MP - Option Informatique Devoir en temps limité - 2h

Correction du I'Interrogation 4 du Lundi 8 Décembre

Exercice 1 (Tri topologique d’un graphe orienté)
1.6-8-3-0-1-2—-4—-7—-50u0—-8-1-7—-3-4—-2-5-6.

2.

3.

Raisonnons par ’absurde en supposant que G' admet un cycle s;85...5,_151, k étant
un entier supérieur ou égal 3.

Suivant le tri topologique de G :

comme l'arc (s, s9) appartient a A, sy est rangé avant o,
comme l'arc (s, s3) appartient a A, so est rangé avant ss,

comme l'arc (Sg_2, Sx_1) appartient a A, si_o est rangé avant s;_1,
comme l'arc (sx_1,s1) appartient a A, s,_1 est rangé avant si,

ce qui est impossible.

Donc G est sans cycle.

(a) Considérons un chemin C' dans G de longueur maximale noté sgsj...sy.

Montrons que sq est alors de degré entant 0 dans G :

— Soit le sommet sy admet un prédécesseur p n’appartenant pas a {si, ..., Sy} et
dans ce cas, le chemin psgs;...s, est un chemin de G de longueur strictement
supérieure a la longueur de C, chemin de longueur maximale : CONTRA-
DICTION'!!

— Soit le sommet sy admet un prédécesseur p appartenant a {sy, ..., sy} et dans
ce cas, le chemin psys;...s;(= p) est un cycle de G : CONTRADICTION!!

(b) Prenons le sommet sy de degré entrant 0 comme le premier sommet dans le tri

topologique.

Le graphe G obtenu a partir du graphe G privé du sommet sy est toujours
sans cycle et possede également un sommet s; de degré entrant 0, que nous
prendrons en deuxieme position.

Nous répétons cette opération jusqu’a ce que tous les sommets de G aient été
placés.

Et nous avons ainsi construit un tri topologique du graphe G.

4. let g = [I[1; 71; [2; 71; [5]; [2; 41; (581; (O; OO0; 0O0; [711]

D.

(a) let rec suppression x 1 = match 1 with

| 00 > [
| t::q when t=x -> suppression x q
| t::q -> t::(suppression x q)

let suprime_arc g a b = g.(a) <- suppression b g.(a)

(¢) La fonction aux qui retourne 1 si 2 appartient a une liste /, 0 sinon :

let rec aux x 1 = match 1 with

| [1 >0

| t::q when t=x -> 1

| t::q > aux x q
Il reste a parcourir toutes les listes d’adjacence du graphe G et a sommer le
nombre d’occurence de x :

1/5

MP - Option Informatique Devoir en temps limité - 2h

let degre g a = let n = Array.length g and d = ref 0 in

for k = 0 to n-1 do

d :=!d + aux a g. (k)
done;
g
(d) On créé un tableau de booléen pour ne pas considérer plusieurs fois les sommets

de degré entrant 0. A chaque sommet a de degré entrant 0, on ajoute a a la
liste [et on supprime tous les arcs sortants de a. On recommence jusqu’a avoir
traité tous les sommets.

let tri_topologique g = let n = Array.length g and 1 = ref [] in
let t = Array.make n true in
for k = 0 to n-1 do
for a = 0 to n-1 do
if t.(a) && (degre g a = 0) then
begin
1 :=a::(11);
t.(a) <- false;
for b = 0 to n-1 do
supprime_arc g a b
done
end
done;
done;
List.rev !1

bR

Exercice 2 (Diameétre d’un graphe)
1. 7 a pour diametre 3 et pour chemins maximaux 0 —2 —3 —4, 0 —2 — 3 — 5,
1—-2—-3—-4etl1—-2-3-5.
(G5 a pour diametre 3 et pour chemins maximaux 0 — 1 —-2—-3, 0 -5 —4 — 3,
1-2-3-4,1-0-5—-4,2—-3-4-5,2—-1-0-5,3—-4—-5-0,3—-2—-1-0,
4-5-0-1,4-3-2-1,5-0—1—-2etH—-4—-3-2.

2. (a) Voici le graphe demandé :
(1) (o Y
© ©, ©, O, O

(b) let diam_max n =
let g = Array.make n [] in
for i =1 to n-2 do
g. (1) <= [i-1 ; i+1]

done;
if n > 1 then
begin
g.(0) <= [11;

2/5

MP - Option Informatique Devoir en temps limité - 2h

g.(n-1) <- [n-2]
end
g
3. (a) Un graphe complet (ou toutes les arétes possibles sont présentes) donne un
diametre de 1, qui est bien minimum :

(b) let diam_min n =
let g = Array.make n [] in
for i = 0 to n-1 do
for j = 0 to n-1 do
if 1 <> j then g.(i) <= j::g. (1)
done;
done;

g
4. Entrée : un graphe G (orienté ou non) pondéré dont tous les poids sont positifs et
un sommet s de G.

Sortie : la distance pondérée de s a chaque sommet de G (par exemple sous forme
d’un tableau).

