rang d <= rang g) && (gaucher g) && (gaucher d)

;;

4. Montrons que 0 ď rpaq ď log2p1 ` |a|q.

La première inégalité est directe car l’arbre vide est de rang 0.

La seconde inégalité revient à montrer que 2rpaq ´ 1 ď |a|, que l’on montre par
induction :
‚ Si a est vide, alors |a| “ rpaq “ 0 et l’inégalité est une égalité.
‚ Si a est un arbre gaucher de la forme Npx, g, dq et que le résultat est prouvé pour
g et d, alors :
— rpaq “ rpdq ` 1 ;
— |a| “ |g| ` |d| ` 1 ;
— rpdq ď rpgq.

3 / 5

MP - Option Informatique Devoir en temps libre

On obtient donc avec toutes ces informations :

|a| “ 1 ` |g| ` |d| ě 1 ` 2rpgq
´ 1 ` 2rpdq

´ 1 ě 2 ˆ 2rpdq
´ 1 “ 2rpaq

´ 1.

L’induction est donc terminée. Cette seconde borne est atteinte pour des arbres
complets.

5. Il suffit de lire l’information :

let rang a = match a with

| Vide -> 0

| N(r, _, _, _) -> r

;;

6. On applique ce qui est décrit en prenant garde aux différentes valeurs de rang pos-
sibles.

let rec fusion a b = match a, b with

| _, Vide -> a

| Vide, _ -> b

| N(_, xa, _, _), N(_, xb, _, _) when xb > xa -> fusion b a

| N(_, xa, ga, da), _ -> let c = fusion da b in

let rg = rang ga and rc = rang c in

if rg >= rc then N(rc + 1, xa, ga, c)

else N(rg + 1, xa, c, ga)

;;

7. L’insertion est juste la fusion de l’arbre et d’une feuille.

let insertion x a = fusion a (N(1, x, Vide, Vide)) ;;

8. On enlève la racine et on fusionne les deux fils.

let extraire_max a = match a with

| Vide -> failwith "Arbre vide"

| N(_, x, g, d) -> x, fusion g d

;;

9. La complexité temporelle de la fonction fusion vérifie la relation de récurrence (sur
les rangs) suivante :

Cpra, rbq “

"

Cpra ´ 1, rbq ` Op1q

Cpra, rb ´ 1q ` Op1q

selon les racines des arbres fusionnés. On constate ainsi que la somme des deux rangs
diminue exactement de 1 à chaque appel récursif. On en déduit que Cpra, rbq “

Opra ` rbq “ Oplog |a| ` log |b|q.

On en déduit ainsi que la fonction d’insertion a une complexité en Oprq “ Oplog |a|q.
Pour un arbre de la forme a “ Npx, g, dq, la fonction d’extraction a une complexité
en Oprpgq ` rpdqq “ Oplog |a|q.

10. Comme pour le tri par tas, on commence par insérer tous les éléments dans un arbre
gaucher, puis on les extrait un par un.

4 / 5

MP - Option Informatique Devoir en temps libre

let tri_gaucher l =

let rec creer_gaucher l = match l with

| [] -> Vide

| x :: q -> insertion x (creer_gaucher q) in

let rec tri acc a = match a with

| Vide -> acc

| _ -> let x, b = extraire_max a in tri (x :: acc) b in

tri [] (creer_gaucher l)

;;

Pour une liste de taille n, chacune de ces fonctions auxiliaires effectue n fusions. On
en déduit que la complexité temporelle de cette fonction de tri est en Opn logpnqq,
ce qui est optimal pour un tri par comparaison.

5 / 5

