
MP - Option Informatique Devoir en temps limité - 2h

Correction du l’Interrogation 4 du Lundi 8 Décembre

Exercice 1 (Tri topologique d’un graphe orienté)
1. 6 ´ 8 ´ 3 ´ 0 ´ 1 ´ 2 ´ 4 ´ 7 ´ 5 ou 0 ´ 8 ´ 1 ´ 7 ´ 3 ´ 4 ´ 2 ´ 5 ´ 6.

2. Raisonnons par l’absurde en supposant que G admet un cycle s1s2...sk´1s1, k étant
un entier supérieur ou égal 3.

Suivant le tri topologique de G :
— comme l’arc ps1, s2q appartient à A, s1 est rangé avant s2,
— comme l’arc ps2, s3q appartient à A, s2 est rangé avant s3,
— ...
— comme l’arc psk´2, sk´1q appartient à A, sk´2 est rangé avant sk´1,
— comme l’arc psk´1, s1q appartient à A, sk´1 est rangé avant s1,
ce qui est impossible.

Donc G est sans cycle.

3. (a) Considérons un chemin C dans G de longueur maximale noté s0s1...sk.

Montrons que s0 est alors de degré entant 0 dans G :
— Soit le sommet s0 admet un prédécesseur p n’appartenant pas à ts1, ..., sku et

dans ce cas, le chemin ps0s1...sk est un chemin de G de longueur strictement
supérieure à la longueur de C, chemin de longueur maximale : CONTRA-
DICTION !

— Soit le sommet s0 admet un prédécesseur p appartenant à ts1, ..., sku et dans
ce cas, le chemin ps0s1...sip“ pq est un cycle de G : CONTRADICTION !

(b) Prenons le sommet s0 de degré entrant 0 comme le premier sommet dans le tri
topologique.

Le graphe G1 obtenu à partir du graphe G privé du sommet s0 est toujours
sans cycle et possède également un sommet s1 de degré entrant 0, que nous
prendrons en deuxième position.

Nous répétons cette opération jusqu’à ce que tous les sommets de G aient été
placés.

Et nous avons ainsi construit un tri topologique du graphe G.

4. let g = [|[1; 7]; [2; 7]; [5]; [2; 4]; [5]; []; []; []; [7]|]

5. (a) let rec suppression x l = match l with

| [] -> []

| t::q when t=x -> suppression x q

| t::q -> t::(suppression x q)

;;

(b) let suprime_arc g a b = g.(a) <- suppression b g.(a)

(c) La fonction aux qui retourne 1 si x appartient à une liste l, 0 sinon :

let rec aux x l = match l with

| [] -> 0

| t::q when t=x -> 1

| t::q -> aux x q

;;

Il reste à parcourir toutes les listes d’adjacence du graphe G et à sommer le
nombre d’occurence de x :

1 / 5

MP - Option Informatique Devoir en temps limité - 2h

let degre g a = let n = Array.length g and d = ref 0 in

for k = 0 to n-1 do

d := !d + aux a g.(k)

done;

g

;;

(d) On créé un tableau de booléen pour ne pas considérer plusieurs fois les sommets
de degré entrant 0. A chaque sommet a de degré entrant 0, on ajoute a à la
liste l et on supprime tous les arcs sortants de a. On recommence jusqu’à avoir
traité tous les sommets.

let tri_topologique g = let n = Array.length g and l = ref [] in

let t = Array.make n true in

for k = 0 to n-1 do

for a = 0 to n-1 do

if t.(a) && (degre g a = 0) then

begin

l := a::(!l);

t.(a) <- false;

for b = 0 to n-1 do

supprime_arc g a b

done

end

done;

done;

List.rev !l

;;

Exercice 2 (Diamètre d’un graphe)
1. G1 a pour diamètre 3 et pour chemins maximaux 0 ´ 2 ´ 3 ´ 4, 0 ´ 2 ´ 3 ´ 5,

1 ´ 2 ´ 3 ´ 4 et 1 ´ 2 ´ 3 ´ 5.

G2 a pour diamètre 3 et pour chemins maximaux 0 ´ 1 ´ 2 ´ 3, 0 ´ 5 ´ 4 ´ 3,
1 ´ 2 ´ 3 ´ 4, 1 ´ 0 ´ 5 ´ 4, 2 ´ 3 ´ 4 ´ 5, 2 ´ 1 ´ 0 ´ 5, 3 ´ 4 ´ 5 ´ 0, 3 ´ 2 ´ 1 ´ 0,
4 ´ 5 ´ 0 ´ 1, 4 ´ 3 ´ 2 ´ 1, 5 ´ 0 ´ 1 ´ 2 et 5 ´ 4 ´ 3 ´ 2.

2. (a) Voici le graphe demandé :

(b) let diam_max n =

let g = Array.make n [] in

for i = 1 to n-2 do

g.(i) <- [i-1 ; i+1]

done;

if n > 1 then

begin

g.(0) <- [1];

2 / 5

MP - Option Informatique Devoir en temps limité - 2h

g.(n-1) <- [n-2]

end

g

;;

3. (a) Un graphe complet (où toutes les arêtes possibles sont présentes) donne un
diamètre de 1, qui est bien minimum :

(b) let diam_min n =

let g = Array.make n [] in

for i = 0 to n-1 do

for j = 0 to n-1 do

if i <> j then g.(i) <- j::g.(i)

done;

done;

g

;;

4. Entrée : un graphe G (orienté ou non) pondéré dont tous les poids sont positifs et
un sommet s de G.

Sortie : la distance pondérée de s à chaque sommet de G (par exemple sous forme
d’un tableau).