Etant donné un graphe non pondéré, on peut mettre un poids de 1 sur chaque
arete et la distance pondérée est alors égale a la distance définie par 1’énoncé. Il
suffit ensuite d’appliquer une fois 1’algorithme de Dijkstra depuis chaque sommet du
graphe : la distance maximum trouvée est alors le diametre.

5. On peut utiliser un parcours en largeur depuis chaque sommet du graphe, ce qui
permet aussi d’obtenir toutes les distances donc le diametre.

6. Etant donné un graphe a n sommets et p arrétes, on sait d’apres le cours que
la complexité de I'algorithme de Dijkstra (O(pIn(n))) est plus élevée que celle du
parcours en largeur (O(n + p)). Comme dans les deux cas on applique 1'algorithme
autant de fois qu’il y a de sommets, il est préférable d’utiliser des parcours en largeur.

7. let a = Noeud (0, Noeud (1, Noeud (2, Noeud (4, Feuille, Feuille), Feuille),
Noeud (3, Noeud (5, Feuille, Feuille), Noeud (6, Feuille, Feuille))),
Feuille) ;;

Le diametre de G 4 est 4 et ses chemins maximaux sont 4—2—1—-3—6 et 4—2—1-3-5.

3/5

MP -

Option Informatique Devoir en temps limité - 2h

10.

11.

12.

13.

Soit A un arbre binaire enraciné en s et dont I’ensemble des noeuds est N. La fonction
qui a chaque noeud v de N\{s} associe I'arc aboutissant en v est une bijection de
N\{s} vers I’ensemble des arcs de A. On en déduit que r = n — 1.

let rec nb_noeuds a = match a with

| Feuille -> 0
| Noeud(r , g , d) -> 1 + nb_noeuds g + nb_noeuds d

b

let numerotation a =

let ¢ = ref (-1) in
let rec aux arb = match arb with
| Feuille -> Feuille
| Noeud(_, g, d) -> c := lc + 1;
let r = lc in
Noeud(r, aux g, aux d)
in
aux a
On parcourt 'arbre en reliant chaque noeud avec son pere :
let arbre_vers_graphe a =
let ga = Array.make (nb_noeuds a) [] in
let rec aux p arb = match arb with
| Feuille -> ()
| Noeud(r, g, d) -> if p <> -1 then
begin
ga.(r) <- p::ga.(r);
ga.(p) <- r::ga.(p)
end
aux r g;
aux r d
in
aux (-1) a;
ga
On peut numéroter les n sommets de I'arbre avec numerotation, le transformer
en graphe avec arbre_vers_graphe, puis calculer son diametre en utilisant des
parcours en largeur.
numerotation et arbre_vers_graphe parcourent chaque sommet de I’arbre une fois
en faisant un nombre constant d’itérations, donc sont en O(n). Comme le nombre
d’aréte de 'arbre est n — 1, la méthode pour calculer le diametre dans le graphe
obtenu est en O(n?).
D’olt la complexité totale O(n) + O(n) + O(n?) = O(n?).
On note |C] la longueur d'un chemin C. Si C est vide (c’est-a-dire qu’il ne contient
aucun sommet) on définit |C'| = —1. On pose aussi h(Feuille) = 0 (non défini par
I'énoncé).
Soit A un arbre et C' un chemin maximal de G 4. Supposons que C' passe par la
racine de A.

4/5

MP - Option Informatique Devoir en temps limité - 2h
Soit Cy la partie de C' dans G4, et 6)’9 le chemin correspondant dans A,;. Montrons
que |Cy| = h(4y) — 1.

C, est un plus long chemin de la racine de A, a un noeud de A, (sinon, on pourrait
remplacer Cy dans C' par un chemin plus long, ce qui contredirait la maximalité de
C'). Donc .
|Cg‘ = ’Og| - h(Ag) -1
Remarquons que cette formule reste vraie si A, est une feuille.
On raisonne de méme pour la partie Cy de C' dans G4, d’ou
C] = [Cgl + 2+ |Cal = h(Ag) + h(Ag)
(on rajoute 2 pour les arétes sortantes de la racine de A).
14. Le diametre est obtenu récursivement en remarquant qu’un chemin de longueur

maximum est soit entierement dans A, (donc de longueur égale au diametre de A,),
soit entierement dans Ay (donc de longueur égale au diametre de A,) soit passe par
la racine (donc de longueur h(A,) + h(Ag), d’apres la question précédente).

On a besoin a la fois du diametre et de la hauteur dans cette formule de récurrence, il
est donc judicieux d’utiliser une fonction auxiliaire qui renvoie les deux informations :

let diam_arbre arb =
let rec aux a = match a with
| Feuille -> (-1, 0)
| Noeud(_, g, d) -> let dg, hg = aux g in
let dd, hd aux d in
(max (max dg dd) (hg + hd), 1 + max hg hd) in

fst (aux arb)
aux a effectue un appel récursif pour chaque noeud de a et chacun de ces appels

effectue un nombre constant d’opérations (en dehors des appels récursifs) donc la
complexité de cette fonction est bien linéaire en le nombre de noeuds.

5/5