Étant donné un graphe non pondéré, on peut mettre un poids de 1 sur chaque
arête et la distance pondérée est alors égale à la distance définie par l’énoncé. Il
suffit ensuite d’appliquer une fois l’algorithme de Dijkstra depuis chaque sommet du
graphe : la distance maximum trouvée est alors le diamètre.

5. On peut utiliser un parcours en largeur depuis chaque sommet du graphe, ce qui
permet aussi d’obtenir toutes les distances donc le diamètre.

6. Etant donné un graphe à n sommets et p arrêtes, on sait d’après le cours que
la complexité de l’algorithme de Dijkstra (Opp lnpnqq) est plus élevée que celle du
parcours en largeur (Opn ` pq). Comme dans les deux cas on applique l’algorithme
autant de fois qu’il y a de sommets, il est préférable d’utiliser des parcours en largeur.

7. let a = Noeud (0, Noeud (1, Noeud (2, Noeud (4, Feuille, Feuille), Feuille),

Noeud (3, Noeud (5, Feuille, Feuille), Noeud (6, Feuille, Feuille))),

Feuille) ;;

Le diamètre deGA est 4 et ses chemins maximaux sont 4´2´1´3´6 et 4´2´1´3´5.

3 / 5

MP - Option Informatique Devoir en temps limité - 2h

8. Soit A un arbre binaire enraciné en s et dont l’ensemble des noeuds estN . La fonction
qui à chaque noeud v de Nztsu associe l’arc aboutissant en v est une bijection de
Nztsu vers l’ensemble des arcs de A. On en déduit que r “ n ´ 1.

9. let rec nb_noeuds a = match a with

| Feuille -> 0

| Noeud(r , g , d) -> 1 + nb_noeuds g + nb_noeuds d

;;

10. let numerotation a =

let c = ref (-1) in

let rec aux arb = match arb with

| Feuille -> Feuille

| Noeud(_, g, d) -> c := !c + 1;

let r = !c in

Noeud(r, aux g, aux d)

in

aux a

;;

11. On parcourt l’arbre en reliant chaque noeud avec son père :

let arbre_vers_graphe a =

let ga = Array.make (nb_noeuds a) [] in

let rec aux p arb = match arb with

| Feuille -> ()

| Noeud(r, g, d) -> if p <> -1 then

begin

ga.(r) <- p::ga.(r);

ga.(p) <- r::ga.(p)

end

aux r g;

aux r d

in

aux (-1) a;

ga

;;

12. On peut numéroter les n sommets de l’arbre avec numerotation, le transformer
en graphe avec arbre_vers_graphe, puis calculer son diamètre en utilisant des
parcours en largeur.

numerotation et arbre_vers_graphe parcourent chaque sommet de l’arbre une fois
en faisant un nombre constant d’itérations, donc sont en Opnq. Comme le nombre
d’arête de l’arbre est n ´ 1, la méthode pour calculer le diamètre dans le graphe
obtenu est en Opn2q.

D’où la complexité totale Opnq ` Opnq ` Opn2q “ Opn2q.

13. On note |C| la longueur d’un chemin C. Si C est vide (c’est-à-dire qu’il ne contient
aucun sommet) on définit |C| “ ´1. On pose aussi hpFeuilleq “ 0 (non défini par
l’énoncé).

Soit A un arbre et C un chemin maximal de GA. Supposons que C passe par la
racine de A.

4 / 5

MP - Option Informatique Devoir en temps limité - 2h

Soit Cg la partie de C dans GAg et
ÝÑ
Cg le chemin correspondant dans Ag. Montrons

que |Cg| “ hpAgq ´ 1.
ÝÑ
Cg est un plus long chemin de la racine de Ag à un noeud de Ag (sinon, on pourrait
remplacer Cg dans C par un chemin plus long, ce qui contredirait la maximalité de
C). Donc

|Cg| “ |
ÝÑ
Cg| “ hpAgq ´ 1.

Remarquons que cette formule reste vraie si Ag est une feuille.

On raisonne de même pour la partie Cd de C dans GAd
d’où

|C| “ |Cg| ` 2 ` |Cd| “ hpAgq ` hpAdq

(on rajoute 2 pour les arêtes sortantes de la racine de A).

14. Le diamètre est obtenu récursivement en remarquant qu’un chemin de longueur
maximum est soit entièrement dans Ag (donc de longueur égale au diamètre de Ag),
soit entièrement dans Ad (donc de longueur égale au diamètre de Ad) soit passe par
la racine (donc de longueur hpAgq ` hpAdq, d’après la question précédente).

On a besoin à la fois du diamètre et de la hauteur dans cette formule de récurrence, il
est donc judicieux d’utiliser une fonction auxiliaire qui renvoie les deux informations :

let diam_arbre arb =

let rec aux a = match a with

| Feuille -> (-1, 0)

| Noeud(_, g, d) -> let dg, hg = aux g in

let dd, hd = aux d in

(max (max dg dd) (hg + hd), 1 + max hg hd) in

fst (aux arb)

;;

aux a effectue un appel récursif pour chaque noeud de a et chacun de ces appels
effectue un nombre constant d’opérations (en dehors des appels récursifs) donc la
complexité de cette fonction est bien linéaire en le nombre de noeuds.

5 / 5

